The Measure Hypothesis and Efficiency of Polynomial Time Approximation Schemes

M. Hauptmann*

February 11, 2008

Abstract

A polyomial time approximation scheme for an optimization problem X is an algorithm \mathcal{A} such that for each instance x of X and each $\epsilon>0, \mathcal{A}$ computes a $(1+\epsilon)$-approximate solution to instance x of X in time is $O\left(|x|^{f(1 / \epsilon)}\right)$ for some function f. If the running time of \mathcal{A} is instead bounded by $g(1 / \epsilon) \cdot|x|^{O(1)}$ for some function g, \mathcal{A} is called an efficient polynomial time approximation scheme. PTAS denotes the class of all NP optimization problems for which a polytime approximation scheme exists, and $E P T A S$ is the class of all such problems for which an efficient polytime approximation scheme exists. It is an open question whether $P \neq N P$ implies the strictness of the inclusion $E P T A S \subseteq P T A S$. Bazgan [2] and independently Cesati and Trevisan [5] gave a separation under the stronger assumption $F P T \neq W[P]$. In this paper we prove $E P T A S \subsetneq P T A S$ under some different assumption, namely existence of NP search problems Π_{R} with a superpolynomial lower bound for the deterministic time complexity. This assumption is weaker than the NP Machine Hypothesis [15] and hence is implied by the Measure Hypothesis $\mu_{p}(N P) \neq 0$. Furthermore, using a sophisticated combinatorial counting argument we construct a recursive oracle under which our assumption holds but that of Cesati and Trevisan does not hold, implying that using relativizing proof techniques one cannot show that our assumption implies $F P T \neq W[P]$.

1 Introduction

A polynomial time approximation scheme for an optimization problem X is an algorithm A such that for every instance x of X and every $\epsilon>0, A$

[^0]returns a $(1+\epsilon)$-approximative solution $y=A(x, \epsilon)$ in time $O\left(|x|^{f(1 / \epsilon)}\right)$ for some function f. If instead the running time can be bounded by $O(g(1 /$ $\epsilon) \cdot|x|^{c}$) for some constant c and some function g, algorithm A is called an efficient polynomial time approximation scheme (eptas).
$N P O$ denotes the class of all $N P$ optimization problems, $P T A S$ the class of all problems $X \in N P O$ that admit a polynomial time approximation scheme (ptas) and EPTAS all problems in $N P O$ that admit an efficient ptas. Obviously, $E P T A S \subseteq P T A S$. It is an open problem whether the strictness of this inclusion follows from $P \neq N P$.

Cesati and Trevisan [5] and independently Bazgan [2] separate these two classes under the stronger assumption $W[P] \neq F P T$ from Fixed Parameter Complexity. Indeed, they showed the following chain of implications:

$$
W[P] \neq F P T \Longrightarrow E P T A S \neq P T A S \Longrightarrow F P T \neq X P
$$

Here $F P T \subseteq W[P] \subseteq X P$ are classes of the W-hierarchy introduced by Downey and Fellows [7]. For further details we refer to [8] and to [10]. The assumption $F P T \neq W[P]$ was characterized in terms of bounded nondeterminism properties of NP search problems by Cai and Chen [4]. Cai and Chen [4] proved that $F P T \neq W[P]$ iff for each unbounded polynomialtime computable function $s: \mathbb{N} \rightarrow \mathbb{N}, N P[s(n) \log (n)] \nsubseteq P$, where $N P[f(n)]$ denotes the class of NP problems that can be solved in polynomial time with $O(f(n))$ nondeterministic steps.

We obtain the following results. 1. We separate $P T A S$ from $E P T A S$ under some different assumption, namely existence of an $N P$ search problem Π_{R} (where R denotes some polynomially balanced, polynomial-time decidable binary relation) and a superpolynomial function $t(n)$ such that Π_{R} is not solvable in time $O(t(n))$. Under this assumption which we simply call Assumption (A), we construct for each strictly monotone recursive function f an NP optimization U_{f} such that U_{f} admits a polynomial time approximation scheme with running time $O\left(|x|^{f(1 / \epsilon)}\right)$ and such that $U_{f} \notin E P T A S$.
2. Under the assumption $P \neq N P$ we show that for each recursive function $f(n)$, there exists an NPO problem U_{f} that provides an efficient ptas, but there exists no ptas for U_{f} with running time $O\left(|x|^{f(1 / \epsilon}\right)$. Furthermore, again assuming $N \neq N P$ we construct another NPO problem U such that $U \in E P T A S$ but no ptas for U has a running time $O\left(|x|^{f(1 / \epsilon)}\right)$ with f being recursive.

Let us point out some connections to the Quantitative Complexity Theory. Assumption (A) is a direct implication of the NP Machine Hypothesis, which states the existence of an NP machine accepting 0^{*} such that no $2^{n^{\epsilon}}$ time bounded machine can find infinitely many accepting computations.

Jack Lutz defined polynomial measure $\mu_{p}[17]$ and p-dimension dim_{p} [18] as generalizations of the classical Lebesgue measure and the Hausdorff dimension. Scaled dimension was introduced by Hitchcock, Lutz and Mayordomo [14]. It was shown by Hitchcock and Pavan [15] that the Measure Hypothesis implies the NP Machine Hypothesis. On the other hand, results from Hitchcock ([13], Theorem 5.2) directly imply that assumption (A) already follows from the assumption that for some $i \in \mathbb{Z}, \operatorname{dim}_{p}^{(i)}(N P)=1$. Here $\operatorname{dim}_{p}^{(i)}$ denotes the i-th order scaled dimension as introduced by Hitchcock, Lutz and Mayordomo [14].

Furthermore, we construct an oracle X relative to which assumption (A) holds but the assumption of Cai and Chen [4] fails. Hence there is no relativizing proof that our assumption implies $F P T \neq W[P]$. The oracle construction involves a sophisticated combinatorial counting argument which is based on ideas from Beigel and Goldsmith [3].

Finally we get a similar separation result for randomized polynomialtime approximation schemes, based on an assumption of a superpolynomial lower bound on the randomized time complexity of an NP-search problem.

This paper is based on [11], chapter 4. Some of the results were also presented in [12].

The paper is organized as follows. Preliminaries are given in the next section. Section 3 contains our separation results under assumption $P \neq N P$. In section 4 we separate EPTAS from PTAS under assumption (A) stated above. In Section 5 we construct an oracle relative to which assumption (A) holds but $F P T \neq W[P]$ fails. Finally in section 6 we are concerned with the separation REPTAS $\subsetneq R P T A S$ based on a lower-bound assumption which is the analog of assumption (A) in the randomized setting.

2 Preliminaries

Let $\Sigma=\{0,1\}$. A binary relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$ is called $f(n)$-balanced if for each $(x, y) \in R,|y| \leq f(|x|)$. For such a relation R, let $L_{R}=\left\{x \in \Sigma^{*} \mid \exists y \in\right.$ $\left.\Sigma^{*}(x, y) \in R\right\}$ be the projection of R to the first component. $N P$ can be characterized as the set of all $L \subseteq \Sigma^{*}$ such that there exists a polynomially balanced polynomial-time decidable relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$ with $L_{R}=L$.

Given such a relation R, Π_{R} denotes the associated NP search problem: Given some $x \in \Sigma^{*}$, either compute some string π such that $(x, \pi) \in R$ or return "NO" in case no such π exists. $N P[f(n)]$ denotes the class of all NP problems that are solvable in polynomial time with $O(f(n))$ nondeterministic steps - equivalently: the class of all problems L_{R} such that R is
a polynomial-time decidable, $O(f(n))$-balanced binary relation. Especially, $\beta_{k}:=N P\left[\log ^{k}(n)\right]:=G C\left(\log ^{k}(n)\right)(k \in \mathbb{N})$ are the levels of the KintalaFischer hierarchy [16] which is also called the β-hierarchy. The possibility of downward separation within this hierarchy was invented by Beigel and Goldsmith [3], who proved that using relativizing proof techniques one cannot obtain any strictness result for this hierarchy.

NPO denotes the class of NP optimization problems. For the precise definition we refer to [1]. If $X \in N P O$, we call X an NPO problem.

3 Separations under Assumption $P \neq N P$

In this section we study the dependence of running times of polynomialtime approximation schemes on the precision parameter ϵ. Recall that for an optimization problem X, to be in NPO means solutions being polynomially bounded in the length of the instance, polynomial time computability of the cost function and polytime checkability whether some string x is a legal instance of the problem and whether string y is a feasible solution to instance x of problem X. Hence in exponentiall time $2^{n^{O(1)}}$ one can solve the problem X to optimality. One may now ask the following question: Are there problems in PTAS for which there does not exist an approximation scheme with recursive dependence of the running time on $\epsilon=1 / n$?

In this section we will give some first results concerning uniformity and efficiency of polynomial time approximation schemes, answering the question affirmatively.

Theorem 3.1. Unless $P=N P$, for every recursive function $f: \mathbb{N} \rightarrow \mathbb{N}$ there is a problem $U \in P T A S$ such that:

1. There exists no polynomial time approximation scheme for U with running time $|x|^{O(f(n))}$.
2. There exists a polynomial time approximation scheme for U with running time $g(n) \cdot|x|$ for some recursive function g.

Proof: Let $T_{i}, i=1,2, \ldots$ be an effecive enumeration of Turing machines. Let $U_{n}, n \in \mathbb{N}$ be the family of APX-complete problems from last section, $p(n)$ the polynomial and T the Turing machine such that T has time complexity bounded by $p(n)$ and for each $n \in \mathbb{N} U_{n}$ is $p(x)$-bounded and T is a ($1+1 / n$)-approximation algorithm for U_{n}. We will construct an NPO problem U with the properties 1 and 2 from the theorem in stages in terms of a lexicographically increasing infinite sequence of strings $x_{0}, x_{1}, \ldots, x_{n}, \ldots$ such that the following holds:
(a) We call $I_{n}:=\left[x_{n-1}, x_{n}\right)$ the n-th interval. The problem: Given $x \in \Sigma^{*}$, compute the number n with $x \in I_{n}$ is polynomial time solvable.
(b) Optimization Problem U restricted to strings from the interval I_{n} is equal to U_{n}.
(c) For each n there exist pairs $\left(y_{n, i}, m_{n, i}\right), 1 \leq i \leq n$ such that for all $i \in\{1, \ldots, n\} \quad y_{n, i} \in I_{n}$ and $T_{i}\left(y_{n, i}, m_{n, i}\right)$ is not a $\left(1+1 / m_{n, i}\right)-$ approximation to U_{n} in time $\left|y_{n, i}\right|^{f\left(m_{n, i}\right)}$.

Stage 0: Let $x_{0}:=0$.
Stage n (for $n>0$): Consider the following recursive algorithm for the construction of x_{n} :

Algorithm Construct

Input: $n \in \mathbb{N} \quad$ Output: $x_{n} \in \Sigma^{*}$
(1) If $n=0$ return $x_{0}=0$ else

Let $x_{n-1}:=$ Construct $(n-1)$. Find pairs
$\left(y_{n, i}, m_{n, i}\right), 1 \leq i \leq n$ by brute force.
(2) Let t_{n} be the time used for step (1).
$x_{n}:=0^{t_{n}+1}$. Return x_{n}.
Here "brute force" in step (1) means the following: we check pairs (y, m) in lexicographic order starting with $\left(x_{n-1}, 2\right)$. For each pair (y, m) the computations $T_{i}(y, m) . i=1, \ldots, n$ are simulated for at most $|y|^{f(m)}$ steps. If a computation stops within that time, the result is compared to the optimum solution $\operatorname{OPT}_{U_{n}}(y)$ of instance y for problem U_{n}, which is computed by brute force, i.e. by trying all strings up to length $p(|y|)$. Note that since U_{n} is APX-complete, it does not permit a ptas and therefore pairs $\left(y_{n, i}, m_{n, i}\right), 1 \leq i \leq n$ exist. In order to show that U is an NPO problem it suffices to prove (a). Given x, we can easily compute n with $x \in I_{n}$ by simulating for at most $|x|$ steps the construction of x_{0}, x_{1}, \ldots Let x_{m} the last string that was constructed by this process, then $n=m+1$.
By the diagonal construction U does not provide a ptas with running time $|x|^{f(n)}$. We will now argue that the following algorithm is an efficient ptas for U with time complexity $g(n) \cdot|x|$ for some recursive function g.

Algorithm Approximate

Input: $x \in \Sigma^{*}, n \in \mathbb{N} \quad$ Output: $(1+1 / n)$-approximate solution y
(1) Compute $m \in \mathbb{N}$ with $x \in I_{m}$.
(2) If $m \geq n$ return $T(x)$ otherwise

Compute an optimum solution y_{x} to instance x of U_{n} by brute force, return y_{x}

Obviously algorithm Approximate (x, n) computes a $(1+1 / n)$-approximate solution y_{x} to instance x of U. For given $n \in \mathbb{N}$, for $x \geq x_{n-1}$ the running time is $p(|x|)$, for $x<x_{n-1}$ it is at most $\mid x_{n-1} \cdot 2^{\left|x_{n-1}\right|}=: g(n)$. Hence we obtain a time bound of $g(n) \cdot|x|$, and obviously g is a recursive function, which completes the proof.

Theorem 3.2. If $P \neq N P$ then there exists a problem $U \in N P O$ such that

1. There is a polynomial time approximation scheme for U with time complexity $g(n) \cdot p(|x|)$ for some polynomial p and some function $g: \mathbb{N} \rightarrow \mathbb{N}$. (Hence U belongs to the class EPTAS.)
2. For every recursive function $f: \mathbb{N} \rightarrow \mathbb{N}, U$ does not have a ptas with time complexity $|x|^{f(n)}$ (hence U does not belong to Uniform-PTAS).

Proof: We will first describe the main ideas and afterwards give the precise proof: Again we will construct U in stages in terms of an infinite sequence $x_{0}, x_{1}, \ldots, x_{n}, .$. of strings. As in the proof of the previous theorem, assume $U_{n}, n \in \mathbb{N}$ to be a family of APX-complete problems with uniform bound $p(x)$ and T a Turing machine with running time bounded by the same polynomial $p(x)$ such that for every $n \in \mathbb{N} T$ is a $(1+1 / n)$-approximation algorithm for U_{n}. Assume further that for each n the existence of a polynomial time $\left(1+1 / h_{n}\right)$-approximation algorithm would imply $\mathrm{P}=\mathrm{NP}$, such that the function $n \mapsto h_{n}$ is recursive. Let $\left(A_{i}, T_{i}, \alpha_{i}\right)_{i \in \mathbb{N}}$ be an effective enumerations of the set of triples (A, T, α) where A and T are Turing machines and $\alpha \in \mathbb{N}$.
The idea of our construction is as follows: In stage n assume we have already constructed the sequence up to x_{m-1} for some $m \leq n$. We start simulating the computation $A_{i}\left(h_{n}\right)$ for $i=1, \ldots, n$. In every stage we maintain a list $\mathcal{L}=\left\{\left(A_{i}, n_{j}, C_{i}\right)\right\}$ of actually simulated computations $A_{i}\left(h n_{j}\right)$, where C_{i} denotes the current configuration up to which the computation is already simulated. In stage n, after adding the pairs $\left(A_{i}, n, C_{i}^{0}\right), 1 \leq i \leq n$ with initial configurations C_{i}^{0} of computations $A_{i}\left(h_{n}\right)$ to list \mathcal{L}, for all entries of the list we simulate one step. If none of the computations stop, we go to step $n+1$. If, say, $\left(A_{i}, n_{j}, C_{i}\right)$ stops (or has already stopped before stage n) and (i, j) is the lexicographically first pair with that property then U restricted to interval $I_{m}=\left[x_{m-1}, x_{m}\right)$ will be defined as U_{j} in order to satisfy the following constraint
$C_{n, i}$: If $A_{i}\left(h_{n}\right)$ stops then $T_{i}\left(, h_{n}\right)$ is not a $\left(1+\frac{1}{h_{n}}\right)$-approximation algorithm for U in time $\alpha_{i} \cdot|x|^{A_{i}\left(h_{n}\right)}$.

Constraint $C_{n, i}$ can be satisfied by instances $x \geq x_{m-1}$ using the properties of U_{n}. The crucial fact that will enable us to give a ptas for U is that for every $n \in \mathbb{N}, U \mid I_{m}$ will be set to U_{n} only finitely many times (namely when one of the computations $A_{i}\left(h_{n}\right), i=1, \ldots n$ stops. Therefore for every $n \in \mathbb{N}$ after at most finitely many steps U will be defined as U_{m} for $m \geq n$ and hence $(1+1 / n)$-approximation is possible.
Let us now give the details. First we describe the construction of problem U in stages.

Initialization: $x_{0}:=0, m:=1, \mathcal{L}:=\emptyset$ (the empty list).
Stage 0: Do nothing.
Stage $n>0$: Add $\left(A_{i}, n, C_{i}^{0}\right), i=1, \ldots, n$ to list \mathcal{L}, where C_{i}^{0} is the initial configuration of the computation $A_{i}\left(h_{n}\right)$. For every triple (A, n^{\prime}, C) such that C is not a stopping configuration simulate one further step. If there is no triple in \mathcal{L} whose computation has already terminated, stage n is done. Otherwise let $\left(A_{i}, n_{j}, C_{i}\right)$ be the lexicographically first such triple, ordered first by the value n_{j} and then by A_{i}. Remove $\left(A_{i}, h_{j}, C_{i}\right)$ from \mathcal{L}. Let $x \geq x_{m}$ be the first instance such that either $T_{i}\left(x, h_{n_{j}}\right)$ does not terminate within time $\alpha_{i} \cdot|x|^{A_{i}\left(h_{n_{j}}\right)}$ or $T_{i}\left(x, h_{n_{j}}\right)$ is not an $\left(1+1 / h_{n_{j}}\right)$-approximate solution to instance x of $U_{n_{j}}$. Such x exists since ($1+1 / h_{n_{j}}$)-approximation to $U_{n_{j}}$ in polynomial time is assumed to be NP-hard. Let t_{n} be the time needed to recursively compute x_{m-1} by performing stages 0 to $n-1$ and to find x by brute force. Let $x_{m}:=0^{t_{n}+1}$.

End of Construction

As before, there is a linear time algorithm which, for given x, computes numbers m, n with $x_{m-1} \leq x<x_{m}$ and $U \mid\left[x_{m-1}, x_{m}\right)=U_{n}$. Hence U is an NPO problem. Consider the following algorithm:

Algorithm Approximate

Input: instance $x \in \Sigma^{*}$ of $U, n \in \mathbb{N}$
Output: $(1+1 / n)$-approximate solution y for x
(1) Compute $m \in \mathbb{N}$ with $x_{m-1} \leq x<x_{m}$.

Compute $n^{\prime} \in \mathbb{N}$ with $U \mid\left[x_{m-1}, x_{m}\right)=U_{n^{\prime}}$.
(2) If $n^{\prime} \leq n$ return $T(x)$ else

Compute an optimum solution y^{*} to instance x of $U_{n^{\prime}}$.
Return y^{*}.
End.
Obviously Approximate (x, n) is a $(1+1 / n)$-approximate solution for instance x of U. Since for every $n^{\prime}<n$ only tuples $\left(A_{i}, n^{\prime}, C\right)$ with $i \leq n^{\prime}$
are added to list \mathcal{L} and only those tuples can cause $U \mid\left[x_{m-1}, x_{m}\right)=U_{n^{\prime}}$, it follows that for all but finitely many $m, U \mid\left[x_{m-1}, x_{m}\right)=U_{n^{\prime \prime}}$ for $n^{\prime \prime} \geq n$. Hence the running time of Approximate can be bounded by $g(n) \cdot p(|x|)$ for some function g.
Now assume that $f: \mathbb{N} \rightarrow \mathbb{N}$ is some recursive function and there exists a ptas for U with running time bounded by $c \cdot|x|^{f(n)}$ for some constant c. Let $i \in \mathbb{N}$ be such that this ptas be given by Turing machine T_{i}, f is computed by Turing machine A_{i} and $c=\alpha_{i}$. Then in stages $n \geq i$ computations $A_{i}\left(h_{n}\right)$ are started. Since A_{i} is total and by the priority rule in the construction of U, for every $n \in \mathbb{N}$ there exists an interval $I=\left[x_{m-1}, x_{m}\right)$ such that $U \mid I=U_{n}$ and I contains an x such that $T_{i}\left(x, h_{n}\right)$ is not a $\left(1+1 / h_{n}\right)$ approximate solution to U_{n} in time bounded by $\alpha_{i} \cdot|x|^{A_{i}\left(h_{n}\right)}$, a contradiction.

4 Separating PTAS from EPTAS

In this section we will prove $E P T A S \subsetneq P T A S$ under the following assumption.

Assumption (A): There is a language $L \in N P \backslash P$ and a polynomially bounded binary relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$ with $L=L_{R}$ such that $\Pi_{R} \in$ $\operatorname{DTIME}(T(n)) \backslash D T I M E(t(n))$ for two polynomial time computable superpolynomial functions $t(n), T(n)$ such that $t(n)^{2}=O(T(n)$.

Here a function $f(n)$ is called superpolynomial if for each $c>0, f(n)=$ $\omega\left(n^{c}\right)$. Concerning polynomial-time approximation schemes, their running times are bounded by $O\left(|x|^{f(\epsilon)}\right)$, where x denotes the instance and ϵ the accuracy parameter.

Our main result is stated in the following theorem.
Theorem 4.1. Under assumption (A), for every strictly monotone recursive function $f: \mathbb{N} \rightarrow \mathbb{N}$ with $f(1)=1$ there is an NPO problem U_{f} such that

1. U_{f} has a ptas with running time $O\left(|x|^{f(1 / \epsilon)+1}\right)$.
2. For every monotone increasing function $g: \mathbb{N} \rightarrow \mathbb{N}$ and every $\alpha>0$, U_{f} does not have a ptas with running time $g(1 / \epsilon) \cdot|x|^{\alpha}$.

In particular, this implies EPTAS $\neq P T A S$.
In order to prove Theorem 4.1 we will first define a family of NPO problems $U_{n}, n \in \mathbb{N}$ and then construct U_{f} in stages in terms of problems
U_{n}, such that in stage n we diagonalize against the first n Turing machines being efficient approximation schemes for problem U_{f}. The crucial point will be that although problems U_{n} will be approximable with better and better ratio (with n increasing), for every fixed $\epsilon>0$ the time complexity of approximation within $1+\epsilon$ will stay the same.

We will use the following convenntions. First, we only consider accuracy parameters $\epsilon=1+\frac{1}{n}, n \in \mathbb{N}$. In this sense, problem U_{f} will have a ptas with running time $O\left(|x|^{f(n)}\right)$ for $\epsilon=1 / n$, but there exists no ptas with running time $g(n) \cdot|x|^{\alpha}$ for U_{f}. Second, we will consider binary relations $R \subseteq \Sigma^{*} \times \Sigma^{*}$ equivalently as functions $R: \Sigma^{*} \times \Sigma^{*} \rightarrow\{0,1\}$ (where $R(x, y)=1$ means $(x, y) \in R)$.

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be some monotone increasing recursive function as above such that $f(1)=1$. Let $A \subseteq \Sigma^{*}$ be some problem in NP, T_{A} some deterministic TM and p_{A} some polynomial such that

1. For all $x \in \Sigma^{*}, x \in A$ iff there is some string π of length $|\pi| \leq p_{A}(|x|)$ such that $T_{A}(x, \pi)$ accepts in time $p_{A}(|x|)$.
2. For $R=\left\{(x, \pi) \mid T_{A}(x, \pi)\right.$ accepts $\}$, the associated NP search problem Π_{R} is solvable in time $T(n)$ but not in time $t(n)$.

We define a family $U_{n}, n \in \mathbb{N}$ of optimization problems as follows:

Definition of U_{n} :
Instances of $U_{n}: X=\left(x_{1}, \ldots, x_{n}, 0^{k}\right)$ such that $k \geq 1, x_{1}, \ldots, x_{n} \in \Sigma^{*}$ and

$$
\begin{equation*}
t\left(\left|x_{j}\right|\right) \leq|X|^{f\left(2^{j}\right)}, \quad j=1, \ldots, n-1 . \tag{1}
\end{equation*}
$$

Solutions: $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ with $\pi_{j} \in \Sigma^{*},\left|\pi_{j}\right| \leq p_{A}\left(\left|x_{j}\right|\right), j=1, \ldots, n$
Costs: $\quad c_{n}(X, \pi)=2^{n}+\sum_{i=1}^{n} R\left(x_{i}, \pi_{i}\right) \cdot 2^{n-i} \in\left[2^{n}, 2^{n}+2^{n+1}-1\right]$.

End of definition.

Here 0^{k} serves as a padding string, and $T_{A}\left(x_{i}, \pi_{i}\right) \in\{0,1\}$ denotes the result of computation of machine T_{A} on input x_{i}, π_{i} (1 for accept, 0 for reject). The main properties of problems U_{n} are stated in the next two lemmas.

Lemma 4.1. For all $n \in \mathbb{N} U_{n}$ is an NPO problem. There exists a twovariate polynomial $q(x, y)$ such that for all $n \in \mathbb{N} U_{n}$ is $q\left(x, t_{f}(n)\right)$ - time bounded, where $t_{f}(n)$ is a function such that f is computable in time $t_{f}(n)$.

Proof: Function $f(n)$ can be computed in time $t_{f}(n)$. The conditions (1) are equivalent to $\log \left(t\left(\left|x_{j}\right|\right)\right) \leq f\left(2^{j}\right) \cdot \log (|X|), j=1, \ldots, n-1$ and therefore can be checked in time $t_{f}(n) \cdot n \cdot \operatorname{poly}(|X|)$. In time $O\left(n \cdot p_{A}(|X|)\right)$ one can check whether a given string $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ is a solution to X. The cost $c_{n}(X, \pi)$ can be computed in time $O\left(n \cdot p_{A}(|X|)\right)$.

Lemma 4.2. Under Assumption (A), problem U_{n} has the following properties.

1. For $j=1, \ldots n-1$ there is a $\left(1+2^{-j}\right)$-approximation algorithm for U_{n} with running time $\left|x_{1}\right|+\left|x_{2}\right|^{f\left(2^{2}\right)}+\ldots+\left|x_{j}\right|^{f\left(2^{j}\right)} \leq n \cdot|X|^{f\left(2^{j}\right)}=$ $O\left(|X|^{f\left(2^{j}\right)}\right)$ (n being fixed).
2. For $j=1, \ldots, n-1$, every approximation algorithm \mathcal{B} for U_{n} with running time o $\left(|X|^{f\left(2^{j}\right)}\right)$ has approximation ratio at least $1+2^{-(j+2)}$.
3. There is no polynomial time approximation algorithm for U_{n} with ratio better than $1+2^{-(n+2)}$.

Proof. This basically follows from the construction of U_{n}, using the fact that the NP search problem Π_{R} cannot be solved deterministically in time $t(n)$. Assume \mathcal{A} is some algorithm which for each instance $X=\left(x_{1}, \ldots, x_{n}, 0^{k}\right)$ of U_{n} computes a feasible solution $\pi_{X}=\left(\pi_{1}, \ldots, \pi_{n}\right)$. For $i \in\{1, \ldots, n\}$ we say \mathcal{A} answers x_{i} correct iff for every instance $X=\left(x_{1}, \ldots, x_{n}, 0^{k}\right)$ of U_{n}, if $x_{i} \in A$ then $T_{A}\left(x_{i}, \pi_{i}\right)$ accepts (i.e. \mathcal{A} constructs a proof π_{i} for the fact $x_{i} \in A$). We will show:
(a) In time $t\left(\left|x_{1}\right|\right)+t\left(\left|x_{2}\right|\right)+\ldots+t\left(\left|x_{j}\right|\right) \leq n \cdot|X|^{f\left(2^{j}\right)}$ one can answer x_{1}, \ldots, x_{j} correct, and every algorithm answering $x_{1}, \ldots x_{j}$ correct has approximation ratio at most $1+2^{-j}$.
(b) For $j \in\{1, \ldots, n\}$ every approximation algorithm that does not answer x_{j} correct has approximation ratio at least $1+\frac{1}{2^{j+2}}$.
(c) For $j=1, \ldots, n-1$: In running time $o\left(|X|^{f\left(2^{j}\right)}\right)$ an algorithm cannot answer x_{j} correct.
(d) An algorithm with polynomial running time cannot answer x_{n} correct.

Obviously, from (a)-(d) the lemma follows.
Proof of (a): The time bound for answering x_{1}, \ldots, x_{j} correct follows directly from the definition of U_{n} and the assumption about the time complexity of $W\left(A, T_{A}\right)$. Assume now that $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ is a feasible solution for instance X such that x_{1}, \ldots, x_{j} are answered correct. Let

$$
C(j):=2^{n}+\sum_{i=1}^{j}\left[T_{A}\left(x_{i}, \pi_{i}\right)\right] \cdot 2^{n-i} \in\left[2^{n}, 2^{n}+2^{(n-j)} \cdot\left(2^{j+1}-1\right)\right]
$$

be the contribution of π_{1}, \ldots, π_{j} to the solution cost. Then the approximation ratio $R_{U_{n}}(X, \pi)$ of solution π for instance X of problem U_{n} is

$$
\begin{aligned}
R_{U_{n}}(X, \pi) & =\frac{\mathrm{opt}_{U_{n}}(X)}{c_{n}(X, \pi)} \leq \frac{C(j)+2^{n-j-1}+\ldots+2+1}{C(j)} \\
& =1+\frac{2^{n-j-1}+\ldots+2+1}{C(j)} \leq 1+\frac{2^{n-j}-1}{2^{n}} \leq 1+2^{-j}
\end{aligned}
$$

Proof of (b): Assume \mathcal{B} is some approximation algorithm for U_{n} such that infinitely often, \mathcal{B} answers x_{j} incorrectly. We compute a lower bound on the approximation ratio of \mathcal{B} : Let X be an instance such that x_{j} is answered incorrect, i.e. $x_{j} \in A$ and $T_{A}\left(x_{j}, \pi_{j}\right)=0$ for $\mathcal{B}(X)=\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$. Let $\pi^{*}=\left(\pi_{1}^{*}, \ldots, \pi_{n}^{*}\right)$ be an optimum solution to instance X of U_{n} of cost $c_{n}\left(X, \pi^{*}\right)=2^{n}+2^{n-j}+R^{*}$. Let $R:=\sum_{i \neq j} T_{A}\left(x_{i}, \pi_{i}\right) \cdot 2^{n-i}$. Obviously $c_{n}(X, \pi)=2^{n}+R$ and $R \leq R^{*} \leq 2^{n+1}-2^{n-j}-1$. Then the approximation ratio $R_{U_{n}}(X, \mathcal{B}(X))$ of the solution $\mathcal{B}(X)$ for instance X of U_{n} constructed by algorithm \mathcal{B} is

$$
\begin{aligned}
R_{U_{n}}(X, \mathcal{B}(X)) & =\frac{2^{n}+2^{n-j}+R^{*}}{2^{n}+R} \geq 1+\frac{2^{n-j}}{2^{n}+R} \\
& \geq 1+\frac{2^{n-j}}{2^{n}+2^{n+1}-2^{n-j}-1} \geq 1+\frac{1}{2^{j+2}}
\end{aligned}
$$

Proof of (c): We give a reduction from the NP search problem Π_{R} to U_{n} : Using the padding property of U_{n}, for each string $x \in \Sigma^{*}$ we can construct in polynomial time an instance X of U_{n} such that $x=x_{j}$ and

$$
|X| \in\left[\sqrt[f\left(2^{j}\right)]{T(|x|)}, \quad{ }^{f\left(2^{j}\right)} \sqrt{T(|x|)}+1\right]
$$

Now assume there is some algorithm \mathcal{A} with running time $o\left(|X|^{f\left(2^{j}\right)}\right)$ such that for each instance $X=\left(x_{1}, \ldots, x_{n}, 0^{k}\right)$ of U_{n}, \mathcal{A} computes a feasible
solution $\left(\pi_{1}, \ldots, \pi_{n}\right)$ for instance X of U_{n} such that x_{j} is answered correctly. Then using algorithm \mathcal{A} we would solve the NP search problem Π_{R} in time

$$
o\left(|X|^{f\left(2^{j}\right)}\right)=o\left(f\left(2^{j}\right) \cdot t(|x|)\right)=o(t(|x|))
$$

a contradiction.
Proof of (d): Such an algorithm could be used to solve the NP search problem Π_{R} in polynomial time (note that for an instance X of $U_{n},\left|x_{n}\right|=\Theta(|X|)$ is allowed), in contradiction to the assumption. This completes the proof of the lemma.

Proof of Theorem 4.1: We will construct an NPO problem U_{f} in stages, using a monotone increasing sequence of strings $x_{0}, x_{1}, \ldots, x_{n}, \ldots . U_{f}$ restricted to the n-th interval $I_{n}:=\left[x_{n-1}, x_{n}\right)$ will be equal to U_{n}. Let $\left(T_{i}, c_{i}, \alpha_{i}\right), i \in \mathbb{N}$ be some effective enumeration of triples $\left(T_{i}, c_{i}, \alpha_{i}\right)$ where T_{i} is a Turing machine, $c_{i}>0$ some constant and $\alpha_{i} \in \mathbb{N}$ such that every such triple (T, c, α) occurs infinitely often. We will construct $x_{1}, \ldots, x_{n}, \ldots$ such that for every $n \in \mathbb{N}$ the following requirement $\left(C_{n}\right)$ is satisfied:
$\left(C_{n}\right)$ For $j=1, \ldots, n$ both (a) and (b) hold.
(a) For $m=1, \ldots, n-1$: If $f\left(2^{m}\right) \geq \alpha_{j}+1 / n$ then there exists some $y_{j, m} \in I_{n}$ such that $T_{j}\left(y_{j, m}, 2^{m+3}\right)$ is not a $\left(1+2^{-(m+3)}\right)$ approximate solution to instance $y_{j, m}$ of U_{f} in time bounded by $c_{j} \cdot\left|y_{j, m}\right|^{\alpha_{j}}$.
(b) There is some $z_{j} \in I_{n}$ such that $T_{j}\left(z_{j}, 2^{n+3}\right)$ is not a $\left(1+2^{-(n+3)}\right)$ approximate solution to instance z_{j} of U_{f} in time $c_{j} \cdot\left|z_{j}\right|^{\alpha_{j}}$.

Construction of U_{f} :
Stage 0: $x_{0}:=0$.
Stage $n>0$: Compute $f\left(2^{1}\right), \ldots, f\left(2^{n}\right), f\left(2^{n+1}\right)$. By Brute Force find the lexicographically first strings $y_{j, m}, j=1, \ldots, n, m \in\{1, \ldots, n-1\}$ with $f\left(2^{m}\right) \geq \alpha_{j}+1$ and z_{j} with $y_{j, m}, z_{j} \geq x_{n-1}$ such that $\left(C_{n}\right)$ becomes true. Such pairs exist because of properties 2 and 3 from Lemma 4.2. Let t_{n} be the time needed to compute $f(j), 1 \leq j \leq n$ and to find strings $y_{j, m}$ and z_{j}. Let $x_{n}:=0^{t_{n}+1}$ and $U_{f} \mid I_{n}:=U_{n}$.
End of construction.
U_{f} is an NPO problem: There is a linear time algorithm to compute for given $x \in \Sigma^{*}$ the number $n \in \mathbb{N}$ such that $x \in I_{n}$, by computing the number
$n-1$ in at most $|x|$ steps. Since in stage $n-1$ we compute $f(n),|x| \geq t_{f}(n)$, and therefore using Lemma 4.1 we conclude that U_{f} is bounded by some polynomial $p(|x|)$ and hence an NPO problem.
U_{f} admits a polynomial time approximation scheme: For given x and n, in order to compute a $(1+1 / n)$-approximate solution to instance x of U_{f} we first compute the number $m \in \mathbb{N}$ with $x \in I_{m}$. If $2^{m-1} \geq n$ we compute a $\left(1+2^{-j}\right)$-approximate solution for $j=\lceil\log (n)\rceil$ in time $|x|^{f\left(2^{j}\right)} \cdot m \leq$ $|x|^{f\left(2^{j}\right)+1}$. Otherwise we compute an optimum solution y^{*} to instance x by brute force. Since $2^{m-1}<n$ for only finite many m (and therefore finite many x) and $2^{\lceil l o g(n)\rceil}<2 n$, the running time is bounded by $O\left(|x|^{f(2 n)+1)}\right)$ and hence by $O\left(|x|^{f(2 n)+1}\right)$.
$U_{f} \notin E P T A S$: Assume U_{f} admits a ptas T with running time $g(n) \cdot|x|^{\alpha}$ for some function g and some constant α. Then for every $n \in \mathbb{N}$ there exists some $i \in \mathbb{N}$ such that $T_{i}=T, \alpha_{i}=\alpha$ and $c_{i}=g(n)$. But for $m \geq n+3$, in I_{m} there exist $y \in I_{m}$ such that either $T_{i}\left(y, 2^{m}\right)$ is not a $\left(1+2^{-m}\right)$-approximate solution for instance y of U_{f} or $T_{i}\left(y, 2^{m}\right)$ does not stop after at most $c_{i} \cdot|y|^{\alpha_{i}}$ steps, a contradiction! This proves the claim and hence Theorem 4.1.

5 Oracle Constructions

We will now construct an oracle X relative to which Assumption (A) holds but $F P T \neq W[P]$ doesn't. Recall that in $[4] F P T \neq W[P]$ was shown being equivalent to

Assumption (B) For every unbounded polynomial-time computable function $s: \mathbb{N} \rightarrow \mathbb{N}, N P[s(n) \log (n)] \nsubseteq P$.

We start by defining the appropriate relativized classes.
Definition 5.1. For $X \subseteq \Sigma^{*}$ and $f: \mathbb{N} \rightarrow \mathbb{N}$,

$$
\begin{array}{r}
N P^{X}[f(n)]:=\quad\left\{L \subseteq \Sigma^{*} \mid \text { there exists an } O(f(n))\right. \text {-balanced binary relation } \\
\left.R \subseteq \Sigma^{*} \times \Sigma^{*} \text { such that } L=L_{R} \text { and } R \in P^{X}\right\}
\end{array}
$$

It is easy to construct an oracle making assumption (B) false, namely by taking a sufficiently powerful oracle.

Theorem 5.1. For every polynomial-time computable unbounded function $s(n)$ there exists a recursive set $X \subseteq \Sigma^{*}$ such that $N P^{X}[s(n) \log (n)] \subseteq P^{X}$. Proof. Let X be some DTIME $\left(n^{O(s(n))}\right)$-complete set, then the inclusion obviously holds. For a precise argument (yielding a slightly more general result) see the proof of Lemma 5.1 below.

In order to construct an oracle relative to which assumption (B) becomes true, one needs to diagonalize against polynomially bounded oracle machines accepting inputs (x, y) with $|y|$ bounded by $s(|x|) \log (|x|)$ for some nonconstant polytime computable function $s(n)$. We can enumerate polynomially bounded TMs M_{i} computing functions $s_{i}(n)$, but by no means we know in advance which of these functions is bounded. Hence we will guess $s_{i}(n)$ being bounded by some constant C, and if this guess was incorrect, then we will observe the incorrectness after finite amount of time, namely find some n such that $s_{i}(n)>C$. We perform such a guessing process, and each time a violation occurs, we increase the constant C and perform one diagonalization step against $N P^{X}\left[s_{i}(n) \log (n)\right]$ being equal to P^{X}. We obtain:

Theorem 5.2. (An Oracle relative to which Assumption (B) holds) There existst some recursive set $X \subseteq \Sigma^{*}$ such that for every unbounded polynomial-time computable function $s(n), N P^{X}[s(n) \log (n)] \nsubseteq P^{X}$.

We will now separate assumptions (A) and (B) by an oracle construction.
Theorem 5.3. (An Oracle relative to which (A) is true but (B) is false) There exists a recursive set $X \subseteq \Sigma^{*}$ such that (1) and (2) hold.
(1) $N P^{X}\left[\log ^{2}(x)\right] \subseteq P^{X}$
(2) For the relation $R_{X}:=\left\{(x, y)\left|x=0^{n}, n \in \mathbb{N},|y|=2 n, y \in X\right\}\right.$,

$$
\Pi_{R_{X}} \in \operatorname{DTIME}^{X}\left(2^{n^{3}}\right) \backslash \operatorname{DTIME}^{X}\left(2^{n}\right)
$$

Proof Idea: Let \tilde{X} be some $\operatorname{DTIME}\left(n^{O(\log n)}\right)$-complete problem with respect to polynomial-time Karp reductions. Then $X^{\prime}:=\{1 x x \mid x \in \tilde{X}\}$ is DTIME $\left(n^{O(\log n)}\right)$-complete as well. We let $X=X^{\prime} \cup X^{\prime \prime}$ where $X^{\prime \prime}$ consists of strings of even length only. We use $X^{\prime \prime}$ for a diagonalization process in order to assure (2).

The following two lemmas indicate how powerful the set may be in order to make (1) become true.

Lemma 5.1.

For every DTIME $\left(n^{O(\log n)}\right)$-complete problem $Y, N P^{Y}\left[\log ^{2}(n)\right] \subseteq P^{Y}$.
Proof. Let R be $c \cdot \log ^{2}(n)$ - balanced for some $c>0$ with $R \in P^{Y}$. Let $R=L(M, Y)$ for some polytime bounded oracle machine M. We have to show that $\Pi_{R} \in F T I M E^{Y}\left(n^{O(1)}\right)$. For input x of length n there are
less than $n \cdot 2^{c \cdot \log ^{2}(n)}=n \cdot n^{c \cdot \log (n)}=n^{O(\log (n))}$ strings of length bounded by $c \cdot \log ^{2}(n)$, hence a straight forward algorithm will enumerate all such strings and for each of them ask the question to oracle machine M with oracle Y. The running time of this oracle algorithm is bounded by

$$
\underbrace{p\left(n+c \cdot \log ^{2}(n)\right)}_{\text {running time of } M} \cdot \underbrace{n^{O(\log (n))}}_{\text {\#strings of that length }}=n^{O(\log (n))},
$$

If we replace the oracle questions by calls of a $n^{O(\log (n))}$-time bounded algorithm M_{Y} for Y, the total running time can be bounded by

$$
n^{O(\log (n))} \cdot \underbrace{q(n)^{O(\log (q(n)))}}_{\text {time for one call of } M_{Y}}=n^{O(\log (n))}
$$

where $q(n):=p\left(n+c \cdot \log ^{2}(n)\right)$ is polynomially bounded. Hence we can reduce this problem to $Y\left(Y\right.$ is $\operatorname{DTIME}\left(n^{O(\log (n))}\right)$ - complete) and obtain $L \in P^{Y}$.

Lemma 5.2. For every DTIME $\left(n^{O(\log n)}\right)$-hard problem Y which is complete for a class \mathcal{C} of languages such that $\operatorname{DTIME}(t(n)) \subseteq \mathcal{C}$ implies $\operatorname{DTIME}\left(n^{O(\log (n))} \cdot t\left(n^{O(1)}\right)\right) \subseteq \mathcal{C}, N P^{Y}\left[\log ^{2}(n)\right] \subseteq P^{Y}$.

Proof. Let $L \in N P^{Y}\left[\log ^{2}(n)\right]$ and $Y \in \operatorname{DTIME}(t(n))$. We perform the complete-enumeration oracle algorithm as in the previous proof and obtain a running time bounded by

which is bounded by $n^{O(\log (n))} \cdot t\left(n^{O(1)}\right)$. Hence $L \in \mathcal{C}$, and L is polynomialtime reducible to Y, therefore $L \in P^{Y}$.

Now if we take an arbitrary set $X^{\prime \prime} \subseteq \bigcup_{n \in \mathbb{N}} \Sigma^{2 n}$ which is complete for such a class \mathcal{C}, the disjoint union $X:=X^{\prime} \cup X^{\prime \prime}$ still satisfies the conditions in Lemma 5.2, hence condition (1) from Theorem 5.3 will still hold.

Proof of Theorem 5.3. Let $X=X^{\prime} \cup X^{\prime \prime}$ where X^{\prime} consists of odd-length strings only and $X^{\prime \prime}$ consists of even-length strings only. We choose

$$
\begin{gathered}
C^{X}:=\left\{\left(i, x, 0^{s}\right) \mid M_{i} \text { on input } x \text { with oracle } X \text { accepts within } s\right. \text { steps } \\
\text { and } \left.O\left(\log ^{2}(n)\right) \text { nondeterministic steps }\right\} .
\end{gathered}
$$

Then C^{X} is \leq_{m}^{p}-complete for $N P^{X}\left[\log ^{2}(n)\right]$. Let $p(n)$ be a polynomial such that $C^{X} \in N T I M E\left[\log ^{2}(n)\right](p(n))$ (i.e. solvable in time $p(n)$ with $O\left(\log ^{2}(n)\right)$ nondeterministic steps). We will encode C^{X} into X^{\prime} in a polynomial manner and use $X^{\prime \prime}$ for diagonalisation in order to assure (2). The encoding will be as follows: For all strings $x \in \Sigma^{*}$,

$$
x \in C^{X} \quad \Longleftrightarrow 1^{p(|x|)^{2}} 0 x \in X .
$$

We are now ready to construct X. Let $M_{1}, \ldots, M_{n}, \ldots$ denote an enumeration of $O\left(2^{n}\right)$-time bounded Oracle machines such that without loss of generality M_{i} is $i \cdot 2^{n}$ - time bounded.

Construction of X in stages

/ \star At the end of stage $s X$ is defined up to $\quad \star$ /
/ \star strings of length n_{s}. During stage s diagonalization $\quad \star /$
$/ \star$ against $L\left(M_{i}\right)=L_{X}$ is performed by choosing $\quad \star /$
$/ \star n>n_{s-1}$ and assuring $0^{n} \in L(M-i) \Delta L_{X} \quad \star /$

Stage 0: $n_{0}:=0, \quad X:=\emptyset$

Stage $s>0$:

$/ \star X$ is defined up to length $n_{s-1} \star /$
Choose $n>n_{s}$ to be a power of 2 and sufficiently large.
Define X up to length $l:=n^{3}-1$.
Define C^{X} up to strings y with $p(|y|)^{2}+1+|y| \leq n^{3}-1$.
$/ \star L_{X}\left(1^{n}\right)$ depends on strings of length $n^{3} . \star /$

Compute $M_{s}\left(1^{n}, X\right)$.

If $M_{s}\left(1^{n}, X\right)$ accepts then
Let y be a legal string of length n^{3}.

$$
X:=X \cup\{y\}
$$

$n_{s}:=\max \left\{l, s \cdot 2^{n}\right\}$
Freeze X up to length n_{s}.
Freeze C^{X} up to strings of length m with $p(m)^{2}+1+m \leq n_{s}$.

End of Stage s.

It remains to define which strings y of length n^{3} are legal and what it means to choose n sufficiently large. The initial idea is simply to pick a string y
which was not asked by the computation $M_{s}(x, X)$. Such string of length n^{3} exists since M_{i} has running time bounded by $s \cdot 2^{n}$ and there are $2^{n^{3}}$ strings of length n^{3} available (we choose n such that $s \cdot 2^{n}<2^{n^{3}}$). The problem is that the encoding of C^{X} into X may depend on this choice, and the result of $M_{s}(x, X)$ may in turn depend on this coding and so on.

We accomplish this difficulty by using an approach from Beigel and Goldberg: We show that due to the way the coding of C^{X} into X is arranged, there are more strings of length n^{3} available than are influencing the coding of C^{X} into X in the range up to length $s \cdot 2^{n}$:
$M_{s}(x, X)$ has running time bounded by $s \cdot 2^{n}$ and therefore may ask at most $s \cdot 2^{n}$ oracle questions about strings of length bounded by $s \cdot 2^{n}$.

Due to the encoding, these strings may encode strings from C^{X} of length bounded by $\sqrt{s \cdot 2^{n}}=\sqrt{s} \cdot 2^{n / 2}$. Each of these encoding strings w in turn may depend on at most

$$
p(|w|) \cdot 2^{\log ^{2}(|w|)}=p\left(s^{2^{-1}} \cdot 2^{n / 2^{1}}\right) \cdot 2^{\log ^{2}\left(s^{2^{-1}} \cdot 2^{n / 2^{1}}\right)}
$$

strings of this smaller length and so on.
Since X is already fixed up to length $l-1$, the recursion can be cut off at strings of length $\leq l-1$. Therefore the number of such terms is bounded by
$\log \log \left(s \cdot 2^{n}\right)-\log \log (l-1) \leq \log (\log s+n)-\log \log (n) \leq c \cdot \log (n)=\Theta(\log (n))$
for some constant $c>0$. Hence the total number of strings being influenced by the choice of y is bounded by

$$
\begin{aligned}
& s \cdot 2^{n} \cdot \prod_{i \leq c \cdot \log (n)} p\left(s^{2^{-i}} \cdot 2^{n / 2^{i}}\right) \cdot 2^{\log ^{2}\left(s^{2^{-i}} \cdot 2^{n / 2^{i}}\right)} \\
= & s \cdot 2^{n} \cdot \prod_{i \leq c \cdot \log (n)}\left(s^{2^{-i}} \cdot 2^{n / 2^{i}}\right)^{O(1)} \cdot 2^{\log ^{2}\left(s^{2^{-i}} \cdot 2^{n / 2^{i}}\right) .}
\end{aligned}
$$

Since $\log ^{2}\left(s^{2^{-i}} \cdot 2^{n / 2^{i}}\right)=\left(2^{-i} \cdot \log (s)+\frac{n}{2^{i}}\right)^{2}=O\left(n^{2}\right)$, the total number of strings is bounded by $s \cdot 2^{n} \cdot O(\log (n)) \cdot 2^{O(n)} \cdot 2^{O\left(n^{2}\right)}=2^{O\left(n^{2}\right)}$, supposed we choose s sufficiently small compared to n, i.e. choose n large, namely $s=2^{\log s}, \log (s)=O\left(n^{2}\right)$.

Hence we find a string y of length n^{3} such that adding y to X does not change the result of computation $M_{s}(x, X)$, therefore the diagonalization step is well-defined. This completes the proof of Theorem 5.3.

6 Randomized Approximation Schemes: RPTAS versus REPTAS

In this section we consider the question of efficiency for randomized approximation schemes. Recall that a randomized polynomial-time approximation scheme \mathcal{A} for an optimization problem X is a probabilistic approximation algorithm \mathcal{A} for X such that

$$
\operatorname{Pr}\{\text { A.R. of } \mathcal{A}(x, \epsilon) \text { is at most } 1+\epsilon\} \geq \frac{3}{4}
$$

and the randomized running time of algorithm \mathcal{A} is

$$
O\left(|x|^{f(1 / \epsilon)}\right)
$$

for some function $f: \mathbb{N} \rightarrow \mathbb{N}$. \mathcal{A} is called an efficient polynomial-time randomized approximation scheme if the randomized running time is bounded by

$$
O\left(f\left(\frac{1}{\epsilon}\right) \cdot|x|^{O(1)}\right)
$$

for some function $f: \mathbb{N} \rightarrow \mathbb{N}$. Let $R P T A S$ denote the class of all NP optimization problems for which a randomized polynomial-time approximation scheme exists. REPTAS denotes the class of all NPO problems that provide an efficient polynomial-time randomized approximation scheme exists.

In the following lemma, the case of efficient probabilistic approximation schemes where the error probability is bounded for each fixed ϵ is considered.

Lemma 6.1. Assume \mathcal{A} is a probabilistic approximation scheme for NPO problem X, which means

$$
\operatorname{Pr}\{\text { A.R. of } \mathcal{A}(x, \epsilon) \text { is at most } 1+\epsilon\}>\frac{1}{2}
$$

Assume furthermore that there are functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $e: \mathbb{N} \rightarrow[0,1 / 2)$ and $\alpha>0$ such that e is recursive and
$\operatorname{Pr}\left\{A . R\right.$. of $\mathcal{A}(x, n)$ is at most $1+\frac{1}{n}$ in time bounded by $\left.f(n) \cdot|x|^{\alpha}\right\} \geq 1-e(n)$
for every x and n. Then $X \in R E P T A S$.
Proof: We can decrease the error probability to at most $1 / 4$ by applying the δ-Lemma for Monte Carlo machines to each n : Compute $e(n)$, then the δ-Lemma gives a computable bound $k=k(n)$ such that repeating $\mathcal{A}(\cdot, n) k$
times and making majority decision decreases the error probability to $1 / 4$. The running time is bounded by $k(n) \cdot f(n) \cdot|x|^{\alpha}$, which proves the lemma.

We are now going to separate the classes REPTAS and RPTAS assuming the existence of polynomially balanced relations in P (NP search problems) for which the associated functional problems provides a superpolynomial lower bound on the randomized time complexity (assumption ($\mathrm{A} "$) in theorem 6.1 below). This is basically the variant of assumption (A^{\prime}) where deterministic time complexity is replaced by randomized time complexity.

Theorem 6.1. Assume there exists a polynomially balanced binary relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$ such that $R \in P$ and such that for the associated $N P$ search problem $\Pi_{R}, \Pi_{R} \in R F T I M E\left(t^{2}(n)\right) \backslash R F T I M E(t(n))$ for some superpolynomial polynomial-time computable function $t(n)$ (Assumption A"). Then there exists an optimization problem $U_{R} \in N P O$ such that

$$
U_{R} \in R P T A S \backslash R E P T A S
$$

Proof: Assume R to be as in assumption (A"), and let R be $p(n)$ balanced for some polynomial $p(n)$. Let $T(n):=t^{2}(n)$. We define problem $U_{R, n}$ as follows:

Instance: $X=\left(x_{1}, \ldots, x_{n}, 0^{k}\right)$ such that

$$
T\left(\left|x_{j}\right|\right) \leq|X|^{2^{j}}, 1 \leq j \leq n-1
$$

Solution: $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ such that

$$
\left|\pi_{j}\right| \leq p\left(\left|x_{j}\right|\right), 1 \leq j \leq n-1
$$

Cost: $\operatorname{cost}_{n}(X, \pi)=2^{n}+\sum_{j=1}^{n} R\left(x_{j}, \pi_{j}\right) \cdot 2^{n-j}$
Problems $U_{R, n}$ have the following properties:
(1) There exists a two-variate polynomial $q(n, m)$ such that $U_{R, n}$ is a $q(n, m)$-bounded NP optimization problem (recall that this means for given x, y in time $q(n,|x|)$ we can check whether x is a valid instance of problem $U_{R, n}, y$ is a feasible solution for instance x of U_{n} and compute the cost function $\operatorname{cost}_{n}(x, y)$.
(2) Every approximation algorithm \mathcal{A} for problem $U_{R, n}$ answering x_{1}, \ldots, x_{j} correct has approximation ratio $A . R .(\mathcal{A}) \leq 1+2^{-j}$.

Every approximation algorithm \mathcal{A} for problem $U_{R, n}$ answering x_{j} incorrect has approximation ratio $A . R .(\mathcal{A}) \geq 1+2^{-(j+2)}$.
(3) For $j=1, \ldots, n-1$, there exists a randomized approximation algorithm \mathcal{A} with running time

$$
O\left(\sum_{i=1}^{j}|X|^{2^{i}}\right)=O\left(j \cdot|X|^{2^{j}}\right)
$$

such that $\operatorname{Pr}\left\{\mathcal{A}\right.$ on input x answers x_{1}, \ldots, x_{j} correct $\} \geq \frac{3}{4}$
(4) For $j=1, \ldots, n-1$: There is no randomized approximation algorithm with running time $O\left(|X|^{2^{j-1}}\right)$ for $U_{R, n}$ answering x_{j} correct.
(5) There is no randomized approximation algorithm with polynomial running time for $U_{R, n}$ answering x_{n} correct.

The proof of (1) and (2) is identical to the deterministic case. Let \mathcal{A} be a $T(n)$-time bounded randomized algorithm for the functional problem Π_{R} such that

$$
\operatorname{Pr}\{(x, \mathcal{A}(x)) \in R\} \geq \frac{3}{4}
$$

for every $x \in L_{R}$. By the δ-Lemma for Monte-Carlo algorithms, there is a randomized algorithm \mathcal{A}^{\prime} such that
$\operatorname{Pr}\left\{x \in L_{R} \Rightarrow\left(x, \mathcal{A}^{\prime}(x)\right) \in R\right.$ in time bounded by $\left.f(j) \cdot T(|x|)\right\} \geq\left(\frac{3}{4}\right)^{1 / j}$
(for some function $f(j)$ of j). Let \mathcal{B} be the approximation algorithm for U_{n} which for each component x_{j} independently sets $\pi_{j}:=\mathcal{A}^{\prime}\left(x_{j}\right)$.

We obtain

$$
\begin{aligned}
& \operatorname{Pr}\left\{\mathcal{B} \text { on input } X \text { answers } x_{1}, \ldots, x_{j} \text { correct }\right\} \\
= & \prod_{i=1}^{j} \operatorname{Pr}\left\{x_{i} \in L_{R} \Rightarrow\left(x_{i}, \mathcal{A}^{\prime}\left(x_{i}\right)\right) \in R\right\} \\
\geq & \left(\frac{3}{4}\right)^{j / j}=\frac{3}{4}
\end{aligned}
$$

which completes the proof of (3).

In order to prove (4) we make use of the same kind of reduction from Π_{R} to $U_{R, n}$ as before: Given an instance x of Π_{R} we construct an instance X of $U_{R, n}$ such that $X=\left(x_{1}, \ldots, x_{n}, 0^{k}\right), \quad x=x_{j}$ and

$$
|X| \in[\sqrt[2^{j}]{T(|x|)}, \sqrt[2^{j}]{T(|x|)}+1]
$$

Now assume \mathcal{B} is a randomized approximation algorithm for $U_{R, n}$ such that

$$
\operatorname{Pr}\left\{\mathcal{B} \text { answers } x_{j} \text { correct in time } c \cdot\left(|X|^{2^{j-1}}\right)\right\} \geq \frac{3}{4}
$$

for some $c>0$. Since
$c \cdot|X|^{2^{j-1}} \leq c \cdot(\sqrt[2 j]{T(|x|)}+1)^{2^{j-1}}=O\left(2^{j-1} \cdot T(|x|)^{\frac{2^{j-1}}{2 j}}\right)=O\left(2^{j-1} \cdot t(|x|)\right)$
this contradicts assumption (A"), hence (4) holds as well.
Let $\left(M_{i}, c_{i}\right), i \in \mathbb{N}$ be a listing of all pairs consisting of PTMs M_{i} and constants $c_{i}>0$, where we initially guess M_{i} being an approximation scheme for problem U_{R} with error probability bounded by $1 / 4$. Assume that each pair occurs infinitely often in this list. For each such M_{i}, either the guess is incorrect and we will recognize this after finite amount of time, or we diagonalize against M_{i} being an efficient randomized approximation scheme for U_{R} with error probability bounded by $\frac{1}{4}$.

We construct problem U_{R} in stages. In stage n the n-th interval $I_{n}=$ $\left[x_{n-1}, x_{n}\right)$ is defined (recall that this refers to lexicographic order on Σ^{*}), U_{R} restricted to I_{n} will be defined as $U_{R, n}$. During the construction the following requirements are satisfied:
$\left(C_{n}\right)$ For $j=1, \ldots, n, i=1, \ldots, n$:
There are strings $y=y_{i, j}$ and $x=x_{i}$ in $I_{n}=\left[x_{n-1}, x_{n}\right)$ such that

$$
\begin{aligned}
& \operatorname{Pr}\left\{\text { A.R. of } M_{i}\left(y, 2^{j+3}\right) \text { is } \leq 1+\frac{1}{2^{j+3}} \text { within time } c_{i} \cdot|y|^{2^{j-1}}\right\}<\frac{3}{4} \\
& \operatorname{Pr}\left\{\text { A.R. of } M_{i}\left(x, 2^{n+3}\right) \leq 1+2^{-(n+3)} \text { within time } c_{i} \cdot|x|^{2^{n}}\right\}<\frac{3}{4}
\end{aligned}
$$

Let us argue that (assuming we guarantee problem U_{R} being in $R P T A S$) constraints $\left(C_{n}\right)$ are sufficient in order to prove the theorem: Hence assume $U_{R} \in R E P T A S$ but $\left(C_{n}\right)$ are satisfied. Then due to the fact that we can decrease error probability to $\frac{1}{4}$ increasing running time by at most a constant factor, there exists an efficient randomized polytime approximation scheme
M for problem U_{R} with error probability bounded by $\frac{1}{4}$ and randomized running time bounded by

$$
f(n) \cdot|x|^{\alpha} \text { for some } \alpha>0 \text { and some function } f(n) .
$$

Now choose j such that $\alpha<2^{j-1}$, and let i be choosen such that $\left(M_{i}, c_{i}\right)=$ $\left(M, f\left(2^{j+3}\right)\right.$). From some stage n on (namely $\left.n \geq \max \{i, \log (\alpha)\}\right)$ there exist strings y in interval I_{n} such that

$$
\operatorname{Pr}\left\{\text { A.R. of } M_{i}\left(y, 2^{j+3}\right) \text { is } \leq 1+\frac{1}{2^{j+3}} \text { within time } f\left(2^{j+3}\right) \cdot|x|^{\alpha}\right\}<\frac{3}{4}
$$

hence we obtain a contradiction and thus M is not an efficient randomized polytime approximation scheme for problem U_{R}.

Construction of Problem U_{R} in Stages.

Stage 0: Set $x_{0}:=0$.

Stage $n>0$: Let x_{n-1} and U_{R} restricted to the interval $\left[x_{0}, x_{n-1}\right)$ already be defined. We will construct x_{n} and define
$U_{R} \quad$ restricted to interval I_{n} be equal to $U_{R, n}$.
Now by brute force find strings $y_{i, j}, x_{i}, 1 \leq i, j \leq n$ satisfying constraint $\left(C_{n}\right)$. Such strings are guaranteed to exist due to properties (1)-(5) of problem $U_{R, n}$. Let T_{n} be the total time needed to (deterministically) construct problem U_{R} up to stage $n-1$ and to find strings $y_{i, j}, x_{i}, 1 \leq i, j \leq n$ Let $x_{n}:=0^{T_{n}}$.
End of Stage n

By the very same reason as in the construction in the proof of theorem 12 in section 4.3 , problem U_{R} has polynomial time decidable sets of instances and solutions and polynomial cost functions, furthermore we obtain a randomized approximation scheme for U_{R} by first computing the interval number of string x, if it is too small solve the instance to optimality by brute force and otherwise answering sufficiently many components of instance x corrcectly by the randomized algorithm for Π_{R}. Hence $U_{R} \in R P T A S \backslash R E P T A S$, which completes the proof.

7 Conclusion

We have proved a separation of the classes PTAS and EPTAS under the assumption that there are NP search problems with a superpolynomial lower bound on the deterministic time complexity. We have shown that there exists no relativizing proof that our assumption implies $F P T \neq W[P]$, hence in this sense our result can be seen as independent from the separation result given by Cesati and Trevisan. Furthermore we obtain similar results for the case of randomized polynomial-time approximation schemes. It remains as an open problem to prove the strictness of the inclusion $E P T A S \subseteq P T A S$ under assumption $P \neq N P$.

Acknowledgement. We would like to thank Marek Karpinski and Claus Viehmann for valuable discussions.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. MarchettiSpaccamela, M. Protasi. Complexity and Approximation. Springer, 1999
[2] C. Bazgan. Schemas d'approximation et complexite' parametree. Thesis, INRIA, Orsay, France, 1995.
[3] Richard Beigel and Judy Goldsmith. Downward separation fails catastrophically for limited nondeterminism classes. In Structure in Complexity Theory Conference, pages 134-138, 1994.
[4] L. Cai and J. Chen. On fixed-parameter tractability and approximability of np optimization problems. Journal of Computer and System Sciences, 54(3):465-474, 1997.
[5] M. Cesati and L. Trevisan. On the efficiency of polynomial time approximation schemes. Information Processing Letters, 64(47):165-171, 1997.
[6] Y. Chen and M. Grohe. An Isomorphism Between Subexponential and Parameterized Complexity Theory. Proceedings of the 21st IEEE Conference on Computational Complexity (CCC'06), PP.314-328, 2006.
[7] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness. In Congr. Num. 87, pages 161-187, 1992.
[8] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1997
[9] J. Flum, M. Grohe and M. Weyer. Bounded fixed-parameter tractability and $\log 2 \mathrm{n}$ nondeterministic bits , Journal of Computer and System Sciences 72:34-71, 2006.
[10] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006
[11] M. Hauptmann. Approximation Complexity of Optimization Problems: Structural Foundations and Steiner Tree Problems, PhD-Thesis, University of Bonn, 2004, URL: http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2004 /hauptmann_mathias/0380.pdf.
[12] M. Hauptmann. The Measure Hypothesis and Efficiency of Polynomial Time Approximation Schemes, Proc. Tenth Italian Conference on Theoretical Computer Science, p. 151-162, World Scientific, 2007.
[13] J. M. Hitchcock. Small spans in scaled dimension. SIAM Journal on Computing, 34(1):170-194, 2004.
[14] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Scaled dimension and nonuniform complexity. Journal of Computer and System Sciences, 69:97-122, 2004.
[15] J. M. Hitchcock and A. Pavan. Hardness hypotheses, derandomization, and circuit complexity. In Proceedings of the 24th Conference on Foundations of Software Technology and Theoretical Computer Science, pages 336-347, 2004.
[16] C.M.R. Kintala and P. Fischer. Refining nondeterminism in relativized complexity classes. SIAM Journal on Computing, 13:329337, 1984.
[17] J. H. Lutz. Category and measure in complexity classes. SIAM Journal on Computing, 19:1100-1131, 1990.
[18] J. H. Lutz. Dimension in complexity classes. In IEEE Conference on Computational Complexity, pages 158-169, 2000.

[^0]: *Dept. of Computer Science, University of Bonn. Email:hauptman@cs.uni-bonn.de

