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Abstract

We study the problem of absolute approximability of MAX-CSP prob-
lems with the global constraints. We prove existence of an efficient sam-
pling method for the MAX-CSP class of problems with linear global con-
straints and bounded feasibility gap. It gives for the first time a polynomial
in ǫ

−1 sample complexity bound for that class of problems. The method
yields also the best up to date sample complexity bound for the balanced
MAX-CSP problems such as the graph and hypergraph BISECTION prob-
lems.

1 Introduction

We extend the results of [AFKK02] (see for the background results also [AKK95],
[F96], [FK96], [FK99], [K01], [AN04], and [FK06]) to a class of global MAX-rCSP
problems proving that they have also a polynomial in ǫ−1 sample complexity.
The input to a MAX-rCSP problem (for r fixed) consists of a set F of m distinct
Boolean functions f1, f2, . . . fm of n Boolean variables x1, x2, . . . xn, where each
fi is a function of only r of the n variables. The output Max(F ) is the maximum
number of functions which can be simultaneously set to 1 by a truth assignment
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to the variables. This paper addresses the situation where in addition to the
above we have a set of linear global constraints:

Rx ≤ p (1)

where R is a k×n matrix with ||R||∞ ≤ 1, and we want to compute approximately
within additive error ǫnr the maximum number of functions in F which can be
simultaneously set to 1 by a truth assignment to the variables satisfying these
constraints. The word global refers to constraints which may involve all the n
variables instead of just r. We emphasize that all of these global constraints ought
to be satisfied. If this is not possible, then we say as usual that the optimization
problem is unfeasible. (In contradistinction, we ask that a maximum number of
the other constraints be satisfied, not necessarily all of them.)

For a subset Q of the variables, we let F Q denote the subset of those functions
in F which depend only on the variables in Q (and their negations). We let xQ

denote an assignment to the variables in Q. For a k×n matrix R and a k−vector
p we define gap(R, p) by

gap(R, p) = max{α : RT x ≤ p − αn1 is feasible}

with x ∈ [0, 1]n. (1 denotes the all ones vector.) We will prove the following
theorem.

Theorem 1. (Main Theorem) Let r, n be positive integers, with r fixed. Sup-
pose k is a fixed positive integer and δ is a fixed positive real. Then for any
positive ǫ, there exists a positive integer q ∈ O(log(1/ǫ)/ǫ4) such that for any F
(as above), any set of k constraints Rx ≤ p with gap(R, p) ≥ δ if Q is a random
subset of {x1, x2, . . . xn} of cardinality q, then with probability at least 9/10, we
have,

∣

∣

∣

∣

nr

qr
Max(F Q) − Max(F )

∣

∣

∣

∣

≤ ǫnr.

where Max(F ) is the maximum number of functions in F which can be simulta-
neously set to 1 by a truth assignment x to the variables satisfying the constraints
Rx ≤ p and Max(F Q) is the maximum number of functions in F Q which can be
simultaneously set to 1 by a truth assignment to the variables Q satisfying the
constraints

1

q
RQxQ ≤ 1

n
p (2)

Thus, using the terminology of [AFKK02] it is apt to say that MAX-rCSP
with global constraints having lower bounded gap has a sample complexity in
O(log(1/ǫ)/ǫ4) which is the same upper bound as that which is known for the
unconstrained case. We call the property that gap(R, p) ≥ δ for some positive
constant δ, a bounded feasibility gap property of that problem.

The plan of the rest of the paper as follows. In section 2 we prove an easy
but essential proposition which says roughly that, under a certain mild slackness

2



condition of the set of constraints, the value of the objective function does not
vary too much under a small perturbation of the constraints. In section 3 we
collect several theorems and results from [AFKK02] for further use. The proof is
concluded, using arguments peculiar to the present case with global constrains
in section 4.

2 Constraints Slackness

Assume we have the constraints Rx ≤ p where k is fixed and R is a k×n matrix.
The next proposition says roughly that, under a certain slackness condition of
the set of constraints, the value of the objective function does not vary too much
under a small perturbation of the constraints.

Lemma 2. Assume that gap(R, p) = δ > 0 and that x satisfies

Rx ≤ p + ηn1

x ∈ [0, 1]n

for some sufficiently small η > 0. Then, there exist constants C1 and C2 (de-
pending on r, δ but not on η or n) such that there is an y with y ∈ {0, 1}n,
Ry ≤ p and
(i) |x − y| ≤ C1ηn and

(ii) the variation of the objective function when x is changed into y does not
exceed C2ηnr.

Proof We find first an y in [0, 1]n. Randomized rounding gives then easily
an integral y fulfilling the conditions of the theorem. (ii) follows easily from (i).
To prove (i), let z ∈ [0, 1]n satisfy Rz ≤ p − δn1 (the existence of such a z is
guaranteed by the gap condition), i.e.,

Riz = pi − δi , 1 ≤ i ≤ k.

with δi ≥ δ. Setting y = γz + (1 − γ)x we get for each fixed i,

Riy = (pi + ηi)(1 − γ) + γ(pi − δi)

≤ pi + ηi − γ(ηi + δi)

≤ pi

for γ ≥ ηi/(ηi + δi) ≤ η/δ. Thus (ii) holds with C1 = 1/δ.
2

3 Preliminaries

We let V = {1, 2, . . . , n} and r ≥ 2 be a fixed integer. A is an array on V r. We
mimic the proof in [AFKK02] for the case of no global constraints. This proof
begins by the following cut decomposition theorem.

3



Theorem 3. It is possible to find, in time 2O(1/ǫ2)O(N) and with probability at
least, say, 9/10, a set of at most 4/ǫ2 cut arrays whose sum, denoted D, satisfies
the following inequalities :

||A − D||C ≤ ǫ
√

N ||A||F (3)

||A − D||F ≤ ||A||F (4)

The sum of the absolute values of the coefficients of the cut arrays ≤ 2||A||F
ǫ
√

N
. (5)

Proof See [AFKK02].
2

The following theorem is the crux of the proof in [AFKK02].

Theorem 4. Suppose G is an r-dimensional array on V r satisfying

||G||C ≤ ǫnr ||G||∞ ≤ 1

ǫ
22r+1 ||G||F ≤ 22r

nr/2. (6)

Let δ, ǫ > 0. Assume n = |V | ≥ 108r20

δ7ǫ8
e10/ǫ2. Let J be a random subset of V of

cardinality q, where,

q ≥ 106r12 1

δ5ǫ4
log

(

4

ǫ2

)

.

Let H be the r-dimensional array obtained by restricting G to Jr. Then, we have
with probability at least 1 − δ :

||H||C ≤ 22r+1+9 ǫ√
δ
qr.

Proof See [AFKK02].
2

It is easy to prove (see [AFKK02]) that it suffices to maximize within ǫnr the
polynomial P over {0, 1}n :

P (x) =
∑

z∈{0,1}r

∑

i1,i2,...ir

A(z)(i1, i2, . . . ir)
∏

zj=1

xij

∏

zj=0

(1 − xij ).

where for each z ∈ {0, 1}r, A(z) is an array on V r, A(z)(i1, i2, ..., ir) is the number
of functions in F which are made true by the assignment xi1 = z1, ...xir =
zr. Trivially, get the analogous statement in the case of global constraints just
by specifying that the max is then taken within the assignments satisfying the
constraints. Now we use Theorem 3 to find a cut decomposition B(z) of each of
the arrays A(z) where each B(z) is the sum of at most 4/ǫ2 cut arrays and we
have

||A(z) − B(z)||C ≤ ǫnr/2||A(z)||F ≤ δm/4. ∀z.

From this it is easily deduced (see again [AFKK02]) that it suffices to maximize
the function g(x) below to additive error ǫnr :
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g(x) =
∑

z∈{0,1}r

∑

i1,i2,...ir

B(z)(i1, i2, . . . ir)
∏

zj=1

xij

∏

zj=0

(1 − xij ). (7)

This again carries over mutatis mutandis to the constrained case.

We will need in the sequel the following theorem ([AFKK02]) which asserts
that for a Linear Program on n variables, each constrained to be between 0 and
1, we can make some assertion about the optimal value based on the optimal
value of a small sub-program obtained by picking at random a small number of
variables.

Theorem 5. Suppose

α > Max
n

∑

j=1

cjxj

n
∑

j=1

Ujxj ≤ v ; 0 ≤ xj ≤ 1,

as before and, in addition,

m
∑

j=1

c2
j ≤ α2 ||c||∞ ≤ M2.

Suppose q is a positive integer and Q is a random subset {1, 2, . . . n} of cardinality
q. Then, for any positive real number

γ ∈
[

4α2

nM2
2

, 100

]

,

we have that with probability at least 1 − 4e−γq/4 :

q

n
α + 2γqM2 > Max

∑

j∈Q

cjxj

∑

j∈Q

Ujxj ≤
q

n
v − 2

√
γq||U ||∞ ; 0 ≤ xj ≤ 1, j ∈ Q.

Proof See [AFKK02].
2

For convenience, we change the definition of g(x) slightly here and normalize
by dividing by nr.

g(x) =
1

nr

∑

z∈{0,1}r

∑

i1,i2,...ir

B(z)(i1, i2, . . . ir)
∏

j:zj=1

xij

∏

j:zj=0

(1 − xij ).

Define

g̃(x) =
1

qr

∑

z∈{0,1}r

∑

i1,i2,...ir∈Q

B(z)(i1, i2, . . . ir)
∏

j:zj=1

xij

∏

j:zj=0

(1 − xij ). (8)

5



E2 =⇒ max
{xj∈{0,1},j∈Q}

|g(x) − g̃(x)| ∈ O(ǫ). (9)

The next Lemma provides piecewise linear approximations to g(x) and g̃(x). We
need some preparation before stating this Lemma. Suppose that the sets involved
in defining all the cut arrays in the approximations of all B(z) are S1, S2, . . . Ss.
Denote by h(x) the s− vector ( 1

n
x(S1),

1
n
x(S2), . . .

1
n
x(Ss)) (for an n− vector x)

and similarly by h̃(x) the s− vector (1
q
x(S1 ∩Q), 1

q
x(S2 ∩Q), . . . 1

q
x(Ss ∩Q)) (for

a q− vector x with components for each j ∈ Q) and note that h(x) (resp. h̃(x))
determine g(x) (resp. g̃(x)) We approximate g(x) by a piece-wise linear function,
where, each piece will comprise of all the x ’s for which the h(x) are close. More
precisely, we will use a parameter η - which will be Θ( ǫ

k
) where k is the number of

global constraints. Let A be the set of integer multiples of η in the range (0, 1).
For each b ∈ As, define

I(b, η) = {x : |h(x) − b|∞ ≤ 2η;
1

n
Rx ≤ 1

n
p + η1}

Ĩ(b, η) = {xQ : |h̃(xQ) − b|∞ ≤ η;
1

q
RQxQ ≤ 1

q
p + η1}

We will need also need the following simple fact which follows from the stan-
dard Martingale inequality:

Claim 1

E1 :

∣

∣

∣

∣

1

n
|St| −

1

q
|St ∩ Q|

∣

∣

∣

∣

≤ ǫ2 for t = 1, 2, . . . s Pr(E1) ≥ 1 − 4se−ǫ4q/4.

We will denote by Ã(z) the sub-array of A(z) on Qr. Similarly for B(z). From
Theorem 4, (with q = c 1

ǫ4
log(1/ǫ) for a high enough constant c), we see that the

following event has the claimed probability :

E2 : ||Ã(z) − B̃(z)||C ∈ O(ǫqr) satisfies Pr(E2) ≥
99

100
. (10)

Lemma 6. For a suitable choice of η ∈ Θ(ǫ), for each fixed b ∈ As, there exist
two linear functions l(x) = l0 +

∑n
j=1 ljxj and l̃(x) = l̃0 +

∑

j∈Q l̃jxj such that

|g(x) − l(x)| ∈ O(ǫ) ∀x ∈ I(b, η) |g̃(x) − l̃(x)| ∈ O(ǫ), ∀x ∈ Ĩ(b, η).

E1 and E2 =⇒
∣

∣

∣

∣

∣

l̃0 +
∑

j∈Q

l̃jxj − l0 −
n

q

∑

j∈Q

ljxj

∣

∣

∣

∣

∣

∈ O(ǫ)∀x ∈ Ĩ(b, η).

Also, |lj| ∈ O(1/nǫ) ∀j and
∑n

j=1 l2j ∈ O(1/n).

Proof See [AFKK02].
2
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4 Proof of Main Theorem

Recall that Ã(z) denotes the sub-array of A(z) on Qr and similarly for B(z). We
have that

E2 =⇒ max
{xj∈{0,1},j∈Q}

|g(x) − g̃(x)| ∈ O(ǫ). (11)

Thus, to prove Theorem 1, it suffices to show that

∣

∣Maxxj∈{0,1},j∈V g(x) − Maxxj∈{0.1},j∈Q g̃(x)
∣

∣ ∈ O(ǫ). (12)

Let Max(F ) denote the max of F subject to Rx ≤ p and let Max(F ) = αnr.
Clearly, for each b, the maximum value of the following Integer Program is at
most α + O(ǫ) :

Max l0 + l1x1 + l2x2 + . . . lnxn

bt − 2η ≤ 1

n
x(St) ≤ bt + 2η for t = 1, 2, . . . s ; xj ∈ {0, 1}

1

n
Rx ≤ 1

n
p

This implies that, for now real x,

α + O(ǫ) ≥ Max l0 + l1x1 + l2x2 + . . . lnxn

bt − 2η +
s + k

n
≤ 1

n
x(St) ≤ bt + 2η − s + k

n
for t = 1, 2, . . . s ; 0 ≤ xj ≤ 1

1

n
Rx ≤ 1

n
p − s + k

n

because, for the linear program, there is a basic optimal solution which has at
most s + k fractional variables and setting them to 0 gives us an integer solution
whose objective value is at least the linear program value minus O((s + k)/ǫn)
which is O(ǫ).

Now we wish to apply Theorem 5. To this end, we note that ||U ||∞ ≤ 1/n; and
we may use M2 = O(1/ǫn) and α2 = O(1/n) in that theorem. Also, we will use
γ = O(ǫ2); note that this satisfies the required lower bound on γ in that theorem.
We will also use the fact that (s + k)/n is at most η/2 and η ≥ 2

√
γn||U ||∞ (the

last requires us to choose η not too small; indeed η equal to a large constant
times ǫ will do). Thus, we get for the following event E3(b) (for one fixed b) the
claimed probability bound (for a suitable choice of γ ∈ O(ǫ2))

E3(b) :
q

n
(α − l0 + O(ǫ)) > Max

∑

j∈Q

ljxj

bt − η ≤ 1

q
x(St ∩ Q) ≤ bt + η for t = 1, 2, . . . s ; 0 ≤ xj ≤ 1.

1

q
RQxQ ≤ 1

n
p − s + k

n
− O(ǫ)

Pr(E3(b)) ≥ 1 − e−10 log(1/ǫ)/ǫ2
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Applying Lemma 6, we see that E1, E2, E3(b) together imply

E4(b) : α + O(ǫ) > Max l̃0 +
∑

j∈Q

l̃jxj

bt − η ≤ 1

q
x(St ∩ Q) ≤ bt + η for t = 1, 2, . . . s

1

q
RQxQ ≤ 1

n
p − s + k

n
− O(ǫ) ; 0 ≤ xj ≤ 1.

Note that by using our hypothesis on a gap(R, p) we can slacken the global
constraint above to

1

q
RQxQ ≤ 1

n
p

The upper bound on objective function of the above Linear Programming also
applies to the corresponding Integer Program. Now appealing again to Lemma
6, we get that

E4(b) =⇒ g̃(x) ≤ α + O(ǫ) ∀x : xj ∈ {0, 1}, j ∈ Q, x ∈ Ĩ(b, η).

Letting,
E4 : E4(b) holds for all b ∈ As,

we then see that since the Ĩ(b, η) together cover all of {0, 1}q, under E4, we have
that

g̃(x) ≤ α + O(ǫ) ∀x : xj ∈ {0, 1}, j ∈ Q,

and also we have that

Pr(E4) ≥ 1 − ( number of b ’s)e−10 log(1/ǫ)/ǫ2 ≥ 99/100.

To complete the proof of (12) (and hence the Theorem), we only need to prove
now that with high probability

Maxx:Rx≤p g(x) ≤ MaxxQ:RQxQ≤(1/n)p g̃(x) + O(ǫ)

The proof of the analogous statement when there are no global constraints is
routine. Here, we can argue as follows. Fix an arbitrarily small positive α. By
Lemma 2 we have that

Maxx:Rx≤p−ǫ1 g(x) ≥ Maxx:Rx≤p g(x) − O(α)

By standard statistics, we can assert that the induced assignment xQ satis-
fies with probability at least 9/10 (if n is sufficiently large) to the constraints
1
q
RQxQ ≤ 1

n
p. We can also assert that with probability at least 1/10 we have

that g̃(xQ) ≥ (1 − O(ǫ))g(x) which implies with the last inequality,

g̃(xQ) ≥ (1 − O(ǫ))Maxx:Rx≤p g(x).

This concludes the proof.
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5 Coping with Balanced Constraints

A important class of constraint satisfaction problems for which the global con-
straints have gap 0 are the so-called balanced problems of MAX-rCSP, such as
the BISECTION problem for graphs or hypergraphs. Here the number of posi-
tive and the number of negated variables in the solution are bound to be equal.
Let us show how these problems can in fact be approximated by a simple mod-
ification of our general algorithm. This gives also the best up to now sample
complexity bound Os(1/ǫ4) for those problems.

We denote the number of variables by 2n. We will prove the following theo-
rem.

Theorem 7. Let r, ǫ, s, δ, k, and R, be as in Theorem 1. We add to R the balance
constraint:

2n
∑

i=1

xi = n

and we let R∗ denote the augmented set of constraints. Assume that for some
fixed η with 0 ≤ η ≤ ǫ, the following system of inequalities is feasible:

Rx ≤ p − ηn
2n
∑

i=1

xi ≤ n(1 + η)

2n
∑

i=1

−xi ≤ −n(1 − η)

Let q, F, Q be as in Theorem 1. Then with probability at least 9/10, we have,

∣

∣

∣

∣

nr

qr
Max(F Q) − Max(F )

∣

∣

∣

∣

≤ ǫnr

where Max(F ) is the maximum number of functions in F which can be simultane-
ously set to 1 by a truth assignment x to the variables satisfying the constraints
R∗x ≤ p, Max(F Q) is the maximum number of functions in F Q which can be
simultaneously set to 1 by a truth assignment to the variables Q satisfying the
constraints

1

q
RxQ ≤ 1

n
p − η

q(1 − η)

2
≤

∑

i∈Q

xi ≤
q(1 + η)

2

Proof Using Theorem 1 we get an approximate solution within ǫnr, of the
relaxed problem

Rx ≤ p − ηn
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n(1 − η) ≤
2n
∑

i=1

xi ≤ n(1 + η).

Now, flipping the necessary number of variables in this solution to satisfy the
balance condition (this number is at most ηn) gives a solution y satisfying Ry ≤ p,
i.e., a feasible solution, whereas the value of the objective function decreases by
at most ηnr ≤ ǫnr.

2
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