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Abstract

The e-Dense Steiner Tree Problem was defined by Karpinski and
Zelikovsky [11] who proved that for each € > 0, this problem admits
a PTAS. Based on their method we consider here dense versions of
various Steiner Tree problems. In particular, we give polynomial time
approximation schemes for the e¢-Dense k-Steiner Tree Problem, the
e-Dense Prize Collecting Steiner Tree Problem, the e-Dense k-Steiner
Tree Problem and the ¢-Dense Group Steiner Tree Problem. For the
dense version of the Steiner Forest Problem we obtain an approxima-
tion algorithm that performs well if the number of terminal sets is
small compared to the total number of terminals.

1 Introduction

Given a graph G = (V, ), a cost function ¢: £ — R, and a subset S C V
of the vertices of GG, a Steiner Tree T for S in & is a subtree of & that all
vertices from S. The elements of S are called terminals. The Steiner Tree
Problem (STP) is: Given G, c and S as above, find a Steiner Tree T for S
in G of minimum cost ¢(T) = 3_ ¢ p(r) c(e).

The Steiner Tree Problem is one of the fundamental network design
problems with applications ranging from transportation networks, energy
supply and broadcast problems to VLSI design and Internet Routing. The
currently best known Steiner Tree approximation algorithm is due to Robins
and Zelikovsky [13] and achieves a ratio of &~ 1.55. On the other hand,
Chlebik and Chlebikova [3] proved that the Steiner Tree Problem is NP-
hard to approximate within ratio 1.01063.
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Numerous results for special cases of the Steiner Tree Problem are known.
Robins and Zelikovsky [13] obtain a better approximation ratio for the quasi-
bipartite case. Arora [2] gives a polynomial time approximation scheme
(PTAS) for geometric instances in constant dimension. Karpinski and Ze-
likovsky [11] construct a PTAS for the e-Dense Steiner Tree Problem.

In this paper we consider dense versions of the Steiner Tree Problem and
of some of its most important generalizations, namely the Steiner Forest
Problem, the k-Steiner Problem, the Prize Collecting Steiner Tree Problem
and the Group Steiner Tree Problem. Let us give the definitions of these
problems and of their dense versions and state results that are known for
these problems.

The e-Dense Steiner Tree Problem

The e-Dense Steiner Tree Problem was introduced by Karpinski and Ze-
likovsky [11]. An instance of the Steiner Tree Problem in Graphs consisting
of graph G = (V, F) and terminal set S C V is called e-dense if each ter-
minal s € S has at least €|V \ 9| neighbours in V' \ S . Karpinski and
Zelikovsky obtain the following result: For every € > 0 there is a polynomial
time approximation scheme for the e-Dense Steiner Tree Problem. The idea
of their algorithm is to perform first a number of greedy steps contracting
stars, where a star always consists of a non-terminal and all the terminals
that are connected to it. The greedy phase reduces the number of terminals
to a constant while adding extra cost 6-|S|. In a second phase, the remaining
problem is solved by the Tree Enumeration Algorithm.

The following difficulty occurs. The greedy contractions are not neces-
sarily disjoint and may therefore affect the density. Hence we will give a
slightly modified approach where the greedy contractions are disjoint, hence
the density condition is preserved. This ends in a remaining instance of
O(log(|S])) terminals, and using the Dreyfus-Wagner algorithm we can solve
the remaining problem to optimality. In this way we obtain a PTAS which
is not efficient.

However, we will show that after such a greedy phase in a sense the
density is not completely destroyed, and after O(log™(].S|) such greedy phases
we obtain a remaining instance with a constant number of terminals. This
approach gives an efficient PTAS for the e-Dense Steiner Tree Problem.

We will furthermore consider a relaxation of the density condition which
we call log-density. Roughly, an instance is log-dense if all subsets of the
terminal set of size at least log(]S5]|) satisfy the average-density condition.
The precise definition is given in the next section. For this density condi-
tion we will also obtain a PTAS.



Steiner Forest Problem: Given a graph G = (V,£) with edge costs
c: I/ — Ry and pairwise disjoint nonempty terminal sets Sq,...,5, C V,
find a forest F' = (V(F), E(F)) C G of minimum cost such that for all
1 <2 < n S;is contained in a connected component of F. The best
known approximation algorithms for the Steiner Forest Problem achieve
ratio 2 - (1 — |S|™1) and are based on the primal-dual method (see for in-
stance [12], [6]). An instance of the Steiner Forest Problem is called e-dense
if it consist of an unweighted graph G and terminal sets Si,...,.5, such
that for every 1 <7 < m and every s € S; the number of neighbours of s in
V\ S; is at least € - |V \ S;| We will give a polynomial time approximation
schemes for instances where the number of terminal sets is small compared
to the total number of terminals. The precise statement is given below.

Prize Collecting Steiner Tree Problem (PSTP): Given a graph G =
(V, E) with edge costs ¢: £ — Ry and a terminal set S C V with price
function p: S — Ry, find a tree T C G connecting a subset S’ of S such as
to minimize ¢(7) 4+ p(S \ 9’). Again, the best known approximation ratio
for the general case is 2, based on the primal-dual method [6] Here we take
the same density condition as for the Steiner Tree Problem: An instance is
called e-denes if every terminal has at least e-|V'\ S| neighbours in V'\ 5. We
will give a polynomial time approximation scheme for the e-Dense PSTP.

k-Steiner Tree Problem (k-STP): Given a graph ¢ = (V, ) with edge
costs ¢: ¥ — Ry, a terminal set S C V and a number k € [1,|5]], find a tree
T in G of minimum cost ¢(1') which connects at least k terminals from S.
We will consider the same density condition as for the Steiner Tree Problem
and for the Prize Collecting Steiner Tree Problem. We will give a PTAS for
the e-Dense k-Steiner Tree Problem.

Group Steiner Tree Problem: Given a graph ¢ = (V, F') with edge costs
c: I/ — R, and a system of pairwise disjoint subsets C1,..., ), of the ver-
tex set V, find a minimum cost tree T in G such that for each 1 <i<n T
contains at least one vertex of C);. The sets C; are also called classes, hence
T has to contain at least one representative for each class. This problem is
easily seen to be at least as hard as the Set Cover Problem, and Halperin
and Krauthgamer gave a polylogarithmic lower bound for approximability
[8], while Garg and Konjevod [5] obtain a polylog-approximation algorithm.
Nevertheless for the e-dense version of the problem we are able to give a poly-
nomial time approximation scheme. An instance of the Group Steiner Tree



Problem is called e-dense if it consists of a graph G' = (V, E) (i.e. all edge
weights are 1) and groups C4,...,C), such that for every s € S := . C},
[Nvys(s)] > e [V S].

The following tables summarize our results.

Steiner Problems: General Case vs. Dense Case
Problem Definition General Case e-Dense
Upper Lower Upper
Steiner Tree Problem ~ 1.55 [13] ~ 1.01 [3] PTAS [11]
Group Steiner Tree polylog. [5] polylog. [8] | PTAS
k-Steiner Problem 246 [1] ~ 1.01 [3] PTAS
Prize Collecting STP | 2 - (1 + ﬁ) 6] ~1.01[3 |PTAS
Steiner Forest Problem | 2 - (1 + |1?|) [6] ~1.01[3] |improved
Steiner Tree Problem: Notions of Density
Problem ‘ Density Condition ‘ Result
in e-Everywhere | Vv e Vdg(v)>e-n PTAS
Dense Graphs
in e-Average |E| > €-n? APX-hard
Dense Graphs
(€, ¢)-log Density | VS' C S, |S'| > ¢-log(]S]) PTAS
implies |[E (S, V\ 9)| > ¢-|S]-|[V\S]

The rest of the paper is organized as follows. In section 2 we recall two
exact algorithms for the Steiner Tree Problem, the Spanning Tree Heuristic
and the Dreyfus -Wagner algorithm. In section 3 we consider the e-Dense
Steiner Tree Problem and the relaxation to the log-density mentioned above.
Section 4 deals with the Dense Steiner Forest Problem. In section 5, 6 and
7 we construc polytime approximation schemes for the e-dense versions of
the prize Collecting Steiner Tree, k-Steiner Tree and Group Steiner Tree
Problem respectively. A few open problems are stated in section 8.

2 Exact Algorithms for the Steiner Tree Problem

We mention here only two exact algorithms for the Steiner Tree Problem,
the Tree Enumeration Heuristic and the Dreyfus-Wagner Algorithm.

The Tree Enumeration Heuristic [7] enumerates all subsets of V'\ S of size
at most |S| — 2 and for each of them tries to compute a minimum spanning



tree (MST). The running time is O(|S|?- 277151 4 1?), hence exponential in
the number of non-terminals but polynomial in the number of terminals.

The Dreyfus-Wagner Algorithm [4] is based on a dynamic programming
approach and achieves a running time exponential in the number of termi-
nals but polynomial in the number of vertices in the graph. For a given
instance ¢ = (V, F),S C V,c: E — Ry of the Steiner Tree Problem in
edge-weighted graphs, the Dreyfus-Wagner algorithm St-DW computes an
optimum Steiner tree 7" = St-DW(S, ¢) for terminal set S in G, based on
the following recursion. Given a node v € V| St-DWy(v, S, ¢) denotes an
optimum solution to the problem of constructing a Steiner tree for terminal
set {v} U S such that v has degree > 2 in this tree. Then

St-DW3(v, S,¢) = argmingc x5 {c(St-DW({v} U X, ¢))
Fe(SLDW({0} U (81 X))
St-DW({v} U S, ¢) = argmin {¢(St-DWy(v, 5, ¢)),
1r1r1inuev\5{c(v7 u) 4 ¢(St-DWs(u, S, ¢)) },
minyes{c(v,u) + ¢(St-DW(9))} }

Lemma 2.1. [}] The running time of the Dreyfus-Wagner algorithm is in
O3 + 2151n2 4 23).

For the rest of the paper, by THD we denote the Tree Enumeration
Heuristic and by St-DW the Dreyfus-Wagner Algorithm.

3 The e-Dense Steiner Tree Problem

In this section we will construct an efficient polynomail time approximation
scheme for the e-Dense Steiner Tree Problem. Furthermore we consider a
relaxation of the density condition ”towards average-density” which we call
log-density.

Let us start with the e-Dense Steiner Tree Problem. It was stated and
used in [11] that if an instance G = (V, F), S C V satisfies the e-density
condition, then there exists some v € V \ S such that |[Ng(v)| > €-]S].
Here Ng(v) denotes the set of all neighbors of v that are elements of S.
if we pick such a node v and remove all its terminal neighbors from S,
the resulting instance G, S\ Ng(v) is still e-dense. Hence we can iterate
these greedy picks and collect the stars consisting of such a node v and the
set Ng(v). After ¢ such picks, the size of the terminal set is reduced to
at most (1 — €)* - |S]. Hence if afterwards we contract all the stars picked
so far and add these contracted nodes to the terminal set, this results in



an instance of the Steiner Tree Problem with a terminal set of size at most
(1—€)i-|S|+i. Hence after O(log |S|) greedy steps we are left with an instance
of the Steiner Tree Problem with only O(log(|S|)) terminals, which can be
solved to optimality using the Dreyfus Wagner Algorithm DW [4]. This
gives the following modified version of the Karpinski-Zelikovsky algorithm.

Algorithm DST
Input: G=(V,E),SCV,§>0
Output: (1 + §)-approx. Steiner Tree for S in GG
Phase 1: Greedy Picks
while |S| > ks
v := argmax{|Ng(u)|,u € V'\ S}
ST, := the star consisting ov v and Ng(v)
S:= S\ Ns(v)
Phase 2:
for each star ST, collected in Phase 1
Contract ST, into s,
S:= SU{s,}
Solve the remaining instance using
the Dreyfus-Wagner Algorithm St-DW| obtain tree T5.
Return Tpst := 15U Uppase 1 5T

Analysis. Let S; denote the terminal set after ¢ greedy picks in phase 1.
Due to the density condition, |S;| < (1 — ¢€)* - |S|. Hence for i > log (%) /

log (ﬁ), after ¢ greedy steps, |S;| < ks.

The remaining instance consists of at most i+ ks terminals. For each star
ST, picked in phase 1, we add edges that form an MST for the terminals of
ST,. This does not increase the cost of an optimum Steiner tree. We may
assume that the optimum Steiner tree for this modified instance consists of
the MSTs for the stars and a tree Ty connecting these. Note that the cost
of T is bounded by the cost of Ty. Let T* denote an optimum Steiner tree
for S in . Let STi,...,ST; be the stars cllected in phase 1, let S; denote
the terminal set of ST} (1 < j < ). Hence we obtain

c(Tpsrt) < 2;21 1S5 4@ + ks
o(T=) = 1S+ ks

We want to choose ks such as to bound the right hand side of this inequality

by 1+ 4. It suffices to choose ks > 210g(1/(1—il)~|5|'6—1 , which can be bounded
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by a constant only depending on ¢ and §. The running time of phase 1 is
obviously polynomial in the size of G and S. Since i = O(log(]S|)) for fixed
4, the running time of phase 2 is also polynomial in the input size. Hence
we obtain

Theorem 3.1. Algorithm DST is a polynomial time approzimation scheme
for the e-Dense Steiner Tree Problem.

Since each terminal was involved in at most one contraction, afterwards
each of the new terminals has at least €|V \ S| — 1 non-terminal neighbors and
the number of non-terminals is |V'\ S| —4. Hence the resulting instance is ¢-
% We can now iterate the greedy process O(log™(|S])
times, where the j-th run of the greedy phase takes as its terminal set
the remaining terminals and the contracted stars from the previous phase.
This reduces the number of terminals to a constant, and therefore we can
afterwards use the Tree Enumeration Algorithm [7] instead of the Dreyfus-

Wagner algorithm to solve the remaining instance. This yields

dense for € =

Theorem 3.2. For each € > 0, there is an efficient polynomial time ap-
prozimation scheme for the e-dense Steiner Tree Problem.

3.1 Towards Average-Density:
Relaxing the Density Condition

We consider now instances of the Graph Steiner Tree Problem for which
some kind of average density condition is satisfied. A natural definition of
average density is as follows: We call an instance G = (V, ), S C V of the
Graph Steiner Tree Problem average e-dense if

[E(S,VAS) = e [S]-[V\S]. (1)

Note that e-Density as defined in [11] implies Average-e-Density. Further-
more average ¢-density implies existence of a vertex v € V' \ S with at least
€ - |S| neighbours in S, i.e. a good pick. However average e-density is not
preserved by good picks. Here is an easy example: If there exists a subset
S’ of S of size € - |S| such that every vertex v € V' \ S is connected to all
terminals from S’ and to none of the terminals from S\ S’, this instance is
average e-dense. However after one good pick the density condition is not
valid anymore.

Nevertheless we will now relax the density condition ”towards average-
density” and give a PTAS for this relaxed version. Let us first give some



motivation. We observe that e-density does not only imply (1) but also the
following more general property:

IE(SV\S)| > ]9 [V\S| forall §'CS 2)

Indeed (2) is equivalent to e-density. We may now ask how far we can
relax (2). Relaxing here means to consider instances where (2) does not
necessarily hold for all subsets S” of S but for all subsets with cardinality
at least some prespecified lower bound. In (2) the lower bound is 1 (or 0)
while in the average-density condition (1) it is |S|. The question now is:
How much can we increase the lower bound (starting from 1) and still get a
PTAS 7 Actually we do not know the answer but at least we can relax up
to logarithmic size:

Definition 3.1. (log-Density)
An instance G = (V, ), S of the Graph Steiner Tree Prolem is called (e, ¢) —
log-dense iff for all subsets S" C S of the terminal set with |S’| > ¢-log(|S])

[E(SVAS > e |9 [V\S]. (3)

Theorem 3.3. For each € > 0,¢ > 0 there is a PTAS for the (e, ¢) — log-
Dense Steiner Tree Problem.

Let us first give some ideas and then give the precise proof of Theorem
3.3. Our approach is quite similar to that of Karpinski and Zelikovsky [11].
The most important difference is that when performing greedy steps and
picking Steiner points, after contracting a star consisting of a vertex from
V'\ S and all its neighbours in S the resulting supernode will be removed
from S and hence not be considered in further greedy steps anymore. This
alternative method has basically two effects: First the density condition
for the actual terminal set is preserved and second afterwards we are left
with a "residual” terminal set of logarithmic instead of constant size. Hence
in order to solve the remaining problem we will take the Dreyfus Wagner
algorithm instead of the Tree Enumeration algorithm since its running time
is polynomial in the number of non-terminals (and exponential in the number
of terminals, hence polynomial in the initial input size). We are now ready
to describe our algorithm.

Algorithm LDSTP

Input: an instance of the (c, €)-log-dense Steiner Tree Problem
consisting of graph G = (V| F), terminal set S C V

Output: Steiner tree T for S in &G



(0) C:={{s}:s € S} set of terminal components
C,:=C set of active terminal components
(1) while E(C,) # 0 do
Pick e € F(C,) connecting two terminal components Cy,Cy € C,.
Let C, := (Co \ {C1,C2}) U {C1 Uy}, update C accordingly.
(2) while |C,| > ¢-log(]S]) - K do
Find v € V' \ S with the maximum number of neighbours in C,.
Contract the star T'(v) consisting of v and its neighbours N(v,C,)
in C,. Update C and C, accordingly:
Co:=Cs\N(v,Cy), C:=(C\ N(v,Cy)) U {UCEN(%CG) C'y.
(3) Find an optimum Steiner tree 1™ for C.
(4) Return Tpp = T* U U, picked in (I)T(v) U {e| e picked in (1)}.

Analysis. The log-density condition (3) directly implies that initially
[E(C,V\C)l > e [C]-[V\Cal (4)

for all subsets C’ of C, of size at least ¢ - log(]S]). We will now prove that
(4) is preserved by the picks of edges in phase (1) and stars in phase (2)
of algorithm LDSTP. Indeed, if an edge connecting two active components
is picked, then subsets C' of C, of size at least ¢ - log(]S|) after the pick
correspond to subsets of C, of size € [ |C'|,|C’| + 1] before the pick with
the same neighbourhood in V' \ C, and since |V \ C| does not change, (4)
still holds. On the other hand, if a vertex v € V' \ C is picked and the star
consisting of v and N(v,C,) is contracted, then the resulting supernode is
removed from C, and the cardinality of V' \ C, remains the same, hence also
in this case (4) is preserved.

Let k be the number of picks of stars T'(v, N(v,C,)) in phase (2), let
Ty = T(vi, N1),..., Ty = T(vg, Ni) denote these stars and let e, ..., ¢
denote the single edges connecting active components picked in phase (1) of
algorithm LDSTP.

Now construct graph G’ from G by adding edges connecting the set
N (v,C,) by a spanning tree for each pick v in phase (1) of algorithm LDSTP.
Note that OPT(G',S) < OPT (G, S). There exists an optimum tree 77" in
G’ consisting of spanning trees T/ for the sets N; = N(v;,C,) of picks in
phase (2), the set £ of all edges connecting two active components in phase
(1) and a tree 7' connecting the set of components C at the end of phase
(2). Hence we can bound the approximation ratio of algorithm LDSTP as

follows:
cost(TLp) cost(T)+XF_ | cost(Ty) +|F | SF IV <14 k
cost(T*) = cost(TH+5, cost(TY) +|E1| = SE (INi|-1) = (CE Nk



Hence let us assume we start with a (c,¢)-dense instance with no edges
between teminals. Each pick of a star reduces the cardinality of C, by a
factor €. Let C,(¢) denote the set C, after ¢ picks of a star, then |C,(7)| <

(1= €)i[S|. We obtain |ca(1;)| < e-log(|S]) K for k > ot - ey,
1

hence we assume k < c~log|(|s|)~K " Togi/(iz) T 1. Since

k k

l ' ' 1—(1- ek
ZINZ'I > Y (= e-|Sl=e-|S]- ) (1-0i=e-|5] ———

X X €
=1 =1

we obtain the following bound for the approximation ratio of algorithm

LDSTP:

cost(Trp) < 14 2k <14 2k
wost@ = TS N S T a-a-on
S
< 14 2 (crgliepx " margizgy + Y
- 1S+ (L= (1= 6)F)
2- (c~lo |SS|' K " Tog(1 11—5 + 1)
< 14 g(IS) |5|.i( /(1=9)) (5)

since we may assume k& > 1 (in case k& = 0 algorithm LDSTP computes

an optimum solution, namely a spanning tree for S). Using ﬁ < m

we obtain

cost(Trp) 1 1 . )
Cost(T—L*g) <14+ (701(.1%(116) + 1) Tog([SD " For given § > 0

we will now choose K such that the approximation ratio is bounded by

-1
1+446,ie. K> (c -log ( ! ) - (e-6-log(|S]) — 1)) . Hence choosing K =

1—e

—1
(c -log (lie)) , solving the Steiner Tree instance exactly by brute force

for |5] < 22/(¢9) and applying LDSTP for all other instances yields a PTAS
for the (c, €)-log-dense Steiner Tree Problem. O

4 The Dense Steiner Forest Problem

In this section we will consider the e-Dense Steiner Forest Problem. Cur-
rently we are not able to provide a PTAS for this problem, for the following
reason: All the variants of the methods of [11] we have discussed so far (and
will discuss in subsequent sections) are based on the approach of performing
greedy steps until the problem size is sufficiently small and then applying
some exact algorithm for the remaining instance. In the Steiner Forest Case

10



the kind of greedy steps we have in mind reduce each single terminal set to
constant size, but the number of terminal sets might not be reduced at all.
On the other hand we do not know how to justify contraction steps that
reduce the number of terminal sets, since melting j of them into a single
terminal set might produce an additive cost of j. However we will now give
an approximation algorithm for the Dense Steiner Forest Problem with ap-
proximation ratio 14+ O((>_7, log(]Si]))/ (3o, |Si])), where Sy,...S, are
the given terminal sets. Intuitively this provides good approximation in case
sufficiently many terminal sets are large, and we will make this precise in
this section.

Definition 4.1. An instance G = (V, F),S1,..., S, of the SFP is called
e-dense’ iff for all 1 < i < n and S" C S; there exists a vertex v € V \ .5;
such that [N (v)NS'| > e-]5].

Lemma 4.1. For every € > 0, every e-dense instance of the SFP is e-dense’.

Proof: Let G = (V,F),51,...,5, be edense, let 7 € {1,...,n} and
S’ C S;. Then for all s € " it holds [N (s)N (V' \ S;)| > €|V \ 9.
From 37 ey, IN(0) VS| = 3 esr IN(s) N (VN Si)| > [S7] - e [V Si] we
conclude that there exists at least on v € V\S; such that [N (v)NS’| > €-].57].
O

Algorithm Ag:
Input: ¢ = (V, F),S:={51,...,5,} C P(V) instance of the e-Dense SFP
Output: Set of edges F' C F defining a Steiner Forest for Sy,...,S,

(0) Let F':=0 and S; 4 := 53,1 <7 < .
(1) while max;<i<y, |Siqct| > k do
Pick 7 € {i,_ nyand v € V\S; 4o
such as to maximize |N(v) N.S; 4.
Let S := N(v)NS; et and F:= FU {{v,s} :5 € S}.
Siact = Siact \ S. Contract S U {v}.

(2) Solve the remaining instance using the Primal-Dual algorithm.

Lemma 4.2. At the beginning of every call of the while-loop the sets S; 40
are e-dense’.

Proof: The initial sets S;..¢ = S; are e-dense and therefore e-dense’.
Since in every iteration the removed set S does not contain elements from
Uses,,m\é N (5)\ S; act, for every subset S’ of 5; 4+ \ S existence of a vertex v

11



in V\S; 4et and hence in V'\ 'S’ with many neighbours in 5" is not disturbed.O

Analysis of Algorithm Ay. First note that > " ,(|S;] — 1) =: L is a
lower bound for the cost of an optimum solution. We will now estimate
the cost of the solution produced by algorithm Ag. For 1 < ¢ < n let
j(7) denote the number of contractions of subsets of \S; o+ in phase (1) of
the algorithm, and let S}, .. .,Sg(i) be the subsets being contracted. Let
Sirem =S\ (S}U...U Sf(l)) the remaining set of S;. Then the number
of edges added to F' in phase (1) is given by cost; = > ?g EHEE=
St (1Si] = |Sireml). At the end of phase (1), for 1 < i < n the size of S;
is given by s(7) := j(i) + |5 — ?g |SI| = 7(3) + |Sirem|. Furthermore
the size of S; 4.+ after [ contractions is bounded by |.S;|(1 — e)l, hence s(7) <
F(8)+15:](1 = €)’®). Hence if we let costy denote the number of edges picked
by the 2-Approximation Algorithm in phase (2) of Ay, then cost, is bounded
as follows: costy < 237, (5(1) + [S:](1 — €)'D). Let 2y == [SY,1 < i <
n,1 <1 < j(¢). An upper bound for the cost of solution generated by
algorithm Ay, is then given by the following optimization problem:

0, §0) i) .
max Y Yo + 20 [ [Si] = Y w +5(0)
1

i=1[=1 =

() .
st Yo > |9 (1-(1- 6)](2)) ,1<i<n
=1
n i) o
= maxy_ | 2[5]—-> zi +25(9)
=1 =1

1) s
st Y ay >8] (1-(1-¢/@D) 1<i<n
=1

Let save; := J(ZZ:) zi1 —27(1), 1 << n. Wegive a lower bound for save; as a
=1

function of |\S;|. Let X = E{g x;; the total number of terminals removed

from S; in phase (1) of algorithm Ay, then X > (e|S;| — k)/e = |S;| — k/e.

Furthermore k > ¢-]S;|- (1—¢)/¥) from which we conclude j(i) < log (#) /

log(1 — €). Hence the total cost of the solution generated by algorithm Ay

is bounded by

" log EL " log €l
ZMQM+%QT%%S:ZMQM+5”7%f%ZW@W

. d
Since ggte(e k) =n-{ ¢~ grmy # ) =0 for k= oy and
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%tc(e, k*) > 0, we choose k = k* and finally obtain

Theorem 4.1. For each € > 0 there is a polynomial time approximation
algorithm for the e-Dense Steiner Forest Problem with approximation ratio

5 Dense Prize Collecting Steiner Tree Problem

In this section we describe a polynomial time approximation scheme for the
e-Dense Prize Collecing Steiner Tree Problem.

Let G = (V,FE), SCV, p: S — R, be an instance of the e-Dense Prize
Collecing Steiner Tree Problem. We will construct a solution consisting of
a tree T in G and a terminal set S’ C S such that T is a Steiner tree for
the terminal set S\ S’. First we observe that if for some s € S, p(s) < 1
then we may put s in S’, i.e. pay the prize for terminal s, since otherwise
we would have to spend at least one edge in order to connect s to the rest
of the tree. Hence we may now assume that S = {s;,...,s,} such that
L<p(s1) < ... < p(sn).

In a greedy phase we collect stars in the same way as for the e-Dense
Steiner Tree Problem. This will reduce the number of terminals from |S]|
to Oc(log(]S])). Note that collected stars ST; for terminal sets S; will be
contracted to super-terminals o; with prize p(o;) := > g p(s).

In the second phase we run an exact algorithm for the Prize-Collecting
Steiner Tree Problem in order to solve the residual instance to optimality.
This algorithm is an extension of the Dreyfus-Wagner algorithm to the prize-
collecting phase.

The rest of the section is oranized as follows: First we describe an exact
algorithm P-DW for the Prize-Collecting Steiner Tree Problem. Then we
give a description and analysis of the ptas for the e-Dense Prize-Collecting
Steiner Tree Problem.

An Exact Algorithm. Algorithm P-DW is based on a dynamic-programming
approach and extends the Dreyfus-Wagner algorithm to the prize-collecting
case. The algorithm is based on the following recursion formula.
P-DW(S = i S St-DW(S\ S
(S.p0) = ,min ((5,) + SDW(S\ 5,0)
Instead of separate calls of the Dreyfus-Wagner algorithm St-DW for each

of the instances S'\ 5,, 5, C S one can implement this recursion by building
just one single dynamic-programming table. This gives the following result.
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Lemma 5.1. The algorithm P-DW can be implemented to run in lime

06151 n% 4+ n?).

PTAS for the e-Dense Case. We are now ready to give a detailed pseudo-
code description of the ptas for the e-Dense Prize Collecting Steiner Tree
Problem.

Algorithm Ap,;..
Input: G=(V,E),SCV,p: S —=>Q,,5>0
Output: tree T connecting a subset S7 of S'in G
STARS := 0 /x List of collected stars x/
Suet = S\ {5 € 5 | p(s) < 1}
(if p(s) < 1 then we will pay this prize)
While |S,.¢| > ks
v = argmax, ey sl Mo, (0)]
ST, = star consisting of v and Ng,__, (v)
STARS := STARSU{ST,}, Sact = Sact \ N, (V)
Solve Residual Problem:
Assume STARS= {ST4,...,5T,}
Contract each S7; = ST, into single node o;
Define p(oi) = enraquy Pls) (1< 0 < 1)
To := P-DW(S,et U{o1,...,0:},p, €)
(where each edge e has cost ¢(e) = 1)
Return T’ := Ty U._, ST;

Lemma 5.2. The algorithm Ap,i,. is a polynomial time approximation
scheme for the e-Dense Price Collecting Steiner Tree Problem.

Proof: If G was the given graph, then obtain graph G’ from it by adding for
each star ST, € STARS edges building an MST for the set S, := Ng,, (v).
Obviously, OPT¢: (S,p) < OPT¢(S,p). We may assume that an optimum
solution T, for the instance G’,S,p has the following property: For each
star ST, being picked in the greedy phase, either T, contains all terminals
from S, := Ng,,,(v) or none of them, since if it contains a proper nonempty
subset from S,, then each of the remaining terminals s € S, \ T, from S,
would add cost 1 to the connection cost of the solution tree but save a prize
p(s) > 1. Let cost denote the connection cost (number of edges) of a tree
plus the sum of prizes of all terminals not being in that tree. Now T, can
be assumed to consist of some of the spanning trees M;,¢ € J for terminal
sets .S, of stars ST, and a tree 7} connecting these spanning trees. Hence
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we obtain the following bound for the approximation ratio:

cost(T) < cost(T) C(TO*)+Ei€J |Svj|
OPTG(Sp) = OPTqi(Sp) = e(If)+2ics(1S0,1-1)
< C(To*)+ziej|sv]| Eie]|svj|

(T2 ies 19,1 —r = Zies IS0 —r

As in the Steiner Tree case, we can choose ks depending solely on ¢ and &
such that this term is bounded by 1 + é. O

6 The Dense k-Steiner Tree Problem

Another well known generalization of the Steiner Tree Problem is the k-
Steiner Tree Problem: Given an instance of the Steiner Tree Problem and a
number k, one has to construct a minimum cost tree connecting at least k
elements from the terminal set. Note that k& does not have to be constant.
Here we consider the e-dense version of this problem:

e-Dense k-Steiner Tree Problem

Instance: Graph G' = (V, F') with terminal set S C V such that each termi-
nal has at least e - [V \ S| neighbours in V'\ S, a number £ € {1,...,|5]}.
Solution: Tree T in G connecting at least k terminals from S

Cost: Minimize the number of edges in T.

Lemma 6.1. There is a polynomial time approzimation scheme for the ¢-
Dense k-Steiner Tree Problem.

Proof: If £ < €-|S]| then for k < ¢5 we enumerate all subsets S’ of S
of size k and for each of them compute an optimum Steiner tree using the
Dreyfus-Wagner algorithm D-St. Among these trees, one of minimum cost
is an optimum solution for the k-Steiner Tree Problem.

If ¢5 < k < €-|S| then a single greedy pick gives a tree T' centered at some
non-terminal v which contains at least € - |S| terminals. Take a subtree of
this star connecting k terminals, the costis k4+1 < (1406)-k < (1+9)-OPT
provided k£ > 61, hence it suffices to choose ¢s = §~1.

If £ > €-|S] then in a greedy phase we collect stars until the number
of remaining terminals drops below some constant Cs. Solving the residual
problem reduces to the following generalizationn of the k-Steiner Forest
Problem where terminals s € S have values g; > 1 and the task is to
compute a minimum cost Steiner tree for a subset of terminals of total value
at least k. We call this the Terminal-Weighted k-Steiner Tree Problem.
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An exact algorithm TW-k-DW for the Terminal-Weighted k-Steiner Tree
Problem just enumerates all terminal subsets, and for each of them of total
value at least k it computes an optimum Steiner tree using the Dreyfus-
Wagner algorithm St-DW for the Steiner Tree Problem. Its running time is
linear-exponential in the number of terminals but polynomial in the number
of non-terminals of the instance. |

7 The Dense Group Steiner Tree Problem

An instance of the Group Steiner Tree Problem is called e-dense if it consists
of a graph G = (V, F) and groups Si,...,5, C V such that for each s €
S = Uiz Siy

IN(s)\ S| > e-[VAS].

A feasible solution is a subtree 7' of G containing at least one node from
every group S;. In this case, the cost of the tree T is defined as ¢(T) :=
number of edges of T.

Let us call a group S; neighbor of a vertex v if S;NN (v) is not empty. The
idea of our algorithm is as follows: The density condition directly implies
existence of a vertex v € V' \ S which has many groups in its neighbour-
hood. Now in a greedy phase we perform the same kind of picks as in the
Dense Steiner Forest algorithm (section 4): We maintain a set of active
classes, starting with every group S; being active. We pick a vertex v with
maximum number of groups as neighbours. For each of these groups .9;
neighbored to v we pick an element s; € S; N N(v). We contract these ver-
tices, declare the associated groups as inactive and iterate. This guarantees
that in every iteration we find a vertex v with many active groups in its
neighbourhood. Afterwards we are left with a constant number of active
groups S; (i.e. groups not being involved in any contraction so far) and
a logarithmic number of supervertices [; resulting from contractions. The
task is to choose representatives s; of the active groups S; and to construct a
Steiner Tree for the terminal set consisting of the choosen representatives s;
and the supervertices [;. Note that there are only [[..5 ctive 9] = [vie®)
many different choices of representatives, and for each choice we are left with
an instance of the Steiner Tree Problem with logarithmic number of termi-
nals, which can be solved optimally using the primal-dual approach (cf. the
remark in section 4). Since we have picked only logarithmic (in the number
of classes) many Steiner points and the trivial lower bound is number of
groups minus 1, this algorithm yields a PTAS for the e-Dense Group Steiner
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Tree Problem. We are now ready to give a detailed description and analysis
of our algorithm.

Algorithm Apqgr
Input: Graph G = (V, F), groups S1,...,5,,6 >0
Output: (1 + §)-approximate Group Steiner Tree T'
Initialization:

Co:={5%,...,5.} (set of active groups)

o 2-(1+6
Choose k := max {%7 m}

Choose ko = ko(8) 1= 2&
If n < kg then
For each system of representatives s; € 5;,1 <t <n
Compute an optimum Steiner Tree for the instance
consisting of graph G and terminal set {sy,...,s,}.
Return the best upon those Steiner Trees.
Phase 1:
while |C,| >k do
Pick v € V' \ S maximizing the cardinality of
N(v,C,) ={5; € C, : S; is neighbour of v}.
(Store and contract.)
Let & be the set of all supervertices constructed in phase 1.
Phase 2:
For each choice of representatives s; € 5; (S; € C,)
Compute an optimum Steiner Tree T’ for the terminal set
{s; 19, €C,} US.
T, := a min-cost tree upon those constructed in the for-loop.
Return 7,.

Analysis. The density condition implies that every contraction in phase 1
of the algorithm reduces the set of active groups by an e-fraction. Let C,(¢)
be the set of active groups after ¢ contractions and ¢ be the total number of
contractions in phase 1. Then |C,(7)| < (1 —¢)*-n, hence we have |C, ()| < k
for ¢ > log(n/k)/log(1/(1 — €)), hence

t < 2-log (%) / log (i) =: 1, (upper bound for ¢) (6)

We assume n > kg > 2k - -, this implies lozgl(ig/(g/_kg)) > log(lf/g((f—/lz)))—l'

1—¢?
Since |S| =t = O(log(n)) and |C,| < k = O(1) at the end of phase 1,
there are only [ ¢, |5 =O (JV]*) many choices of systems of represen-
tatives for the groups S; € C,. Hence each terminal set considered in the
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for-loop in phase 2 has size bounded by k+t = O(log(n)), and the according
Steiner Tree can be computed in polynomial time using the Dreyfus-Wagner
algorithm. This establishes polynomial running time of the algorithm for
fixed k.

We will now give a bound on the approximation ratio of the tree T,
computed by algorithm Apcy. Let T* denote an optimum Group Steiner
Tree for Sy...,9, in . Note that T, consist of a set of stars ST4,..., 5T}
generated by contractions in phase 1 and a set of edges Ty connecting these
stars and certain representatives s,(j) for the remaining groups S;. Now
construct graph G’ as follows: Start with graph G and add the following
edges:

(1) for each star ST; edges forming a spanning tree for the terminals of

ST;

(2) for each inactive class S; (i.e. class being involved in a contraction
in phase 1) edges from the terminal s; € S; which was picked to all
neighbours of elements of class S; in G.

Note that OPT(G’) < OPT(G). An optimum group Steiner tree T, for
groups S;,1 <i < n in graph G’ can be obtained as a set of spanning trees
T! for the sets of terminals R; of stars ST;, a set of representatives J; for
the still active groups 5; and a Steiner tree 7" connecting these. Note that
the cost of T is bounded by the cost of 7’. Hence we obtain

cost(T,) cost(1},) _ cost(Tp) 4+ S_i_, cost(ST;) < St cost(STy)
cost(T%) = cost(TE)  cost(T') + Soi_, cost(T!) ~ Si_, cost(T!)
D > 11 R v N R AR

22:1(|Ri| - 1) a (Zf:l |R2|) —t n- ICal =t = n—k—t

We know that for ¢t > ¢, |C,| < k at the end of phase 1 of the algorithm.
Hence we can upperbound nﬁ;ft by nfk_—ktu' We want to choose £ and
ko such that (a) the upper bound estimate ¢, in (6) is valid and (b) the

approximation ratio is at most 1 + §:

n—k 2 -log(n/k)
" < < — k) - L2 VR
n—k—tu—1+5 — 0<d(n—k)—(1+9) Toa(1/(1—0))

which is equivalent to 0k — % log(k) < on — % -log(n) for

n > ko. Since the function f(z): =49 2z — % -log(z) is unbounded

18



and monotone increasing for = > %, we also have to assure that

k> % Hence we choose
2 2-(1+9) 1
max{675'10g(1/(1_6))}7 0 1 (7)

and finally obtain

Theorem 7.1. Algorithm Apcy, with the choices (7) for k and ko is a PTAS
for the e-Dense Group Steiner Tree Problem.

8 Open Problems

We leave it as an open problem to construct a ptas for the e-Dense Steiner
Forest Problem or to show that such a ptas cannot exist (under some rea-
sonable assumption). Another challenging open problem is to prove NP-
hardness for the e-dense version of at least one of the problems studied in
this paper. Furthermore it would be interesting to investigate the fixed-
parameter complexity of the e-dense Steiner Tree Problem.
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