
The Measure Hypothesis and Efficiency of

Polynomial Time Approximation Schemes

M. Hauptmann∗

February 11, 2008

Abstract

A polyomial time approximation scheme for an optimization prob-
lem X is an algorithm A such that for each instance x of X and each
ǫ > 0, A computes a (1 + ǫ)-approximate solution to instance x of X
in time is O(|x|f(1/ǫ)) for some function f . If the running time of A is
instead bounded by g(1/ǫ) · |x|O(1) for some function g, A is called an
efficient polynomial time approximation scheme. PTAS denotes the
class of all NP optimization problems for which a polytime approxi-
mation scheme exists, and EPTAS is the class of all such problems
for which an efficient polytime approximation scheme exists. It is an
open question whether P 6= NP implies the strictness of the inclusion
EPTAS ⊆ PTAS. Bazgan [2] and independently Cesati and Trevisan
[5] gave a separation under the stronger assumption FPT 6= W [P].
In this paper we prove EPTAS (PTAS under some different as-
sumption, namely existence of NP search problems ΠR with a super-
polynomial lower bound for the deterministic time complexity. This
assumption is weaker than the NP Machine Hypothesis [15] and hence
is implied by the Measure Hypothesis µp(NP) 6= 0. Furthermore, us-
ing a sophisticated combinatorial counting argument we construct a
recursive oracle under which our assumption holds but that of Cesati
and Trevisan does not hold, implying that using relativizing proof tech-
niques one cannot show that our assumption implies FPT 6= W [P].

1 Introduction

A polynomial time approximation scheme for an optimization problem X
is an algorithm A such that for every instance x of X and every ǫ > 0, A

∗Dept. of Computer Science, University of Bonn. Email:hauptman@cs.uni-bonn.de

1

returns a (1 + ǫ)-approximative solution y = A(x, ǫ) in time O(|x|f(1/ǫ)) for
some function f . If instead the running time can be bounded by O(g(1/
ǫ) · |x|c) for some constant c and some function g, algorithm A is called an
efficient polynomial time approximation scheme (eptas).

NPO denotes the class of all NP optimization problems, PTAS the class
of all problems X ∈ NPO that admit a polynomial time approximation
scheme (ptas) and EPTAS all problems in NPO that admit an efficient
ptas. Obviously, EPTAS ⊆ PTAS. It is an open problem whether the
strictness of this inclusion follows from P 6= NP .

Cesati and Trevisan [5] and independently Bazgan [2] separate these two
classes under the stronger assumption W [P] 6= FPT from Fixed Parameter
Complexity. Indeed, they showed the following chain of implications:

W [P] 6= FPT =⇒ EPTAS 6= PTAS =⇒ FPT 6= XP.

Here FPT ⊆ W [P] ⊆ XP are classes of the W -hierarchy introduced by
Downey and Fellows [7]. For further details we refer to [8] and to [10].
The assumption FPT 6= W [P] was characterized in terms of bounded
nondeterminism properties of NP search problems by Cai and Chen [4]. Cai
and Chen [4] proved that FPT 6= W [P] iff for each unbounded polynomial-
time computable function s : N → N, NP [s(n) log(n)] 6⊆ P , where NP [f(n)]
denotes the class of NP problems that can be solved in polynomial time with
O(f(n)) nondeterministic steps.

We obtain the following results. 1. We separate PTAS from EPTAS
under some different assumption, namely existence of an NP search problem
ΠR (where R denotes some polynomially balanced, polynomial-time decid-
able binary relation) and a superpolynomial function t(n) such that ΠR is
not solvable in time O(t(n)). Under this assumption which we simply call
Assumption (A), we construct for each strictly monotone recursive function
f an NP optimization Uf such that Uf admits a polynomial time approxi-
mation scheme with running time O(|x|f(1/ǫ)) and such that Uf 6∈ EPTAS.

2. Under the assumption P 6= NP we show that for each recursive func-
tion f(n), there exists an NPO problem Uf that provides an efficient ptas,
but there exists no ptas for Uf with running time O(|x|f(1/ǫ). Furthermore,
again assuming N 6= NP we construct another NPO problem U such that
U ∈ EPTAS but no ptas for U has a running time O(|x|f(1/ǫ)) with f being
recursive.

Let us point out some connections to the Quantitative Complexity The-
ory. Assumption (A) is a direct implication of the NP Machine Hypothesis,
which states the existence of an NP machine accepting 0∗ such that no 2nǫ

-
time bounded machine can find infinitely many accepting computations.

2

Jack Lutz defined polynomial measure µp [17] and p-dimension dimp [18] as
generalizations of the classical Lebesgue measure and the Hausdorff dimen-
sion. Scaled dimension was introduced by Hitchcock, Lutz and Mayordomo
[14]. It was shown by Hitchcock and Pavan [15] that the Measure Hypoth-
esis implies the NP Machine Hypothesis. On the other hand , results from
Hitchcock ([13], Theorem 5.2) directly imply that assumption (A) already

follows from the assumption that for some i ∈ Z, dim
(i)
p (NP) = 1. Here

dim
(i)
p denotes the i-th order scaled dimension as introduced by Hitchcock,

Lutz and Mayordomo [14].
Furthermore, we construct an oracle X relative to which assumption

(A) holds but the assumption of Cai and Chen [4] fails. Hence there is
no relativizing proof that our assumption implies FPT 6= W [P]. The or-
acle construction involves a sophisticated combinatorial counting argument
which is based on ideas from Beigel and Goldsmith [3].

Finally we get a similar separation result for randomized polynomial-
time approximation schemes, based on an assumption of a superpolynomial
lower bound on the randomized time complexity of an NP-search problem.

This paper is based on [11], chapter 4. Some of the results were also
presented in [12].

The paper is organized as follows. Preliminaries are given in the next sec-
tion. Section 3 contains our separation results under assumption P 6= NP .
In section 4 we separate EPTAS from PTAS under assumption (A) stated
above. In Section 5 we construct an oracle relative to which assumption (A)
holds but FPT 6= W [P] fails. Finally in section 6 we are concerned with
the separation REPTAS (RPTAS based on a lower-bound assumption
which is the analog of assumption (A) in the randomized setting.

2 Preliminaries

Let Σ = {0, 1}. A binary relation R ⊆ Σ∗×Σ∗ is called f(n)-balanced if for
each (x, y) ∈ R, |y| ≤ f(|x|). For such a relation R, let LR = {x ∈ Σ∗| ∃ y ∈
Σ∗ (x, y) ∈ R} be the projection of R to the first component. NP can be
characterized as the set of all L ⊆ Σ∗ such that there exists a polynomially
balanced polynomial-time decidable relation R ⊆ Σ∗ × Σ∗ with LR = L.

Given such a relation R, ΠR denotes the associated NP search problem:
Given some x ∈ Σ∗, either compute some string π such that (x, π) ∈ R or
return ”NO” in case no such π exists. NP [f(n)] denotes the class of all
NP problems that are solvable in polynomial time with O(f(n)) nondeter-
ministic steps - equivalently: the class of all problems LR such that R is

3

a polynomial-time decidable, O(f(n))-balanced binary relation. Especially,
βk := NP [logk(n)] := GC(logk(n)) (k ∈ N) are the levels of the Kintala-
Fischer hierarchy [16] which is also called the β-hierarchy. The possibility of
downward separation within this hierarchy was invented by Beigel and Gold-
smith [3], who proved that using relativizing proof techniques one cannot
obtain any strictness result for this hierarchy.

NPO denotes the class of NP optimization problems. For the precise
definition we refer to [1]. If X ∈ NPO, we call X an NPO problem.

3 Separations under Assumption P 6= NP

In this section we study the dependence of running times of polynomial-
time approximation schemes on the precision parameter ǫ. Recall that for
an optimization problem X, to be in NPO means solutions being polynomi-
ally bounded in the length of the instance, polynomial time computability
of the cost function and polytime checkability whether some string x is a
legal instance of the problem and whether string y is a feasible solution to
instance x of problem X. Hence in exponentiall time 2nO(1)

one can solve
the problem X to optimality. One may now ask the following question: Are
there problems in PTAS for which there does not exist an approximation
scheme with recursive dependence of the running time on ǫ = 1/n ?

In this section we will give some first results concerning uniformity and
efficiency of polynomial time approximation schemes, answering the question
affirmatively.

Theorem 3.1. Unless P=NP, for every recursive function f : N → N there
is a problem U ∈ PTAS such that:

1. There exists no polynomial time approximation scheme for U with run-
ning time |x|O(f(n)).

2. There exists a polynomial time approximation scheme for U with run-
ning time g(n) · |x| for some recursive function g.

Proof: Let Ti, i = 1, 2, . . . be an effecive enumeration of Turing machines.
Let Un, n ∈ N be the family of APX-complete problems from last section,
p(n) the polynomial and T the Turing machine such that T has time com-
plexity bounded by p(n) and for each n ∈ N Un is p(x)-bounded and T is a
(1+1/n)-approximation algorithm for Un. We will construct an NPO prob-
lem U with the properties 1 and 2 from the theorem in stages in terms of
a lexicographically increasing infinite sequence of strings x0, x1, . . . , xn, . . .
such that the following holds:

4

(a) We call In := [xn−1, xn) the n-th interval. The problem: Given x ∈ Σ∗,
compute the number n with x ∈ In is polynomial time solvable.

(b) Optimization Problem U restricted to strings from the interval In is
equal to Un.

(c) For each n there exist pairs (yn,i,mn,i), 1 ≤ i ≤ n such that for
all i ∈ {1, . . . , n} yn,i ∈ In and Ti(yn,i,mn,i) is not a (1 + 1/mn,i)-
approximation to Un in time |yn,i|f(mn,i).

Stage 0: Let x0 := 0.
Stage n (for n > 0): Consider the following recursive algorithm for the
construction of xn:

Algorithm Construct
Input: n ∈ N Output: xn ∈ Σ∗

(1) If n = 0 return x0 = 0 else
Let xn−1 := Construct(n − 1). Find pairs
(yn,i,mn,i), 1 ≤ i ≤ n by brute force.

(2) Let tn be the time used for step (1).
xn := 0tn+1. Return xn.

Here ”brute force” in step (1) means the following: we check pairs (y,m) in
lexicographic order starting with (xn−1, 2). For each pair (y,m) the com-
putations Ti(y,m).i = 1, . . . , n are simulated for at most |y|f(m) steps. If
a computation stops within that time, the result is compared to the opti-
mum solution OPTUn(y) of instance y for problem Un, which is computed
by brute force, i.e. by trying all strings up to length p(|y|). Note that
since Un is APX-complete, it does not permit a ptas and therefore pairs
(yn,i,mn,i), 1 ≤ i ≤ n exist. In order to show that U is an NPO problem
it suffices to prove (a). Given x, we can easily compute n with x ∈ In by
simulating for at most |x| steps the construction of x0, x1, Let xm the
last string that was constructed by this process, then n = m + 1.
By the diagonal construction U does not provide a ptas with running time
|x|f(n). We will now argue that the following algorithm is an efficient ptas
for U with time complexity g(n) · |x| for some recursive function g.

Algorithm Approximate
Input: x ∈ Σ∗, n ∈ N Output: (1 + 1/n)-approximate solution y
(1) Compute m ∈ N with x ∈ Im.
(2) If m ≥ n return T (x) otherwise

Compute an optimum solution yx to instance x of Un

by brute force, return yx

5

Obviously algorithm Approximate(x, n) computes a (1 + 1/n)-approximate
solution yx to instance x of U . For given n ∈ N, for x ≥ xn−1 the running
time is p(|x|), for x < xn−1 it is at most |xn−1 · 2|xn−1| =: g(n). Hence we
obtain a time bound of g(n) · |x|, and obviously g is a recursive function,
which completes the proof. 2

Theorem 3.2. If P 6= NP then there exists a problem U ∈NPO such that

1. There is a polynomial time approximation scheme for U with time com-
plexity g(n)·p(|x|) for some polynomial p and some function g : N → N.
(Hence U belongs to the class EPTAS.)

2. For every recursive function f : N → N, U does not have a ptas with
time complexity |x|f(n) (hence U does not belong to Uniform-PTAS).

Proof: We will first describe the main ideas and afterwards give the
precise proof: Again we will construct U in stages in terms of an infinite
sequence x0, x1, . . . , xn, .. of strings. As in the proof of the previous theorem,
assume Un, n ∈ N to be a family of APX-complete problems with uniform
bound p(x) and T a Turing machine with running time bounded by the same
polynomial p(x) such that for every n ∈ N T is a (1 + 1/n)-approximation
algorithm for Un. Assume further that for each n the existence of a poly-
nomial time (1 + 1/hn)-approximation algorithm would imply P=NP, such
that the function n 7→ hn is recursive. Let (Ai, Ti, αi)i∈N be an effective
enumerations of the set of triples (A,T, α) where A and T are Turing ma-
chines and α ∈ N.
The idea of our construction is as follows: In stage n assume we have already
constructed the sequence up to xm−1 for some m ≤ n. We start simulating
the computation Ai(hn) for i = 1, . . . , n. In every stage we maintain a list
L = {(Ai, nj , Ci)} of actually simulated computations Ai(hnj), where Ci

denotes the current configuration up to which the computation is already
simulated. In stage n, after adding the pairs (Ai, n, C0

i), 1 ≤ i ≤ n with
initial configurations C0

i of computations Ai(hn) to list L, for all entries of
the list we simulate one step. If none of the computations stop, we go to step
n + 1. If, say, (Ai, nj , Ci) stops (or has already stopped before stage n) and
(i, j) is the lexicographically first pair with that property then U restricted
to interval Im = [xm−1, xm) will be defined as Uj in order to satisfy the
following constraint

Cn,i: If Ai(hn) stops then Ti(, hn) is not a
(

1 + 1
hn

)

-approximation algo-

rithm for U in time αi · |x|Ai(hn).

6

Constraint Cn,i can be satisfied by instances x ≥ xm−1 using the properties
of Un. The crucial fact that will enable us to give a ptas for U is that for
every n ∈ N, U |Im will be set to Un only finitely many times (namely when
one of the computations Ai(hn), i = 1, . . . n stops. Therefore for every n ∈ N

after at most finitely many steps U will be defined as Um for m ≥ n and
hence (1 + 1/n)-approximation is possible.
Let us now give the details. First we describe the construction of problem
U in stages.

Initialization: x0 := 0,m := 1, L := ∅ (the empty list).
Stage 0: Do nothing.
Stage n > 0: Add (Ai, n, C0

i), i = 1, . . . , n to list L, where C0
i is the initial

configuration of the computation Ai(hn). For every triple (A,n′, C) such
that C is not a stopping configuration simulate one further step. If there is
no triple in L whose computation has already terminated, stage n is done.
Otherwise let (Ai, nj, Ci) be the lexicographically first such triple, ordered
first by the value nj and then by Ai. Remove (Ai, hj , Ci) from L. Let
x ≥ xm be the first instance such that either Ti(x, hnj) does not terminate

within time αi · |x|Ai(hnj) or Ti(x, hnj) is not an (1 + 1/hnj)-approximate
solution to instance x of Unj . Such x exists since (1+1/hnj)-approximation
to Unj in polynomial time is assumed to be NP-hard. Let tn be the time
needed to recursively compute xm−1 by performing stages 0 to n− 1 and to
find x by brute force. Let xm := 0tn+1.
End of Construction

As before, there is a linear time algorithm which, for given x, computes
numbers m,n with xm−1 ≤ x < xm and U |[xm−1, xm) = Un. Hence U is an
NPO problem. Consider the following algorithm:

Algorithm Approximate
Input: instance x ∈ Σ∗ of U , n ∈ N

Output: (1 + 1/n)-approximate solution y for x
(1) Compute m ∈ N with xm−1 ≤ x < xm.

Compute n′ ∈ N with U |[xm−1, xm) = Un′ .
(2) If n′ ≤ n return T (x) else

Compute an optimum solution y∗ to instance x of Un′ .
Return y∗.

End.

Obviously Approximate(x, n) is a (1 + 1/n)-approximate solution for in-
stance x of U . Since for every n′ < n only tuples (Ai, n

′, C) with i ≤ n′

7

are added to list L and only those tuples can cause U |[xm−1, xm) = Un′ , it
follows that for all but finitely many m, U |[xm−1, xm) = Un′′ for n′′ ≥ n.
Hence the running time of Approximate can be bounded by g(n) · p(|x|)
for some function g.
Now assume that f : N → N is some recursive function and there exists a
ptas for U with running time bounded by c · |x|f(n)for some constant c. Let
i ∈ N be such that this ptas be given by Turing machine Ti, f is computed
by Turing machine Ai and c = αi. Then in stages n ≥ i computations
Ai(hn) are started. Since Ai is total and by the priority rule in the con-
struction of U , for every n ∈ N there exists an interval I = [xm−1, xm) such
that U |I = Un and I contains an x such that Ti(x, hn) is not a (1 + 1/hn)-
approximate solution to Un in time bounded by αi ·|x|Ai(hn), a contradiction.

2

4 Separating PTAS from EPTAS

In this section we will prove EPTAS (PTAS under the following assump-
tion.

Assumption (A): There is a language L ∈ NP \P and a polynomially
bounded binary relation R ⊆ Σ∗ × Σ∗ with L = LR such that ΠR ∈
DTIME(T (n)) \DTIME(t(n)) for two polynomial time computable
superpolynomial functions t(n), T (n) such that t(n)2 = O(T (n).

Here a function f(n) is called superpolynomial if for each c > 0, f(n) =
ω(nc). Concerning polynomial-time approximation schemes, their running
times are bounded by O(|x|f(ǫ)), where x denotes the instance and ǫ the
accuracy parameter.

Our main result is stated in the following theorem.

Theorem 4.1. Under assumption (A), for every strictly monotone recursive
function f : N → N with f(1) = 1 there is an NPO problem Uf such that

1. Uf has a ptas with running time O(|x|f(1/ǫ)+1).

2. For every monotone increasing function g : N → N and every α > 0,
Uf does not have a ptas with running time g(1/ǫ) · |x|α.

In particular, this implies EPTAS 6= PTAS.

In order to prove Theorem 4.1 we will first define a family of NPO
problems Un, n ∈ N and then construct Uf in stages in terms of problems

8

Un, such that in stage n we diagonalize against the first n Turing machines
being efficient approximation schemes for problem Uf . The crucial point
will be that although problems Un will be approximable with better and
better ratio (with n increasing), for every fixed ǫ > 0 the time complexity
of approximation within 1 + ǫ will stay the same.

We will use the following convenntions. First, we only consider accuracy
parameters ǫ = 1+ 1

n , n ∈ N. In this sense, problem Uf will have a ptas with

running time O(|x|f(n)) for ǫ = 1/n, but there exists no ptas with running
time g(n)·|x|α for Uf . Second, we will consider binary relations R ⊆ Σ∗×Σ∗

equivalently as functions R : Σ∗ × Σ∗ → {0, 1} (where R(x, y) = 1 means
(x, y) ∈ R).

Let f : N → N be some monotone increasing recursive function as above
such that f(1) = 1. Let A ⊆ Σ∗ be some problem in NP, TA some deter-
ministic TM and pA some polynomial such that

1. For all x ∈ Σ∗, x ∈ A iff there is some string π of length |π| ≤ pA(|x|)
such that TA(x, π) accepts in time pA(|x|).

2. For R = {(x, π) | TA(x, π) accepts}, the associated NP search problem
ΠR is solvable in time T (n) but not in time t(n).

We define a family Un, n ∈ N of optimization problems as follows:

Definition of Un:
Instances of Un: X = (x1, . . . , xn, 0k) such that k ≥ 1, x1, . . . , xn ∈ Σ∗ and

t(|xj |) ≤ |X|f(2j), j = 1, . . . , n − 1. (1)

Solutions: π = (π1, . . . , πn) with πj ∈ Σ∗, |πj| ≤ pA(|xj |), j = 1, . . . , n

Costs: cn(X,π) = 2n +
n∑

i=1
R(xi, πi) · 2n−i ∈

[
2n, 2n + 2n+1 − 1

]
.

End of definition.

Here 0k serves as a padding string, and TA(xi, πi) ∈ {0, 1} denotes the result
of computation of machine TA on input xi, πi (1 for accept, 0 for reject). The
main properties of problems Un are stated in the next two lemmas.

9

Lemma 4.1. For all n ∈ N Un is an NPO problem. There exists a two-
variate polynomial q(x, y) such that for all n ∈ N Un is q(x, tf (n))- time
bounded, where tf (n) is a function such that f is computable in time tf (n).

Proof: Function f(n) can be computed in time tf (n). The conditions (1)
are equivalent to log(t(|xj |)) ≤ f(2j) · log(|X|), j = 1, . . . , n−1 and therefore
can be checked in time tf (n) · n · poly(|X|). In time O(n · pA(|X|)) one can
check whether a given string π = (π1, . . . , πn) is a solution to X. The cost
cn(X,π) can be computed in time O(n · pA(|X|)). 2

Lemma 4.2. Under Assumption (A), problem Un has the following proper-
ties.

1. For j = 1, . . . n − 1 there is a
(
1 + 2−j

)
-approximation algorithm for

Un with running time |x1|+ |x2|f(2
2) + . . . + |xj|f(2

j) ≤ n · |X|f(2j) =

O
(

|X|f(2j)
)

(n being fixed).

2. For j = 1, . . . , n − 1, every approximation algorithm B for Un with

running time o
(

|X|f(2j)
)

has approximation ratio at least 1+2−(j+2).

3. There is no polynomial time approximation algorithm for Un with ratio
better than 1 + 2−(n+2).

Proof. This basically follows from the construction of Un, using the fact that
the NP search problem ΠR cannot be solved deterministically in time t(n).
Assume A is some algorithm which for each instance X = (x1, . . . , xn, 0k)
of Un computes a feasible solution πX = (π1, . . . , πn). For i ∈ {1, . . . , n} we
say A answers xi correct iff for every instance X = (x1, . . . , xn, 0k) of Un,
if xi ∈ A then TA(xi, πi) accepts (i.e. A constructs a proof πi for the fact
xi ∈ A). We will show:

(a) In time t(|x1|) + t(|x2|) + . . . + t(|xj|) ≤ n · |X|f(2j) one can answer
x1, . . . , xj correct, and every algorithm answering x1, . . . xj correct has
approximation ratio at most 1 + 2−j .

(b) For j ∈ {1, . . . , n} every approximation algorithm that does not answer
xj correct has approximation ratio at least 1 + 1

2j+2 .

(c) For j = 1, . . . , n−1 : In running time o
(

|X|f(2j)
)

an algorithm cannot

answer xj correct.

10

(d) An algorithm with polynomial running time cannot answer xn correct.

Obviously, from (a)-(d) the lemma follows.
Proof of (a): The time bound for answering x1, . . . , xj correct follows directly
from the definition of Un and the assumption about the time complexity of
W (A,TA). Assume now that π = (π1, . . . , πn) is a feasible solution for
instance X such that x1, . . . , xj are answered correct. Let

C(j) := 2n +

j
∑

i=1

[TA(xi, πi)] · 2n−i ∈
[

2n, 2n + 2(n−j) · (2j+1 − 1)
]

be the contribution of π1, . . . , πj to the solution cost. Then the approxima-
tion ratio RUn(X,π) of solution π for instance X of problem Un is

RUn(X,π) =
optUn

(X)

cn(X,π)
≤ C(j) + 2n−j−1 + . . . + 2 + 1

C(j)

= 1 +
2n−j−1 + . . . + 2 + 1

C(j)
≤ 1 +

2n−j − 1

2n
≤ 1 + 2−j

Proof of (b): Assume B is some approximation algorithm for Un such that
infinitely often, B answers xj incorrectly. We compute a lower bound on the
approximation ratio of B: Let X be an instance such that xj is answered
incorrect, i.e. xj ∈ A and TA(xj , πj) = 0 for B(X) = π = (π1, . . . , πn).
Let π∗ = (π∗

1 , . . . , π
∗
n) be an optimum solution to instance X of Un of cost

cn(X,π∗) = 2n + 2n−j + R∗. Let R :=
∑

i6=j TA(xi, πi) · 2n−i. Obviously

cn(X,π) = 2n + R and R ≤ R∗ ≤ 2n+1 − 2n−j − 1. Then the approximation
ratio RUn(X,B(X)) of the solution B(X) for instance X of Un constructed
by algorithm B is

RUn(X,B(X)) =
2n + 2n−j + R∗

2n + R
≥ 1 +

2n−j

2n + R

≥ 1 +
2n−j

2n + 2n+1 − 2n−j − 1
≥ 1 +

1

2j+2

Proof of (c): We give a reduction from the NP search problem ΠR to Un:
Using the padding property of Un, for each string x ∈ Σ∗ we can construct
in polynomial time an instance X of Un such that x = xj and

|X| ∈
[

f(2j)
√

T (|x|), f(2j)
√

T (|x|) + 1
]

.

Now assume there is some algorithm A with running time o
(

|X|f(2j)
)

such

that for each instance X = (x1, . . . , xn, 0k) of Un, A computes a feasible

11

solution (π1, . . . , πn) for instance X of Un such that xj is answered correctly.
Then using algorithm A we would solve the NP search problem ΠR in time

o
(

|X|f(2j)
)

= o
(
f
(
2j
)
· t(|x|)

)
= o(t(|x|)),

a contradiction.
Proof of (d): Such an algorithm could be used to solve the NP search problem
ΠR in polynomial time (note that for an instance X of Un, |xn| = Θ(|X|)
is allowed), in contradiction to the assumption. This completes the proof of
the lemma.

Proof of Theorem 4.1: We will construct an NPO problem Uf in stages,
using a monotone increasing sequence of strings x0, x1, . . . , xn, Uf re-
stricted to the n-th interval In := [xn−1, xn) will be equal to Un. Let
(Ti, ci, αi), i ∈ N be some effective enumeration of triples (Ti, ci, αi) where
Ti is a Turing machine, ci > 0 some constant and αi ∈ N such that every
such triple (T, c, α) occurs infinitely often. We will construct x1, . . . , xn, . . .
such that for every n ∈ N the following requirement (Cn) is satisfied:

(Cn) For j = 1, . . . , n both (a) and (b) hold.

(a) For m = 1, . . . , n − 1: If f(2m) ≥ αj + 1/n then there exists
some yj,m ∈ In such that Tj(yj,m, 2m+3) is not a (1 + 2−(m+3))-
approximate solution to instance yj,m of Uf in time bounded by
cj · |yj,m|αj .

(b) There is some zj ∈ In such that Tj(zj , 2
n+3) is not a (1+2−(n+3))-

approximate solution to instance zj of Uf in time cj · |zj |αj .

Construction of Uf :
Stage 0: x0 := 0.
Stage n > 0: Compute f(21), . . . , f(2n), f(2n+1). By Brute Force find the
lexicographically first strings yj,m, j = 1, . . . , n,m ∈ {1, . . . , n − 1} with
f(2m) ≥ αj + 1 and zj with yj,m, zj ≥ xn−1 such that (Cn) becomes true.
Such pairs exist because of properties 2 and 3 from Lemma 4.2. Let tn be
the time needed to compute f(j), 1 ≤ j ≤ n and to find strings yj,m and zj .
Let xn := 0tn+1 and Uf |In := Un.
End of construction.

Uf is an NPO problem: There is a linear time algorithm to compute for
given x ∈ Σ∗ the number n ∈ N such that x ∈ In, by computing the number

12

n−1 in at most |x| steps. Since in stage n−1 we compute f(n), |x| ≥ tf (n),
and therefore using Lemma 4.1 we conclude that Uf is bounded by some
polynomial p(|x|) and hence an NPO problem.

Uf admits a polynomial time approximation scheme: For given x and n,
in order to compute a (1 + 1/n)-approximate solution to instance x of Uf

we first compute the number m ∈ N with x ∈ Im. If 2m−1 ≥ n we compute

a (1 + 2−j)-approximate solution for j = ⌈log(n)⌉ in time |x|f(2j) · m ≤
|x|f(2j)+1. Otherwise we compute an optimum solution y∗ to instance x by
brute force. Since 2m−1 < n for only finite many m (and therefore finite
many x) and 2⌈log(n)⌉ < 2n, the running time is bounded by O

(
|x|f(2n)+1)

)

and hence by O
(
|x|f(2n)+1

)
.

Uf 6∈ EPTAS: Assume Uf admits a ptas T with running time g(n) · |x|α
for some function g and some constant α. Then for every n ∈ N there exists
some i ∈ N such that Ti = T, αi = α and ci = g(n). But for m ≥ n+3, in Im

there exist y ∈ Im such that either Ti (y, 2m) is not a (1 + 2−m)-approximate
solution for instance y of Uf or Ti (y, 2m) does not stop after at most ci · |y|αi

steps, a contradiction ! This proves the claim and hence Theorem 4.1.

5 Oracle Constructions

We will now construct an oracle X relative to which Assumption (A) holds
but FPT 6= W [P] doesn’t. Recall that in [4] FPT 6= W [P] was shown being
equivalent to

Assumption (B) For every unbounded polynomial-time computable
function s : N → N, NP [s(n) log(n)] 6⊆ P .

We start by defining the appropriate relativized classes.

Definition 5.1. For X ⊆ Σ∗ and f : N → N,

NPX [f(n)] := {L ⊆ Σ∗|there exists an O(f(n))-balanced binary relation
R ⊆ Σ∗ × Σ∗ such that L = LR and R ∈ PX

}

It is easy to construct an oracle making assumption (B) false, namely by
taking a sufficiently powerful oracle.

Theorem 5.1. For every polynomial-time computable unbounded function
s(n) there exists a recursive set X ⊆ Σ∗ such that NPX [s(n) log(n)] ⊆ PX .

Proof. Let X be some DTIME
(
nO(s(n))

)
-complete set, then the inclusion

obviously holds. For a precise argument (yielding a slightly more general
result) see the proof of Lemma 5.1 below.

13

In order to construct an oracle relative to which assumption (B) be-
comes true, one needs to diagonalize against polynomially bounded oracle
machines accepting inputs (x, y) with |y| bounded by s(|x|) log(|x|) for some
nonconstant polytime computable function s(n). We can enumerate poly-
nomially bounded TMs Mi computing functions si(n), but by no means we
know in advance which of these functions is bounded. Hence we will guess
si(n) being bounded by some constant C, and if this guess was incorrect,
then we will observe the incorrectness after finite amount of time, namely
find some n such that si(n) > C. We perform such a guessing process,
and each time a violation occurs, we increase the constant C and perform
one diagonalization step against NPX [si(n) log(n)] being equal to PX . We
obtain:

Theorem 5.2. (An Oracle relative to which Assumption (B) holds)
There existst some recursive set X ⊆ Σ∗ such that for every unbounded
polynomial-time computable function s(n), NPX [s(n) log(n)] 6⊆ PX .

We will now separate assumptions (A) and (B) by an oracle construction.

Theorem 5.3. (An Oracle relative to which (A) is true but (B) is
false) There exists a recursive set X ⊆ Σ∗ such that (1) and (2) hold.

(1) NPX [log2(x)] ⊆ PX

(2) For the relation RX := {(x, y)|x = 0n, n ∈ N, |y| = 2n, y ∈ X},

ΠRX
∈ DTIMEX

(

2n3
)

\ DTIMEX (2n) .

Proof Idea: Let X̃ be some DTIME
(
nO(log n)

)
-complete problem with

respect to polynomial-time Karp reductions. Then X ′ := {1xx|x ∈ X̃} is
DTIME

(
nO(log n)

)
-complete as well. We let X = X ′ ∪ X ′′ where X ′′

consists of strings of even length only. We use X ′′ for a diagonalization
process in order to assure (2).

The following two lemmas indicate how powerful the set may be in order
to make (1) become true.

Lemma 5.1.
For every DTIME

(
nO(log n)

)
-complete problem Y , NP Y [log2(n)] ⊆ P Y .

Proof. Let R be c · log2(n) - balanced for some c > 0 with R ∈ P Y . Let
R = L(M,Y) for some polytime bounded oracle machine M . We have
to show that ΠR ∈ FTIMEY

(
nO(1)

)
. For input x of length n there are

14

less than n · 2c·log2(n) = n · nc·log(n) = nO(log(n)) strings of length bounded by
c · log2(n), hence a straight forward algorithm will enumerate all such strings
and for each of them ask the question to oracle machine M with oracle Y .
The running time of this oracle algorithm is bounded by

p(n + c · log2(n))
︸ ︷︷ ︸

running time of M

· nO(log(n))
︸ ︷︷ ︸

♯strings of that length

= nO(log(n)),

If we replace the oracle questions by calls of a nO(log(n))-time bounded algo-
rithm MY for Y , the total running time can be bounded by

nO(log(n)) · q(n)O(log(q(n)))

︸ ︷︷ ︸

time for one call of MY

= nO(log(n))

where q(n) := p(n + c · log2(n)) is polynomially bounded. Hence we can
reduce this problem to Y (Y is DTIME(nO(log(n)))- complete) and obtain
L ∈ P Y .

Lemma 5.2. For every DTIME
(
nO(log n)

)
-hard problem Y which is com-

plete for a class C of languages such that DTIME(t(n)) ⊆ C implies
DTIME

(
nO(log(n)) · t

(
nO(1)

))
⊆ C, NP Y [log2(n)] ⊆ P Y .

Proof. Let L ∈ NP Y [log2(n)] and Y ∈ DTIME(t(n)). We perform the
complete-enumeration oracle algorithm as in the previous proof and obtain
a running time bounded by

nO(log(n))
︸ ︷︷ ︸

♯ strings to be enum.

· p(n + c · log2(n))
︸ ︷︷ ︸

single call of the Oracle TM for L

· t(p(n + c · log2(n)))
︸ ︷︷ ︸

solving one instance of Y

which is bounded by nO(log(n)) · t(nO(1)). Hence L ∈ C, and L is polynomial-
time reducible to Y , therefore L ∈ P Y .

Now if we take an arbitrary set X ′′ ⊆ ⋃

n∈N Σ2n which is complete for
such a class C, the disjoint union X := X ′ ∪ X ′′ still satisfies the conditions
in Lemma 5.2, hence condition (1) from Theorem 5.3 will still hold.

Proof of Theorem 5.3. Let X = X ′ ∪ X ′′ where X ′ consists of odd-length
strings only and X ′′ consists of even-length strings only. We choose

CX := {(i, x, 0s)|Mi on input x with oracle X accepts within s steps
and O(log2(n)) nondeterministic steps

}
.

15

Then CX is ≤p
m-complete for NPX [log2(n)]. Let p(n) be a polynomial

such that CX ∈ NTIME[log2(n)](p(n)) (i.e. solvable in time p(n) with
O(log2(n)) nondeterministic steps). We will encode CX into X ′ in a poly-
nomial manner and use X ′′ for diagonalisation in order to assure (2). The
encoding will be as follows: For all strings x ∈ Σ∗,

x ∈ CX ⇐⇒ 1p(|x|)2 0 x ∈ X.

We are now ready to construct X. Let M1, . . . ,Mn, . . . denote an enumer-
ation of O(2n)-time bounded Oracle machines such that without loss of
generality Mi is i · 2n - time bounded.

Construction of X in stages

/⋆ At the end of stage s X is defined up to ⋆/
/⋆ strings of length ns. During stage s diagonalization ⋆/
/⋆ against L(Mi) = LX is performed by choosing ⋆/
/⋆ n > ns−1 and assuring 0n ∈ L(M − i)∆LX ⋆/

Stage 0: n0 := 0, X := ∅

Stage s > 0:
/⋆ X is defined up to length ns−1 ⋆/
Choose n > ns to be a power of 2 and sufficiently large.
Define X up to length l := n3 − 1.
Define CX up to strings y with p(|y|)2 + 1 + |y| ≤ n3 − 1.

/⋆ LX(1n) depends on strings of length n3. ⋆/

Compute Ms(1
n,X).

If Ms(1
n,X) accepts then

Let y be a legal string of length n3.
X := X ∪ {y}.

ns := max{l, s · 2n}
Freeze X up to length ns.
Freeze CX up to strings of length m with p(m)2 + 1 + m ≤ ns.

End of Stage s.

It remains to define which strings y of length n3 are legal and what it means
to choose n sufficiently large. The initial idea is simply to pick a string y

16

which was not asked by the computation Ms(x,X). Such string of length n3

exists since Mi has running time bounded by s · 2n and there are 2n3
strings

of length n3 available (we choose n such that s · 2n < 2n3
). The problem is

that the encoding of CX into X may depend on this choice, and the result
of Ms(x,X) may in turn depend on this coding and so on.

We accomplish this difficulty by using an approach from Beigel and Gold-
berg: We show that due to the way the coding of CX into X is arranged,
there are more strings of length n3 available than are influencing the coding
of CX into X in the range up to length s · 2n:

Ms(x,X) has running time bounded by s · 2n and therefore may ask at
most s · 2n oracle questions about strings of length bounded by s · 2n.

Due to the encoding, these strings may encode strings from CX of length
bounded by

√
s · 2n =

√
s · 2n/2. Each of these encoding strings w in turn

may depend on at most

p(|w|) · 2log2(|w|) = p
(

s2−1 · 2n/21
)

· 2log2
�
s2−1

·2n/21
�

strings of this smaller length and so on.
Since X is already fixed up to length l − 1, the recursion can be cut off

at strings of length ≤ l− 1. Therefore the number of such terms is bounded
by

log log(s·2n)−log log(l−1) ≤ log(log s+n)−log log(n) ≤ c·log(n) = Θ(log(n))

for some constant c > 0. Hence the total number of strings being influenced
by the choice of y is bounded by

s · 2n ·
∏

i≤c·log(n)

p
(

s2−i · 2n/2i
)

· 2
log2

�
s2−i

·2n/2i
�

= s · 2n ·
∏

i≤c·log(n)

(

s2−i · 2n/2i
)O(1)

· 2
log2

�
s2−i

·2n/2i
�
.

Since log2
(

s2−i · 2n/2i
)

=
(
2−i · log(s) + n

2i

)2
= O(n2), the total number

of strings is bounded by s ·2n · O(log(n)) · 2O(n) ·2O(n2) = 2O(n2), supposed
we choose s sufficiently small compared to n, i.e. choose n large, namely
s = 2log s, log(s) = O(n2).

Hence we find a string y of length n3 such that adding y to X does not
change the result of computation Ms(x,X), therefore the diagonalization
step is well-defined. This completes the proof of Theorem 5.3.

17

6 Randomized Approximation Schemes:

RPTAS versus REPTAS

In this section we consider the question of efficiency for randomized approx-
imation schemes. Recall that a randomized polynomial-time approximation
scheme A for an optimization problem X is a probabilistic approximation
algorithm A for X such that

Pr{A.R. of A(x, ǫ) is at most 1 + ǫ} ≥ 3

4

and the randomized running time of algorithm A is

O
(

|x|f(1/ǫ)
)

for some function f : N → N. A is called an efficient polynomial-time ran-
domized approximation scheme if the randomized running time is bounded
by

O

(

f

(
1

ǫ

)

· |x|O(1)

)

for some function f : N → N. Let RPTAS denote the class of all NP opti-
mization problems for which a randomized polynomial-time approximation
scheme exists. REPTAS denotes the class of all NPO problems that pro-
vide an efficient polynomial-time randomized approximation scheme exists.

In the following lemma, the case of efficient probabilistic approximation
schemes where the error probability is bounded for each fixed ǫ is considered.

Lemma 6.1. Assume A is a probabilistic approximation scheme for NPO
problem X, which means

Pr{A.R. of A(x, ǫ) is at most 1 + ǫ} >
1

2

Assume furthermore that there are functions f : N → N and e : N → [0, 1/2)
and α > 0 such that e is recursive and

Pr{A.R. of A(x, n) is at most 1 + 1
n in time bounded by f(n) · |x|α} ≥ 1−e(n)

for every x and n. Then X ∈ REPTAS.

Proof: We can decrease the error probability to at most 1/4 by applying
the δ-Lemma for Monte Carlo machines to each n: Compute e(n), then the
δ-Lemma gives a computable bound k = k(n) such that repeating A(·, n) k

18

times and making majority decision decreases the error probability to 1/4.
The running time is bounded by k(n) · f(n) · |x|α, which proves the lemma.
2

We are now going to separate the classes REPTAS and RPTAS assuming
the existence of polynomially balanced relations in P (NP search problems)
for which the associated functional problems provides a superpolynomial
lower bound on the randomized time complexity (assumption (A”) in the-
orem 6.1 below). This is basically the variant of assumption (A’) where
deterministic time complexity is replaced by randomized time complexity.

Theorem 6.1. Assume there exists a polynomially balanced binary relation
R ⊆ Σ∗ × Σ∗ such that R ∈ P and such that for the associated NP search
problem ΠR, ΠR ∈ RFTIME

(
t2(n)

)
\ RFTIME (t(n)) for some super-

polynomial polynomial-time computable function t(n) (Assumption A”).
Then there exists an optimization problem UR ∈ NPO such that

UR ∈ RPTAS \ REPTAS.

Proof: Assume R to be as in assumption (A”), and let R be p(n)-
balanced for some polynomial p(n). Let T (n) := t2(n). We define problem
UR,n as follows:

Instance: X = (x1, . . . , xn, 0k) such that

T (|xj |) ≤ |X|2j
, 1 ≤ j ≤ n − 1.

Solution: π = (π1, . . . , πn) such that

|πj| ≤ p(|xj |), 1 ≤ j ≤ n − 1

Cost: costn(X,π) = 2n +
∑n

j=1 R(xj , πj) · 2n−j

Problems UR,n have the following properties:

(1) There exists a two-variate polynomial q(n,m) such that UR,n is a
q(n,m)-bounded NP optimization problem (recall that this means for
given x, y in time q(n, |x|) we can check whether x is a valid instance of
problem UR,n, y is a feasible solution for instance x of Un and compute
the cost function costn(x, y).

(2) Every approximation algorithm A for problem UR,n answering x1, . . . , xj

correct has approximation ratio A.R.(A) ≤ 1 + 2−j .

19

Every approximation algorithm A for problem UR,n answering xj in-
correct has approximation ratio A.R.(A) ≥ 1 + 2−(j+2).

(3) For j = 1, . . . , n − 1, there exists a randomized approximation algo-
rithm A with running time

O

(
j
∑

i=1

|X|2i

)

= O
(

j · |X|2j
)

such that Pr{A on input x answers x1, . . . , xj correct} ≥ 3
4

(4) For j = 1, . . . , n−1: There is no randomized approximation algorithm

with running time O
(

|X|2j−1
)

for UR,n answering xj correct.

(5) There is no randomized approximation algorithm with polynomial run-
ning time for UR,n answering xn correct.

The proof of (1) and (2) is identical to the deterministic case. Let A be
a T (n)-time bounded randomized algorithm for the functional problem ΠR

such that

Pr{(x,A(x)) ∈ R} ≥ 3

4

for every x ∈ LR. By the δ-Lemma for Monte-Carlo algorithms, there is a
randomized algorithm A′ such that

Pr{x ∈ LR ⇒ (x,A′(x)) ∈ R in time bounded by f(j) · T (|x|)} ≥
(

3

4

)1/j

(for some function f(j) of j). Let B be the approximation algorithm for Un

which for each component xj independently sets πj := A′(xj).
We obtain

Pr{B on input X answers x1, . . . , xj correct}

=

j
∏

i=1

Pr{xi ∈ LR ⇒ (xi,A′(xi)) ∈ R}

≥
(

3

4

)j/j

=
3

4

which completes the proof of (3).

20

In order to prove (4) we make use of the same kind of reduction from
ΠR to UR,n as before: Given an instance x of ΠR we construct an instance
X of UR,n such that X = (x1, . . . , xn, 0k), x = xj and

|X| ∈
[

2j√

T (|x|), 2j√

T (|x|) + 1
]

Now assume B is a randomized approximation algorithm for UR,n such that

Pr
{

B answers xj correct in time c ·
(

|X|2j−1
)}

≥ 3

4

for some c > 0. Since

c·|X|2j−1 ≤ c·
(

2j√

T (|x|) + 1
)2j−1

= O

(

2j−1 · T (|x|)
2j−1

2j

)

= O
(
2j−1 · t(|x|)

)

this contradicts assumption (A”), hence (4) holds as well.

Let (Mi, ci), i ∈ N be a listing of all pairs consisting of PTMs Mi and
constants ci > 0, where we initially guess Mi being an approximation scheme
for problem UR with error probability bounded by 1/4. Assume that each
pair occurs infinitely often in this list. For each such Mi, either the guess
is incorrect and we will recognize this after finite amount of time, or we
diagonalize against Mi being an efficient randomized approximation scheme
for UR with error probability bounded by 1

4 .
We construct problem UR in stages. In stage n the n-th interval In =

[xn−1, xn) is defined (recall that this refers to lexicographic order on Σ∗),
UR restricted to In will be defined as UR,n. During the construction the
following requirements are satisfied:

(Cn) For j = 1, . . . , n, i = 1, . . . , n:
There are strings y = yi,j and x = xi in In = [xn−1, xn) such that

Pr
{

A.R. of Mi(y, 2j+3) is ≤ 1 + 1
2j+3 within time ci · |y|2

j−1
}

< 3
4

Pr
{
A.R. of Mi(x, 2n+3) ≤ 1 + 2−(n+3) within time ci · |x|2

n}
< 3

4

Let us argue that (assuming we guarantee problem UR being in RPTAS)
constraints (Cn) are sufficient in order to prove the theorem: Hence assume
UR ∈ REPTAS but (Cn) are satisfied. Then due to the fact that we can
decrease error probability to 1

4 increasing running time by at most a constant
factor, there exists an efficient randomized polytime approximation scheme

21

M for problem UR with error probability bounded by 1
4 and randomized

running time bounded by

f(n) · |x|α for some α > 0 and some function f(n).

Now choose j such that α < 2j−1, and let i be choosen such that (Mi, ci) =
(M,f(2j+3)). From some stage n on (namely n ≥ max{i, log(α)}) there
exist strings y in interval In such that

Pr
{
A.R. of Mi(y, 2j+3) is ≤ 1 + 1

2j+3 within time f(2j+3) · |x|α
}

<
3

4
,

hence we obtain a contradiction and thus M is not an efficient randomized
polytime approximation scheme for problem UR.

Construction of Problem UR in Stages.

Stage 0: Set x0 := 0.

Stage n > 0: Let xn−1 and UR restricted to the interval [x0, xn−1) already
be defined. We will construct xn and define

UR restricted to interval In be equal to UR,n.

Now by brute force find strings yi,j, xi, 1 ≤ i, j ≤ n satisfying constraint
(Cn). Such strings are guaranteed to exist due to properties (1)-(5) of prob-
lem UR,n. Let Tn be the total time needed to (deterministically) construct
problem UR up to stage n − 1 and to find strings yi,j, xi, 1 ≤ i, j ≤ n Let
xn := 0Tn .
End of Stage n

By the very same reason as in the construction in the proof of theorem 12 in
section 4.3, problem UR has polynomial time decidable sets of instances and
solutions and polynomial cost functions, furthermore we obtain a random-
ized approximation scheme for UR by first computing the interval number of
string x, if it is too small solve the instance to optimality by brute force and
otherwise answering sufficiently many components of instance x corrcectly
by the randomized algorithm for ΠR. Hence UR ∈ RPTAS \ REPTAS,
which completes the proof. 2

22

7 Conclusion

We have proved a separation of the classes PTAS and EPTAS under the
assumption that there are NP search problems with a superpolynomial lower
bound on the deterministic time complexity. We have shown that there
exists no relativizing proof that our assumption implies FPT 6= W [P], hence
in this sense our result can be seen as independent from the separation result
given by Cesati and Trevisan. Furthermore we obtain similar results for the
case of randomized polynomial-time approximation schemes. It remains as
an open problem to prove the strictness of the inclusion EPTAS ⊆ PTAS
under assumption P 6= NP .

Acknowledgement. We would like to thank Marek Karpinski and
Claus Viehmann for valuable discussions.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, M. Protasi. Complexity and Approximation.
Springer, 1999

[2] C. Bazgan. Schemas d’approximation et complexite’ parametree.
Thesis, INRIA, Orsay, France, 1995.

[3] Richard Beigel and Judy Goldsmith. Downward separation fails
catastrophically for limited nondeterminism classes. In Structure
in Complexity Theory Conference, pages 134–138, 1994.

[4] L. Cai and J. Chen. On fixed-parameter tractability and approx-
imability of np optimization problems. Journal of Computer and
System Sciences, 54(3):465–474, 1997.

[5] M. Cesati and L. Trevisan. On the efficiency of polynomial
time approximation schemes. Information Processing Letters,
64(47):165–171, 1997.

[6] Y. Chen and M. Grohe. An Isomorphism Between Subexponen-
tial and Parameterized Complexity Theory. Proceedings of the
21st IEEE Conference on Computational Complexity (CCC’06),
PP.314-328, 2006.

[7] R. G. Downey and M. R. Fellows. Fixed-parameter tractability
and completeness. In Congr. Num. 87, pages 161–187, 1992.

23

[8] R. G. Downey and M. R. Fellows. Parameterized Complexity.
Springer, 1997

[9] J. Flum, M. Grohe and M. Weyer. Bounded fixed-parameter
tractability and log2n nondeterministic bits , Journal of Com-
puter and System Sciences 72:34-71, 2006.

[10] J. Flum and M. Grohe. Parameterized Complexity Theory.
Springer, 2006

[11] M. Hauptmann. Approximation Complexity of Optimiza-
tion Problems: Structural Foundations and Steiner Tree
Problems, PhD-Thesis, University of Bonn, 2004, URL:
http://hss.ulb.uni-bonn.de/diss online/math nat fak/2004

/hauptmann mathias/0380.pdf.

[12] M. Hauptmann. The Measure Hypothesis and Efficiency of Poly-
nomial Time Approximation Schemes, Proc. Tenth Italian Con-
ference on Theoretical Computer Science, p. 151–162, World Sci-
entific, 2007.

[13] J. M. Hitchcock. Small spans in scaled dimension. SIAM Journal
on Computing, 34(1):170–194, 2004.

[14] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Scaled dimension
and nonuniform complexity. Journal of Computer and System
Sciences, 69:97–122, 2004.

[15] J. M. Hitchcock and A. Pavan. Hardness hypotheses, derandom-
ization, and circuit complexity. In Proceedings of the 24th Con-
ference on Foundations of Software Technology and Theoretical
Computer Science, pages 336–347, 2004.

[16] C.M.R. Kintala and P. Fischer. Refining nondeterminism in rela-
tivized complexity classes. SIAM Journal on Computing, 13:329–
337, 1984.

[17] J. H. Lutz. Category and measure in complexity classes. SIAM
Journal on Computing, 19:1100–1131, 1990.

[18] J. H. Lutz. Dimension in complexity classes. In IEEE Conference
on Computational Complexity, pages 158–169, 2000.

24

