
On the Approximability ofDense Steiner ProblemsM. Hauptmann�February 15, 2008Abstra
tThe �-Dense Steiner Tree Problem was de�ned by Karpinski andZelikovsky [11℄ who proved that for ea
h � > 0, this problem admitsa PTAS. Based on their method we 
onsider here dense versions ofvarious Steiner Tree problems. In parti
ular, we give polynomial timeapproximation s
hemes for the �-Dense k-Steiner Tree Problem, the�-Dense Prize Colle
ting Steiner Tree Problem, the �-Dense k-SteinerTree Problem and the �-Dense Group Steiner Tree Problem. For thedense version of the Steiner Forest Problem we obtain an approxima-tion algorithm that performs well if the number of terminal sets issmall 
ompared to the total number of terminals.1 Introdu
tionGiven a graph G = (V;E), a 
ost fun
tion 
 : E ! R+ and a subset S � Vof the verti
es of G, a Steiner Tree T for S in G is a subtree of G that allverti
es from S. The elements of S are 
alled terminals. The Steiner TreeProblem (STP) is: Given G; 
 and S as above, �nd a Steiner Tree T for Sin G of minimum 
ost 
(T ) =Pe2E(T ) 
(e).The Steiner Tree Problem is one of the fundamental network designproblems with appli
ations ranging from transportation networks, energysupply and broad
ast problems to VLSI design and Internet Routing. The
urrently best known Steiner Tree approximation algorithm is due to Robinsand Zelikovsky [13℄ and a
hieves a ratio of � 1:55. On the other hand,Chlebik and Chlebikova [3℄ proved that the Steiner Tree Problem is NP-hard to approximate within ratio 1:01063.�Dept. of Computer S
ien
e, University of Bonn. Email:hauptman�
s.uni-bonn.de1



Numerous results for spe
ial 
ases of the Steiner Tree Problem are known.Robins and Zelikovsky [13℄ obtain a better approximation ratio for the quasi-bipartite 
ase. Arora [2℄ gives a polynomial time approximation s
heme(PTAS) for geometri
 instan
es in 
onstant dimension. Karpinski and Ze-likovsky [11℄ 
onstru
t a PTAS for the �-Dense Steiner Tree Problem.In this paper we 
onsider dense versions of the Steiner Tree Problem andof some of its most important generalizations, namely the Steiner ForestProblem, the k-Steiner Problem, the Prize Colle
ting Steiner Tree Problemand the Group Steiner Tree Problem. Let us give the de�nitions of theseproblems and of their dense versions and state results that are known forthese problems.The �-Dense Steiner Tree ProblemThe �-Dense Steiner Tree Problem was introdu
ed by Karpinski and Ze-likovsky [11℄. An instan
e of the Steiner Tree Problem in Graphs 
onsistingof graph G = (V;E) and terminal set S � V is 
alled �-dense if ea
h ter-minal s 2 S has at least � � jV n Sj neighbours in V n S . Karpinski andZelikovsky obtain the following result: For every � > 0 there is a polynomialtime approximation s
heme for the �-Dense Steiner Tree Problem. The ideaof their algorithm is to perform �rst a number of greedy steps 
ontra
tingstars, where a star always 
onsists of a non-terminal and all the terminalsthat are 
onne
ted to it. The greedy phase redu
es the number of terminalsto a 
onstant while adding extra 
ost Æ �jSj. In a se
ond phase, the remainingproblem is solved by the Tree Enumeration Algorithm.The following diÆ
ulty o

urs. The greedy 
ontra
tions are not ne
es-sarily disjoint and may therefore a�e
t the density. Hen
e we will give aslightly modi�ed approa
h where the greedy 
ontra
tions are disjoint, hen
ethe density 
ondition is preserved. This ends in a remaining instan
e ofO(log(jSj)) terminals, and using the Dreyfus-Wagner algorithm we 
an solvethe remaining problem to optimality. In this way we obtain a PTAS whi
his not eÆ
ient.However, we will show that after su
h a greedy phase in a sense thedensity is not 
ompletely destroyed, and afterO(log�(jSj) su
h greedy phaseswe obtain a remaining instan
e with a 
onstant number of terminals. Thisapproa
h gives an eÆ
ient PTAS for the �-Dense Steiner Tree Problem.We will furthermore 
onsider a relaxation of the density 
ondition whi
hwe 
all log-density. Roughly, an instan
e is log-dense if all subsets of theterminal set of size at least log(jSj) satisfy the average-density 
ondition.The pre
ise de�nition is given in the next se
tion. For this density 
ondi-tion we will also obtain a PTAS. 2



Steiner Forest Problem: Given a graph G = (V;E) with edge 
osts
 : E ! R+ and pairwise disjoint nonempty terminal sets S1; : : : ; Sn � V ,�nd a forest F = (V (F ); E(F )) � G of minimum 
ost su
h that for all1 � i � n Si is 
ontained in a 
onne
ted 
omponent of F . The bestknown approximation algorithms for the Steiner Forest Problem a
hieveratio 2 � (1 � jSj�1) and are based on the primal-dual method (see for in-stan
e [12℄, [6℄). An instan
e of the Steiner Forest Problem is 
alled �-denseif it 
onsist of an unweighted graph G and terminal sets S1; : : : ; Sm su
hthat for every 1 � i � m and every s 2 Si the number of neighbours of s inV n Si is at least � � jV n Sij We will give a polynomial time approximations
hemes for instan
es where the number of terminal sets is small 
omparedto the total number of terminals. The pre
ise statement is given below.Prize Colle
ting Steiner Tree Problem (PSTP): Given a graph G =(V;E) with edge 
osts 
 : E ! R+ and a terminal set S � V with pri
efun
tion p : S ! R+, �nd a tree T � G 
onne
ting a subset S 0 of S su
h asto minimize 
(T ) + p(S n S0). Again, the best known approximation ratiofor the general 
ase is 2, based on the primal-dual method [6℄ Here we takethe same density 
ondition as for the Steiner Tree Problem: An instan
e is
alled �-denes if every terminal has at least � � jV nSj neighbours in V nS. Wewill give a polynomial time approximation s
heme for the �-Dense PSTP.k-Steiner Tree Problem (k-STP): Given a graph G = (V;E) with edge
osts 
 : E ! R+, a terminal set S � V and a number k 2 [1; jSj℄, �nd a treeT in G of minimum 
ost 
(T ) whi
h 
onne
ts at least k terminals from S.We will 
onsider the same density 
ondition as for the Steiner Tree Problemand for the Prize Colle
ting Steiner Tree Problem. We will give a PTAS forthe �-Dense k-Steiner Tree Problem.Group Steiner Tree Problem: Given a graph G = (V;E) with edge 
osts
 : E ! R+ and a system of pairwise disjoint subsets C1; : : : ; Cn of the ver-tex set V , �nd a minimum 
ost tree T in G su
h that for ea
h 1 � i � n T
ontains at least one vertex of Ci. The sets Ci are also 
alled 
lasses, hen
eT has to 
ontain at least one representative for ea
h 
lass. This problem iseasily seen to be at least as hard as the Set Cover Problem, and Halperinand Krauthgamer gave a polylogarithmi
 lower bound for approximability[8℄, while Garg and Konjevod [5℄ obtain a polylog-approximation algorithm.Nevertheless for the �-dense version of the problem we are able to give a poly-nomial time approximation s
heme. An instan
e of the Group Steiner Tree3



Problem is 
alled �-dense if it 
onsists of a graph G = (V;E) (i.e. all edgeweights are 1) and groups C1; : : : ; Cn su
h that for every s 2 S := SiCi,jNV nS(s)j � � � jV n Sj.The following tables summarize our results.Steiner Problems: General Case vs. Dense CaseProblem De�nition General Case �-DenseUpper Lower UpperSteiner Tree Problem � 1:55 [13℄ � 1:01 [3℄ PTAS [11℄Group Steiner Tree polylog. [5℄ polylog. [8℄ PTASk-Steiner Problem 2 + Æ [1℄ � 1:01 [3℄ PTASPrize Colle
ting STP 2 � �1 + 1jSj� [6℄ � 1:01 [3℄ PTASSteiner Forest Problem 2 � �1 + 1jSj� [6℄ � 1:01 [3℄ improvedSteiner Tree Problem: Notions of DensityProblem Density Condition Resultin �-Everywhere 8 v 2 V dG(v) � � � n PTASDense Graphsin �-Average jEj � � � n2 APX-hardDense Graphs(�; 
)-log Density 8S0 � S; jS 0j � 
 � log(jSj) PTASimplies jE(S0; V n S)j � � � jS 0j � jV n SjThe rest of the paper is organized as follows. In se
tion 2 we re
all twoexa
t algorithms for the Steiner Tree Problem, the Spanning Tree Heuristi
and the Dreyfus -Wagner algorithm. In se
tion 3 we 
onsider the �-DenseSteiner Tree Problem and the relaxation to the log-density mentioned above.Se
tion 4 deals with the Dense Steiner Forest Problem. In se
tion 5, 6 and7 we 
onstru
 polytime approximation s
hemes for the �-dense versions ofthe prize Colle
ting Steiner Tree, k-Steiner Tree and Group Steiner TreeProblem respe
tively. A few open problems are stated in se
tion 8.2 Exa
t Algorithms for the Steiner Tree ProblemWe mention here only two exa
t algorithms for the Steiner Tree Problem,the Tree Enumeration Heuristi
 and the Dreyfus-Wagner Algorithm.The Tree Enumeration Heuristi
 [7℄ enumerates all subsets of V nS of sizeat most jSj � 2 and for ea
h of them tries to 
ompute a minimum spanning4



tree (MST). The running time is O(jSj2 � 2n�jSj + n3), hen
e exponential inthe number of non-terminals but polynomial in the number of terminals.The Dreyfus-Wagner Algorithm [4℄ is based on a dynami
 programmingapproa
h and a
hieves a running time exponential in the number of termi-nals but polynomial in the number of verti
es in the graph. For a giveninstan
e G = (V;E); S � V; 
 : E ! R+ of the Steiner Tree Problem inedge-weighted graphs, the Dreyfus-Wagner algorithm St-DW 
omputes anoptimum Steiner tree T = St-DW(S; 
) for terminal set S in G, based onthe following re
ursion. Given a node v 2 V , St-DW2(v; S; 
) denotes anoptimum solution to the problem of 
onstru
ting a Steiner tree for terminalset fvg [ S su
h that v has degree � 2 in this tree. ThenSt-DW2(v; S; 
) = argmin;(X(S f
(St-DW(fvg [X; 
))+
(St-DW(fvg [ (S nX)))gSt-DW(fvg [ S; 
) = argmin f
(St-DW2(v; S; 
));minu2V nSf
(v; u) + 
(St-DW2(u; S; 
))g;minu2Sf
(v; u) + 
(St-DW(S))g gLemma 2.1. [4℄ The running time of the Dreyfus-Wagner algorithm is inO(3jSjn + 2jSjn2 + n3).For the rest of the paper, by THD we denote the Tree EnumerationHeuristi
 and by St-DW the Dreyfus-Wagner Algorithm.3 The �-Dense Steiner Tree ProblemIn this se
tion we will 
onstru
t an eÆ
ient polynomail time approximations
heme for the �-Dense Steiner Tree Problem. Furthermore we 
onsider arelaxation of the density 
ondition "towards average-density" whi
h we 
alllog-density.Let us start with the �-Dense Steiner Tree Problem. It was stated andused in [11℄ that if an instan
e G = (V;E); S � V satis�es the �-density
ondition, then there exists some v 2 V n S su
h that jNS(v)j � � � jSj.Here NS(v) denotes the set of all neighbors of v that are elements of S.if we pi
k su
h a node v and remove all its terminal neighbors from S,the resulting instan
e G; S n NS(v) is still �-dense. Hen
e we 
an iteratethese greedy pi
ks and 
olle
t the stars 
onsisting of su
h a node v and theset NS(v). After i su
h pi
ks, the size of the terminal set is redu
ed toat most (1 � �)i � jSj. Hen
e if afterwards we 
ontra
t all the stars pi
kedso far and add these 
ontra
ted nodes to the terminal set, this results in5



an instan
e of the Steiner Tree Problem with a terminal set of size at most(1��)i�jSj+i. Hen
e afterO(log jSj) greedy steps we are left with an instan
eof the Steiner Tree Problem with only O(log(jSj)) terminals, whi
h 
an besolved to optimality using the Dreyfus Wagner Algorithm DW [4℄. Thisgives the following modi�ed version of the Karpinski-Zelikovsky algorithm.Algorithm DSTInput: G = (V;E); S � V; Æ > 0Output: (1 + Æ)-approx. Steiner Tree for S in GPhase 1: Greedy Pi
kswhile jSj > kÆv := argmaxfjNS(u)j; u 2 V n SgSTv := the star 
onsisting ov v and NS(v)S := S nNS(v)Phase 2:for ea
h star STv 
olle
ted in Phase 1Contra
t STv into svS := S [ fsvgSolve the remaining instan
e usingthe Dreyfus-Wagner Algorithm St-DW, obtain tree T2.Return TDST := T2 [SPhase 1 STvAnalysis. Let Si denote the terminal set after i greedy pi
ks in phase 1.Due to the density 
ondition, jSij � (1� �)i � jSj. Hen
e for i � log� jSjkÆ � =log� 11���, after i greedy steps, jSij � kÆ.The remaining instan
e 
onsists of at most i+kÆ terminals. For ea
h starSTv pi
ked in phase 1, we add edges that form an MST for the terminals ofSTv. This does not in
rease the 
ost of an optimum Steiner tree. We mayassume that the optimum Steiner tree for this modi�ed instan
e 
onsists ofthe MSTs for the stars and a tree T0 
onne
ting these. Note that the 
ostof T2 is bounded by the 
ost of T0. Let T � denote an optimum Steiner treefor S in G. Let ST1; : : : ; STi be the stars 
lle
ted in phase 1, let Sj denotethe terminal set of STj (1 � j � i). Hen
e we obtain
(TDST )
(T �) � Pij=1 jSj j+ i+ kÆPij=1 jSj j+ kÆWe want to 
hoose kÆ su
h as to bound the right hand side of this inequalityby 1 + Æ. It suÆ
es to 
hoose kÆ � jSj2log(1=(1��))�jSj�Æ�1 , whi
h 
an be bounded6



by a 
onstant only depending on � and Æ. The running time of phase 1 isobviously polynomial in the size of G and S. Sin
e i = O(log(jSj)) for �xedÆ, the running time of phase 2 is also polynomial in the input size. Hen
ewe obtainTheorem 3.1. Algorithm DST is a polynomial time approximation s
hemefor the �-Dense Steiner Tree Problem.Sin
e ea
h terminal was involved in at most one 
ontra
tion, afterwardsea
h of the new terminals has at least �jV nSj�1 non-terminal neighbors andthe number of non-terminals is jV nSj� i. Hen
e the resulting instan
e is �0-dense for �0 = ��jV nSj�ijV nSj�i . We 
an now iterate the greedy pro
ess O(log�(jSj)times, where the j-th run of the greedy phase takes as its terminal setthe remaining terminals and the 
ontra
ted stars from the previous phase.This redu
es the number of terminals to a 
onstant, and therefore we 
anafterwards use the Tree Enumeration Algorithm [7℄ instead of the Dreyfus-Wagner algorithm to solve the remaining instan
e. This yieldsTheorem 3.2. For ea
h � > 0, there is an eÆ
ient polynomial time ap-proximation s
heme for the �-dense Steiner Tree Problem.3.1 Towards Average-Density:Relaxing the Density ConditionWe 
onsider now instan
es of the Graph Steiner Tree Problem for whi
hsome kind of average density 
ondition is satis�ed. A natural de�nition ofaverage density is as follows: We 
all an instan
e G = (V;E); S � V of theGraph Steiner Tree Problem average �-dense ifjE(S; V n S)j � � � jSj � jV n Sj: (1)Note that �-Density as de�ned in [11℄ implies Average-�-Density. Further-more average �-density implies existen
e of a vertex v 2 V n S with at least� � jSj neighbours in S, i.e. a good pi
k. However average �-density is notpreserved by good pi
ks. Here is an easy example: If there exists a subsetS0 of S of size � � jSj su
h that every vertex v 2 V n S is 
onne
ted to allterminals from S0 and to none of the terminals from S n S0, this instan
e isaverage �-dense. However after one good pi
k the density 
ondition is notvalid anymore.Nevertheless we will now relax the density 
ondition "towards average-density" and give a PTAS for this relaxed version. Let us �rst give some7



motivation. We observe that �-density does not only imply (1) but also thefollowing more general property:jE(S0; V n S)j � � � jS 0j � jV n Sj for all S 0 � S (2)Indeed (2) is equivalent to �-density. We may now ask how far we 
anrelax (2). Relaxing here means to 
onsider instan
es where (2) does notne
essarily hold for all subsets S0 of S but for all subsets with 
ardinalityat least some prespe
i�ed lower bound. In (2) the lower bound is 1 (or 0)while in the average-density 
ondition (1) it is jSj. The question now is:How mu
h 
an we in
rease the lower bound (starting from 1) and still get aPTAS ? A
tually we do not know the answer but at least we 
an relax upto logarithmi
 size:De�nition 3.1. (log-Density)An instan
e G = (V;E); S of the Graph Steiner Tree Prolem is 
alled (�; 
)�log-dense i� for all subsets S0 � S of the terminal set with jS 0j � 
 � log(jSj)jE(S 0; V n S)j � � � jS 0j � jV n Sj: (3)Theorem 3.3. For ea
h � > 0; 
 > 0 there is a PTAS for the (�; 
)� log-Dense Steiner Tree Problem.Let us �rst give some ideas and then give the pre
ise proof of Theorem3.3. Our approa
h is quite similar to that of Karpinski and Zelikovsky [11℄.The most important di�eren
e is that when performing greedy steps andpi
king Steiner points, after 
ontra
ting a star 
onsisting of a vertex fromV n S and all its neighbours in S the resulting supernode will be removedfrom S and hen
e not be 
onsidered in further greedy steps anymore. Thisalternative method has basi
ally two e�e
ts: First the density 
onditionfor the a
tual terminal set is preserved and se
ond afterwards we are leftwith a "residual" terminal set of logarithmi
 instead of 
onstant size. Hen
ein order to solve the remaining problem we will take the Dreyfus Wagneralgorithm instead of the Tree Enumeration algorithm sin
e its running timeis polynomial in the number of non-terminals (and exponential in the numberof terminals, hen
e polynomial in the initial input size). We are now readyto des
ribe our algorithm.Algorithm LDSTPInput: an instan
e of the (
; �)-log-dense Steiner Tree Problem
onsisting of graph G = (V;E), terminal set S � VOutput: Steiner tree T for S in G8



(0) C := ffsg : s 2 Sg set of terminal 
omponentsCa := C set of a
tive terminal 
omponents(1) while E(Ca) 6= ; doPi
k e 2 E(Ca) 
onne
ting two terminal 
omponents C1; C2 2 Ca.Let Ca := (Ca n fC1; C2g) [ fC1 [ C2g, update C a

ordingly.(2) while jCaj � 
 � log(jSj) �K doFind v 2 V n S with the maximum number of neighbours in Ca.Contra
t the star T (v) 
onsisting of v and its neighbours N(v; Ca)in Ca. Update C and Ca a

ordingly:Ca := Ca nN(v; Ca); C := (C nN(v; Ca)) [ fSC2N(v;Ca)Cg.(3) Find an optimum Steiner tree T ? for C.(4) Return TLD := T ? [ Sv pi
ked in (1) T (v) [ fej e pi
ked in (1)g.Analysis. The log-density 
ondition (3) dire
tly implies that initiallyjE(C0; V n Ca)j � � � jC0j � jV n Caj (4)for all subsets C0 of Ca of size at least 
 � log(jSj). We will now prove that(4) is preserved by the pi
ks of edges in phase (1) and stars in phase (2)of algorithm LDSTP. Indeed, if an edge 
onne
ting two a
tive 
omponentsis pi
ked, then subsets C 0 of Ca of size at least 
 � log(jSj) after the pi
k
orrespond to subsets of Ca of size 2 [ jC0j; jC0j + 1℄ before the pi
k withthe same neighbourhood in V n C, and sin
e jV n Cj does not 
hange, (4)still holds. On the other hand, if a vertex v 2 V n C is pi
ked and the star
onsisting of v and N(v; Ca) is 
ontra
ted, then the resulting supernode isremoved from Ca and the 
ardinality of V nCa remains the same, hen
e alsoin this 
ase (4) is preserved.Let k be the number of pi
ks of stars T (v;N(v;Ca)) in phase (2), letT1 = T (v1; N1); : : : ; Tk = T (vk; Nk) denote these stars and let e1; : : : ; eldenote the single edges 
onne
ting a
tive 
omponents pi
ked in phase (1) ofalgorithm LDSTP.Now 
onstru
t graph G0 from G by adding edges 
onne
ting the setN(v; Ca) by a spanning tree for ea
h pi
k v in phase (1) of algorithm LDSTP.Note that OPT (G0; S) � OPT (G; S). There exists an optimum tree T ?? inG0 
onsisting of spanning trees T 0i for the sets Ni = N(vi; Ca) of pi
ks inphase (2), the set E1 of all edges 
onne
ting two a
tive 
omponents in phase(1) and a tree T 0 
onne
ting the set of 
omponents C at the end of phase(2). Hen
e we 
an bound the approximation ratio of algorithm LDSTP asfollows:
ost(TLD)
ost(T ??) � 
ost(T ?)+Pki=1 
ost(Ti) +jE1j
ost(T 0)+Pki=1 
ost(T 0i) +jE1j � Pki=1 jNijPki=1(jNij�1) � 1 + k(Pki=1 jNij)�k .9



Hen
e let us assume we start with a (
; �)-dense instan
e with no edgesbetween teminals. Ea
h pi
k of a star redu
es the 
ardinality of Ca by afa
tor �. Let Ca(i) denote the set Ca after i pi
ks of a star, then jCa(i)j �(1� �)ijSj. We obtain jCa(k)j < 
 � log(jSj) �K for k � jSj
�log(jSj)�K � 1log(1=(1��)) ,hen
e we assume k � jSj
�log(jSj)�K � 1log(1=(1��)) + 1. Sin
ekXi=1 jNij � kXi=1(1� �)i � � � jSj = � � jSj � kXi=1(1� �)i = � � jSj � 1� (1� �)k�we obtain the following bound for the approximation ratio of algorithmLDSTP: 
ost(TLD)
ost(T ??) � 1 + 2kPki=1 jNij � 1 + 2kjSj � (1� (1� �)k)� 1 + 2 � ( jSj
�log(jSj)�K � 1log(1=(1��)) + 1)jSj � (1� (1� �)k)� 1 + 2 � ( jSj
�log(jSj)�K � 1log(1=(1��)) + 1)jSj � � (5)sin
e we may assume k � 1 (in 
ase k = 0 algorithm LDSTP 
omputesan optimum solution, namely a spanning tree for S). Using 1jSj � 1log(jSj)we obtain 
ost(TLD)
ost(T ??) � 1 + 1� � � 1
�K�log( 11�� ) + 1� � 1log(jSj) . For given Æ > 0we will now 
hoose K su
h that the approximation ratio is bounded by1 + Æ, i.e. K � �
 � log� 11��� � (� � Æ � log(jSj)� 1)��1. Hen
e 
hoosing K =�
 � log� 11�����1, solving the Steiner Tree instan
e exa
tly by brute for
efor jSj � 22=(��Æ) and applying LDSTP for all other instan
es yields a PTASfor the (
; �)-log-dense Steiner Tree Problem. 24 The Dense Steiner Forest ProblemIn this se
tion we will 
onsider the �-Dense Steiner Forest Problem. Cur-rently we are not able to provide a PTAS for this problem, for the followingreason: All the variants of the methods of [11℄ we have dis
ussed so far (andwill dis
uss in subsequent se
tions) are based on the approa
h of performinggreedy steps until the problem size is suÆ
iently small and then applyingsome exa
t algorithm for the remaining instan
e. In the Steiner Forest Case10



the kind of greedy steps we have in mind redu
e ea
h single terminal set to
onstant size, but the number of terminal sets might not be redu
ed at all.On the other hand we do not know how to justify 
ontra
tion steps thatredu
e the number of terminal sets, sin
e melting j of them into a singleterminal set might produ
e an additive 
ost of j. However we will now givean approximation algorithm for the Dense Steiner Forest Problem with ap-proximation ratio 1 + O((Pni=1 log(jSij))=(Pni=1 jSij)), where S1; : : :Sn arethe given terminal sets. Intuitively this provides good approximation in 
asesuÆ
iently many terminal sets are large, and we will make this pre
ise inthis se
tion.De�nition 4.1. An instan
e G = (V;E); S1; : : : ; Sn of the SFP is 
alled�-dense' i� for all 1 � i � n and S0 � Si there exists a vertex v 2 V n Sisu
h that jN(v) \ S0j � � � jS 0j.Lemma 4.1. For every � > 0, every �-dense instan
e of the SFP is �-dense'.Proof: Let G = (V;E); S1; : : : ; Sn be �-dense, let i 2 f1; : : : ; ng andS0 � Si. Then for all s 2 S0 it holds jN(s)\ (V n Si)j � � � jV n Sij.From Pv2V nSi jN(v) \ S 0j = Ps2S0 jN(s) \ (V n Si)j � jS 0j � � � jV n Sij we
on
lude that there exists at least on v 2 V nSi su
h that jN(v)\S0j � ��jS 0j.2Algorithm Ak:Input: G = (V;E);S := fS1; : : : ; Sng � P (V ) instan
e of the �-Dense SFPOutput: Set of edges F � E de�ning a Steiner Forest for S1; : : : ; Sn(0) Let F := ; and Si;a
t := Si; 1 � i � n.(1) while max1�i�n jSi;a
tj � k doPi
k i 2 f1; : : : ; ng and v 2 V n Si;a
tsu
h as to maximize jN(v)\ Si;a
tj.Let ~S := N(v) \ Si;a
t and F := F [ ffv; sg : s 2 ~Sg.Si;a
t := Si;a
t n ~S. Contra
t ~S [ fvg.(2) Solve the remaining instan
e using the Primal-Dual algorithm.Lemma 4.2. At the beginning of every 
all of the while-loop the sets Si;a
tare �-dense'.Proof: The initial sets Si;a
t = Si are �-dense and therefore �-dense'.Sin
e in every iteration the removed set ~S does not 
ontain elements fromSs2Si;a
tn~SN(s)nSi;a
t, for every subset S0 of Si;a
tn ~S existen
e of a vertex v11



in V nSi;a
t and hen
e in V nS0 with many neighbours in S0 is not disturbed.2Analysis of Algorithm Ak. First note that Pni=1(jSij � 1) =: L is alower bound for the 
ost of an optimum solution. We will now estimatethe 
ost of the solution produ
ed by algorithm Ak . For 1 � i � n letj(i) denote the number of 
ontra
tions of subsets of Si;a
t in phase (1) ofthe algorithm, and let S1i ; : : : ; Sj(i)i be the subsets being 
ontra
ted. LetSi;rem := Si n (S1i [ : : : [ Sj(i)i ) the remaining set of Si. Then the numberof edges added to F in phase (1) is given by 
ost1 = Pni=1Pj(i)l=1 jSlij =Pni=1(jSij � jSi;remj). At the end of phase (1), for 1 � i � n the size of Siis given by s(i) := j(i) + jSij �Pj(i)l=1 jSlij = j(i) + jSi;remj. Furthermorethe size of Si;a
t after l 
ontra
tions is bounded by jSij(1� �)l, hen
e s(i) �j(i)+ jSij(1� �)j(i). Hen
e if we let 
ost2 denote the number of edges pi
kedby the 2-Approximation Algorithm in phase (2) of Ak, then 
ost2 is boundedas follows: 
ost2 � 2 �Pni=1 �j(i) + jSij(1� �)j(i)�. Let xi;l := jSlij; 1 � i �n; 1 � l � j(i). An upper bound for the 
ost of solution generated byalgorithm Ak is then given by the following optimization problem:max nPi=1 j(i)Pl=1 xi;j + 2 � jSij � j(i)Pl=1 xi;l + j(i)!s.t. j(i)Pl=1xi;l � jSij � �1� (1� �)j(i)� ; 1 � i � n= max nPi=1 2jSij � j(i)Pl=1xi;l + 2j(i)!s.t. j(i)Pl=1xi;l � jSij � �1� (1� �)j(i)� ; 1 � i � nLet savei := j(i)Pl=1 xi;l � 2j(i); 1 � i � n. We give a lower bound for savei as afun
tion of jSij. Let X = Pj(i)l=1 xi;l the total number of terminals removedfrom Si in phase (1) of algorithm Ak, then X > (�jSij � k)=� = jSij � k=�.Furthermore k > ��jSij�(1��)j(i) from whi
h we 
on
lude j(i) < log� k�jSij� =log(1� �). Hen
e the total 
ost of the solution generated by algorithm Akis bounded byPni=1 jSij+ k� + 2 � log� k�jSij�log(1��) ! =Pni=1 jSij+ k� + 2 � log� �jSijk �log( 11�� ) ! =: t
(�; k).Sin
e ddk t
(�; k) = n ��1� � 2log( 11��) � 1k� = 0 for k� = 2�log( 11��) and12



d2dk2 t
(�; k�) > 0, we 
hoose k = k� and �nally obtainTheorem 4.1. For ea
h � > 0 there is a polynomial time approximationalgorithm for the �-Dense Steiner Forest Problem with approximation ratio1 +O �Pni=1 log(jSi j)Pni=1 jSi j �.5 Dense Prize Colle
ting Steiner Tree ProblemIn this se
tion we des
ribe a polynomial time approximation s
heme for the�-Dense Prize Colle
ing Steiner Tree Problem.Let G = (V;E); S � V; p : S ! R+ be an instan
e of the �-Dense PrizeColle
ing Steiner Tree Problem. We will 
onstru
t a solution 
onsisting ofa tree T in G and a terminal set S 0 � S su
h that T is a Steiner tree forthe terminal set S n S0. First we observe that if for some s 2 S, p(s) � 1then we may put s in S0, i.e. pay the prize for terminal s, sin
e otherwisewe would have to spend at least one edge in order to 
onne
t s to the restof the tree. Hen
e we may now assume that S = fs1; : : : ; sng su
h that1 < p(s1) � : : : � p(sn).In a greedy phase we 
olle
t stars in the same way as for the �-DenseSteiner Tree Problem. This will redu
e the number of terminals from jSjto O�(log(jSj)). Note that 
olle
ted stars STi for terminal sets Si will be
ontra
ted to super-terminals �i with prize p(�i) :=Ps2Si p(s).In the se
ond phase we run an exa
t algorithm for the Prize-Colle
tingSteiner Tree Problem in order to solve the residual instan
e to optimality.This algorithm is an extension of the Dreyfus-Wagner algorithm to the prize-
olle
ting phase.The rest of the se
tion is oranized as follows: First we des
ribe an exa
talgorithm P-DW for the Prize-Colle
ting Steiner Tree Problem. Then wegive a des
ription and analysis of the ptas for the �-Dense Prize-Colle
tingSteiner Tree Problem.An Exa
t Algorithm. Algorithm P-DW is based on a dynami
-programmingapproa
h and extends the Dreyfus-Wagner algorithm to the prize-
olle
ting
ase. The algorithm is based on the following re
ursion formula.P-DW(S; p; 
) = min;�Sp�S(p(Sp) + St-DW(S n Sp; 
))Instead of separate 
alls of the Dreyfus-Wagner algorithm St-DW for ea
hof the instan
es S nSp; Sp � S one 
an implement this re
ursion by buildingjust one single dynami
-programming table. This gives the following result.13



Lemma 5.1. The algorithm P-DW 
an be implemented to run in timeO(6jSj � n2 + n3).PTAS for the �-Dense Case. We are now ready to give a detailed pseudo-
ode des
ription of the ptas for the �-Dense Prize Colle
ting Steiner TreeProblem.Algorithm APrizeInput: G = (V;E); S � V; p : S ! Q(( +; Æ > 0Output: tree T 
onne
ting a subset ST of S in GSTARS := ; =? List of 
olle
ted stars ?=Sa
t := S n fs 2 S j p(s) � 1g(if p(s) � 1 then we will pay this prize)While jSa
tj � kÆv := argmaxu2V nS jNSa
t(u)jSTv := star 
onsisting of v and NSa
t(v)STARS := STARS[fSTvg; Sa
t := Sa
t nNSa
t(v)Solve Residual Problem:Assume STARS= fST1; : : : ; STrgContra
t ea
h STi = STvi into single node �iDe�ne p(�i) =Ps2NS(vi) p(s) (1 � i � r)T0 := P-DW(Sa
t [ f�1; : : : ; �rg; p; 
)(where ea
h edge e has 
ost 
(e) = 1)Return T := T0 [ri=1 STiLemma 5.2. The algorithm APrize is a polynomial time approximations
heme for the �-Dense Pri
e Colle
ting Steiner Tree Problem.Proof: If G was the given graph, then obtain graph G0 from it by adding forea
h star STv 2 STARS edges building an MST for the set Sv := NSa
t(v).Obviously, OPTG0(S; p) � OPTG(S; p). We may assume that an optimumsolution T �G0 for the instan
e G0; S; p has the following property: For ea
hstar STv being pi
ked in the greedy phase, either T �G0 
ontains all terminalsfrom Sv := NSa
t(v) or none of them, sin
e if it 
ontains a proper nonemptysubset from Sv, then ea
h of the remaining terminals s 2 Sv n T �G0 from Svwould add 
ost 1 to the 
onne
tion 
ost of the solution tree but save a prizep(s) > 1. Let 
ost denote the 
onne
tion 
ost (number of edges) of a treeplus the sum of prizes of all terminals not being in that tree. Now T �G0 
anbe assumed to 
onsist of some of the spanning trees Mi; i 2 J for terminalsets Sv of stars STv and a tree T �0 
onne
ting these spanning trees. Hen
e14



we obtain the following bound for the approximation ratio:
ost(T )OPTG(S;p) � 
ost(T )OPTG0(S;p) � 
(T �0 )+Pi2J jSvj j
(T �0 )+Pi2J(jSvj j�1)� 
(T �0 )+Pi2J jSvj j
(T �0 )+Pi2J jSvj j �r � Pi2J jSvj jPi2J jSvj j �rAs in the Steiner Tree 
ase, we 
an 
hoose kÆ depending solely on � and Æsu
h that this term is bounded by 1 + Æ. 26 The Dense k-Steiner Tree ProblemAnother well known generalization of the Steiner Tree Problem is the k-Steiner Tree Problem: Given an instan
e of the Steiner Tree Problem and anumber k, one has to 
onstru
t a minimum 
ost tree 
onne
ting at least kelements from the terminal set. Note that k does not have to be 
onstant.Here we 
onsider the �-dense version of this problem:�-Dense k-Steiner Tree ProblemInstan
e: Graph G = (V;E) with terminal set S � V su
h that ea
h termi-nal has at least � � jV n Sj neighbours in V n S, a number k 2 f1; : : : ; jSjg.Solution: Tree T in G 
onne
ting at least k terminals from SCost: Minimize the number of edges in T .Lemma 6.1. There is a polynomial time approximation s
heme for the �-Dense k-Steiner Tree Problem.Proof: If k � � � jSj then for k � 
Æ we enumerate all subsets S0 of Sof size k and for ea
h of them 
ompute an optimum Steiner tree using theDreyfus-Wagner algorithm D-St. Among these trees, one of minimum 
ostis an optimum solution for the k-Steiner Tree Problem.If 
Æ < k < ��jSj then a single greedy pi
k gives a tree T 
entered at somenon-terminal v whi
h 
ontains at least � � jSj terminals. Take a subtree ofthis star 
onne
ting k terminals, the 
ost is k+1 � (1+Æ) �k � (1+Æ) �OPTprovided k � Æ�1, hen
e it suÆ
es to 
hoose 
Æ = Æ�1.If k > � � jSj then in a greedy phase we 
olle
t stars until the numberof remaining terminals drops below some 
onstant CÆ. Solving the residualproblem redu
es to the following generalizationn of the k-Steiner ForestProblem where terminals s 2 S have values gs � 1 and the task is to
ompute a minimum 
ost Steiner tree for a subset of terminals of total valueat least k. We 
all this the Terminal-Weighted k-Steiner Tree Problem.15



An exa
t algorithm TW-k-DW for the Terminal-Weighted k-Steiner TreeProblem just enumerates all terminal subsets, and for ea
h of them of totalvalue at least k it 
omputes an optimum Steiner tree using the Dreyfus-Wagner algorithm St-DW for the Steiner Tree Problem. Its running time islinear-exponential in the number of terminals but polynomial in the numberof non-terminals of the instan
e. 27 The Dense Group Steiner Tree ProblemAn instan
e of the Group Steiner Tree Problem is 
alled �-dense if it 
onsistsof a graph G = (V;E) and groups S1; : : : ; Sn � V su
h that for ea
h s 2S := Sni=1 Si, jN(s) n Sj � � � jV n Sj:A feasible solution is a subtree T of G 
ontaining at least one node fromevery group Si. In this 
ase, the 
ost of the tree T is de�ned as 
(T ) :=number of edges of T .Let us 
all a group Si neighbor of a vertex v if Si\N(v) is not empty. Theidea of our algorithm is as follows: The density 
ondition dire
tly impliesexisten
e of a vertex v 2 V n S whi
h has many groups in its neighbour-hood. Now in a greedy phase we perform the same kind of pi
ks as in theDense Steiner Forest algorithm (se
tion 4): We maintain a set of a
tive
lasses, starting with every group Si being a
tive. We pi
k a vertex v withmaximum number of groups as neighbours. For ea
h of these groups Sineighbored to v we pi
k an element si 2 Si \N(v). We 
ontra
t these ver-ti
es, de
lare the asso
iated groups as ina
tive and iterate. This guaranteesthat in every iteration we �nd a vertex v with many a
tive groups in itsneighbourhood. Afterwards we are left with a 
onstant number of a
tivegroups Si (i.e. groups not being involved in any 
ontra
tion so far) anda logarithmi
 number of superverti
es s i resulting from 
ontra
tions. Thetask is to 
hoose representatives si of the a
tive groups Si and to 
onstru
t aSteiner Tree for the terminal set 
onsisting of the 
hoosen representatives siand the superverti
es s j . Note that there are only Qi:Si a
tive jSij = jV jO(1)many di�erent 
hoi
es of representatives, and for ea
h 
hoi
e we are left withan instan
e of the Steiner Tree Problem with logarithmi
 number of termi-nals, whi
h 
an be solved optimally using the primal-dual approa
h (
f. theremark in se
tion 4). Sin
e we have pi
ked only logarithmi
 (in the numberof 
lasses) many Steiner points and the trivial lower bound is number ofgroups minus 1, this algorithm yields a PTAS for the �-Dense Group Steiner16



Tree Problem. We are now ready to give a detailed des
ription and analysisof our algorithm.Algorithm ADGLInput: Graph G = (V;E), groups S1; : : : ; Sn, Æ > 0Output: (1 + Æ)-approximate Group Steiner Tree TInitialization:Ca := fS1; : : : ; Sng (set of a
tive groups)Choose k := maxn2� ; 2�(1+Æ)Æ�log(1=(1��))oChoose k0 := k0(Æ) := 2k1��If n � k0 thenFor ea
h system of representatives si 2 Si; 1 � i � nCompute an optimum Steiner Tree for the instan
e
onsisting of graph G and terminal set fs1; : : : ; sng.Return the best upon those Steiner Trees.Phase 1:while jCaj � k doPi
k v 2 V n S maximizing the 
ardinality ofN(v; Ca) = fSi 2 Ca : Si is neighbour of vg.(Store and 
ontra
t.)Let S be the set of all superverti
es 
onstru
ted in phase 1.Phase 2:For ea
h 
hoi
e of representatives si 2 Si (Si 2 Ca)Compute an optimum Steiner Tree T for the terminal setfsi : Si 2 Cag [ S.To := a min-
ost tree upon those 
onstru
ted in the for-loop.Return To.Analysis. The density 
ondition implies that every 
ontra
tion in phase 1of the algorithm redu
es the set of a
tive groups by an �-fra
tion. Let Ca(i)be the set of a
tive groups after i 
ontra
tions and t be the total number of
ontra
tions in phase 1. Then jCa(i)j � (1��)i �n, hen
e we have jCa(i)j � kfor i � log(n=k)= log(1=(1� �)), hen
et � 2 � log�nk� = log� 11� �� =: tu (upper bound for t) (6)We assume n � k0 � 2k � 11�� , this implies 2 log(n=k)log(1=(1��)) � log(n=k)log(1=(1��))�1 .Sin
e jSj = t = O(log(n)) and jCaj � k = O(1) at the end of phase 1,there are only QSi2Ca jSij = O �jV jk� many 
hoi
es of systems of represen-tatives for the groups Si 2 Ca. Hen
e ea
h terminal set 
onsidered in the17



for-loop in phase 2 has size bounded by k+t = O(log(n)), and the a

ordingSteiner Tree 
an be 
omputed in polynomial time using the Dreyfus-Wagneralgorithm. This establishes polynomial running time of the algorithm for�xed k.We will now give a bound on the approximation ratio of the tree To
omputed by algorithm ADCL. Let T ? denote an optimum Group SteinerTree for S1 : : : ; Sn in G. Note that To 
onsist of a set of stars ST1; : : : ; STtgenerated by 
ontra
tions in phase 1 and a set of edges T0 
onne
ting thesestars and 
ertain representatives so(j) for the remaining groups Sj . Now
onstru
t graph G0 as follows: Start with graph G and add the followingedges:(1) for ea
h star STi edges forming a spanning tree for the terminals ofSTi,(2) for ea
h ina
tive 
lass Sl (i.e. 
lass being involved in a 
ontra
tionin phase 1) edges from the terminal sl 2 Sl whi
h was pi
ked to allneighbours of elements of 
lass Sl in G.Note that OPT(G0) � OPT(G). An optimum group Steiner tree T ?G0 forgroups Si; 1 � i � n in graph G0 
an be obtained as a set of spanning treesT 0i for the sets of terminals Ri of stars STi, a set of representatives s j forthe still a
tive groups Sj and a Steiner tree T 0 
onne
ting these. Note thatthe 
ost of T0 is bounded by the 
ost of T 0. Hen
e we obtain
ost(To)
ost(T ?) � 
ost(To)
ost(T ?G0) = 
ost(T0) +Pti=1 
ost(STi)
ost(T 0) +Pti=1 
ost(T 0i) � Pti=1 
ost(STi)Pti=1 
ost(T 0i )= Pti=1 jRijPti=1(jRij � 1) = Pti=1 jRij�Pti=1 jRij�� t = n� jCajn� jCaj � t � n� kn� k � tWe know that for t � tu jCaj � k at the end of phase 1 of the algorithm.Hen
e we 
an upperbound n�kn�k�t by n�kn�k�tu . We want to 
hoose k andk0 su
h that (a) the upper bound estimate tu in (6) is valid and (b) theapproximation ratio is at most 1 + Æ:n� kn� k � tu � 1 + Æ () 0 � Æ(n� k)� (1 + Æ) � 2 � log(n=k)log(1=(1� �))whi
h is equivalent to Æk � 2�(1+Æ)log(1=(1��)) � log(k) � Æn� 2�(1+Æ)log(1=(1��)) � log(n) forn > k0. Sin
e the fun
tion f(x) := Æ � x � 2�(1+Æ)log(1=(1��)) � log(x) is unbounded18



and monotone in
reasing for x > 2�(1+Æ)Æ�log(1=(1��)), we also have to assure thatk � 2�(1+Æ)Æ�log(1=(1��)) . Hen
e we 
hoosek = max�2� ; 2 � (1 + Æ)Æ � log(1=(1� �))� ; k0 = 2k � 11� � (7)and �nally obtainTheorem 7.1. Algorithm ADCL with the 
hoi
es (7) for k and k0 is a PTASfor the �-Dense Group Steiner Tree Problem.8 Open ProblemsWe leave it as an open problem to 
onstru
t a ptas for the �-Dense SteinerForest Problem or to show that su
h a ptas 
annot exist (under some rea-sonable assumption). Another 
hallenging open problem is to prove NP-hardness for the �-dense version of at least one of the problems studied inthis paper. Furthermore it would be interesting to investigate the �xed-parameter 
omplexity of the �-dense Steiner Tree Problem.A
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