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Abstract. In this paper we examine the importance of the choice of
metric in path coupling, and its relationship to stopping time analysis.
We give strong evidence that stopping time analysis is no more powerful
than standard path coupling. In particular, we prove a stronger theorem
for path coupling with stopping times, using a metric which allows us to
analyse a one-step path coupling. This approach provides insight for the
design of better metrics for specific problems. We give illustrative appli-
cations to hypergraph independent sets and SAT instances, hypergraph
colourings and colourings of bipartite graphs, obtaining improved results
for all these problems.

1 Introduction

Markov chain algorithms are an important tool in approximate counting [16].
Coupling has a long history in the theory of Markov chains [8], and can be used to
obtain quantitative estimates of convergence times [1]. The idea is to arrange the
joint evolution of two arbitrary copies of the chain so that they quickly occupy
the same state. For all pairs of states, the coupling must specify a distribution on
pairs of states so that both marginals give precisely the transition probabilities
of the chain. Good couplings are usually not easy to design, but path coupling [6]
has recently proved a useful technique for constructing and analysing them. The
idea here is to restrict the design of the coupling to pairs of states which are close
in some suitable metric on the state space, and then (implicitly) obtain the full
coupling by composition of these pairs. For example, for independent sets in a
graph or hypergraph, the pairs of interest might be independent sets which differ
in one vertex (the change vertex ) and the metric might be Hamming distance.

The limitations of path coupling analysis are always caused by certain “bad”
pairs of states. But these pairs may be very unlikely to occur in a typical re-
alisation of the coupling. Consequently, path coupling has been augmented by
other techniques, such as stopping time analysis. The stopping time approach is
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applicable when the bad pairs have a reasonable probability of becoming less bad
as time proceeds. As an illustration, consider the bad pairs for the Glauber dy-
namics on hypergraph independent sets [3]. These involve almost fully occupied
edges containing the change vertex. However, it seems likely that the number of
occupied vertices in these edges will be reduced before we must either increase
or decrease the distance between the coupled chains. This observation allows a
greatly improved analysis [3]. See [3, 11, 14, 18] for some other applications of
this technique. General theorems for applying stopping times appear in [3, 14].

The stopping time approach is a multistep analysis, and appears to give a
powerful extension of path coupling. However, in this paper we provide strong
evidence that the stopping time approach is no more powerful than single-step
path coupling. We observe that, in cases where stopping times can be employed
to advantage, equally good or better results can be achieved by using a suitably
tailored metric in the one-step analysis. The intuition behind the choice of metric
is precisely that used in the stopping time approach. We will illustrate this with
several examples.

In fact, our first example is a proof of a theorem for path coupling using
stopping times, relying on a particular choice of metric which enables us to work
with the standard one-step path coupling. The resulting theorem is stronger than
those in [3, 14]. The proof implies that all results obtained using stopping times
can just as well be obtained using standard path coupling and the right choice
of metric. This does not immediately imply that we can abandon the analysis of
stopping times. Determining the metric used in our proof involves bounding the
expected distance at a stopping time. But it does suggest that it may be better
to do a one-step analysis using a metric indicated by the stopping time.

With this insight, we revisit the Glauber dynamics for hypergraph inde-
pendent sets. Equivalently, these are satisfying assignments of monotone SAT
formulas, and this relationship is discussed in the full paper [4]. We also re-
visit hypergraph colourings, analysed in [3] using stopping times. We find that
we are able to obtain stronger results than those obtained in [3], using metrics
suggested by stopping time considerations but then optimised. The technical ad-
vantage arises mainly from the possibility of using simple linearity of expectation
where stopping time analysis uses concentration inequalities and union bounds.

We note that this paper does not contain the first uses of “clever” metrics
with path coupling. See [7, 17] for examples. But we do give the first general
approach to designing a good metric. While there have been instances in the
literature of optimising the chain [13, 20], the only previous analysis of which we
are aware which uses optimisation of the metric appeared in [17].

The organisation of the paper is as follows. In section 2 we prove a better
stopping time theorem than was previously known, using only standard path
coupling. In section 3 we give our improved results for sampling independent
sets in hypergraphs. In section 4 we give improved results for sampling colour-
ings of 3-uniform hypergraphs. Finally, in section 5 we give a completely new
application, to the “scan” chain for sampling colourings of bipartite graphs. For



even relatively small values of ∆, our results improve Vigoda’s [20] celebrated
11∆/6 bound on the number of colours required for rapid mixing.

2 Path coupling and stopping times

Let M be a Markov chain on state space Ω. Let d be an integer valued metric
on Ω × Ω, and let (Xt, Yt) be a path coupling for M, i.e. a coupling defined
on a path-generating set S ⊆ Ω × Ω. See, for example, [12]. We define Tt, a
stopping time for the pair (Xt, Yt) ∈ S, to be the smallest t′ > t such that
d(Xt′ , Yt′) 6= d(Xt, Yt). We will define a new metric d′ such that contraction in
d at Tt implies contraction in d′ at every t′ with positive probability Tt = t′.

Let α > 0 be a constant such that E[d(XTt
, YTt

)] ≤ αd(Xt, Yt) for all
(Xt, Yt) ∈ S. If α < 1, then for any (Xt, Yt) ∈ S, we define d′ as follows.

d′(Xt, Yt) = (1 − α)d(Xt, Yt) + E[d(XTt
, YTt

)] ≤ d(Xt, Yt). (1)

The metric is extended in the usual way to pairs (Xt, Yt) /∈ S, using shortest
paths. See [12]. We will apply path coupling with the metric d′ and the original
coupling. First we show a contraction property for this metric.

Lemma 1. If E[d(XTt
, YTt

)] ≤ αd(Xt, Yt) < d(Xt, Yt) for all (Xt, Yt) ∈ S, then

E[d′(Xk, Yk) |X0, Y0] ≤
(

1 − (1 − α) Pr(T0 ≤ k)
)

d′(X0, Y0).

Proof. We prove this by induction on k. It obviously holds for k = 0, since
T0 > 0. Using 1A to denote the 0/1 indicator of event A, we may write (1) as

d′(X0, Y0) = (1−α)d(X0, Y0)+E[d(XTk
, YTk

)1T0>k]+E[d(XT0 , YT0)1T0≤k], (2)

since if T0 > k then Tk = T0. Similarly, we have that E[d′(Xk, Yk)]

= E[d′(Xk, Yk)1T0>k] + E[d′(Xk, Yk)1T0≤k]

= (1 − α)E[d(Xk, Yk)1T0>k] + E[d(XTk
, YTk

)1T0>k] + E[d′(Xk, Yk)1T0≤k].

= (1 − α)E[d(X0, Y0)1T0>k] + E[d(XTk
, YTk

)1T0>k] + E[d′(Xk, Yk)1T0≤k]. (3)

Subtracting (2) from (3), we have that E[d′(Xk, Yk)] − d′(X0, Y0)

= −(1 − α)E[d(X0, Y0)1T0≤k] + E[(d′(Xk, Yk) − d(XT0 , YT0))1T0≤k].

For T0 ≤ k, since k − T0 ≤ k − 1 the inductive hypothesis implies
E[d′(Xk, Yk) |XT0 , YT0 ] ≤ d′(XT0 , YT0) ≤ d(XT0 , YT0), (if (Xk, Yk) 6∈ S this is
implied by linearity). Hence

E[d′(Xk, Yk)] − d′(X0, Y0) ≤ −(1 − α)E[d(X0, Y0)1T0≤k],

But now E[d(X0, Y0)1T0≤k] = Pr(T0 ≤ k)d(X0, Y0) ≥ Pr(T0 ≤ k)d′(X0, Y0).

We may now prove the first version of our main result.



Theorem 1. Let M be a Markov chain on state space Ω. Let d be an integer
valued metric on Ω, and let (Xt, Yt) be a path coupling for M. Let Tt be the
above stopping times. Suppose for all (X0, Y0) ∈ S and for some integer k and
p > 0, that

(i) Pr[T0 ≤ k] ≥ p,
(ii) E[d(XT0 , YT0)/d(X0, Y0)] ≤ α < 1.

Then the mixing time τ(ε) of M satisfies τ(ε) ≤ k
p(1−α) ln

(

eD
ε(1−α)

)

, where

D = max{d(X, Y ) : X, Y ∈ Ω}.

Proof. From Lemma 1, d′ contracts by a factor 1− (1−α)p ≤ e−(1−α)p for every
k steps of M. Note also that d′ ≤ D. It follows that, at time τ(ε), we have

Pr(Xτ 6= Yτ ) ≤ E[d(Xτ , Yτ )] ≤
E[d′(Xτ , Yτ )]

1 − α
≤

De−(1−α)pτ/k

1 − α
≤ ε,

from which the theorem follows. ⊓⊔

If 1 − α is small compared to ε, it is possible to do better than this. A proof of
the following appears in the full paper [4].

Theorem 2. If M satisfies the conditions of Theorem 1, the mixing time τ(ε)

of M satisfies τ(ε) ≤ k(2−α)
p(1−α) ln

(

2eD
ε

)

, where D = max{d(X, Y ) : X, Y ∈ Ω}.

Remark 1. One of the most interesting features of these theorems is that their
proofs employ only standard path coupling, but with a metric which has some
useful properties. Thus, for any problem to which stopping times might be ap-
plied, there exists a metric from which the same result could be obtained using
one-step path coupling.

Remark 2. We may compare this stopping time theorem with those in [3, 14].
The main result of [14] (Theorem 3) concerns bounded stopping times, where
T0 ≤ M for all (X0, Y0) ∈ S, and gives a mixing time of O(M(1 − α)−1 log D).
By setting k = M and p = 1 in Theorem 2, we obtain the same mixing
time up to minor changes in constants, but with a proof that does not in-
volve defining a multistep coupling. For unbounded mixing times, [14, Corol-
lary 4] gives a bound O(E[T ](1 − α)−2W log D) by truncating the stopping
times, where W denotes the maximum of d(Xt, Yt) over all (X0, Y0) ∈ S and
t ≤ T . In most applications E[T ] ≤ k/p, so we obtain an improvement of order
W (1−α)−1. By comparison with [3], we obtain a more modest improvement, of
order log W log(D(1 − α)−1)/ log D.

Remark 3. Further improvements to Theorem 2 seem unlikely, other than in
constants. The term k/p must be present, since it bounds a single stopping
time. A term 1/(1 − α) log(D/ε) = Θ(logα(D/ε)) also seems essential, since it
bounds the number of stopping times required.



3 Hypergraph independent sets

We now turn our attention to hypergraph independent sets. These were previ-
ously studied in [3]. Let H = (V , E) be a hypergraph of maximum degree ∆ and
minimum edge size m. A subset S ⊆ V of the vertices is independent if no edge
is a subset of S. Let Ω(H) be the set of all independent sets of H. We define the
Markov chain M(H) with state space Ω(H) by the following transition process
(Glauber dynamics). If the state of M at time t is Xt, the state at t + 1 is
determined by the following procedure.

1. Select a vertex v ∈ V uniformly at random,
2. (i) if v ∈ Xt let Xt+1 = Xt\{v} with probability 1/2,

(ii) if v 6∈ Xt and Xt ∪ {v} is independent, let Xt+1 = Xt ∪ {v} with proba-
bility 1/2,

(iii) otherwise let Xt+1 = Xt.

This chain is easily shown to be ergodic with uniform stationary distribution. The
natural coupling for this chain is the “identity” coupling, the same transition is
attempted in both copies of the chain. If we try to apply standard path coupling
to this chain, we immediately run into difficulties. The change in the expected
Hamming distance between Xt and Yt after one step could be as high as ∆

2n − 1
n ,

and we obtain rapid mixing only in the case ∆ = 2.
For (σ, σ∪{w}) ∈ S, let Ei(w, σ) be the set of edges containing w which have

i occupied vertices in σ. Using a result like Theorem 1 above, it is shown in [3]
that, for the stopping time T given by the first epoch at which the Hamming
distance between the coupled chains changes,

E[dHam(XT , YT |X0 = σ, Y0 = σ ∪ {w})] ≤ 2

m−2
∑

i=0

pi|Ei| ≤ 2p1∆, (4)

where the pi is the probability that d(XT , YT ) = 2 if w is in a single edge
with i occupied vertices. Since p1 < 1/(m − 1), we obtain rapid mixing when
2∆/(m − 1) ≤ 1, i.e. when m ≥ 2∆ + 1. See [3] for details.

The approach of section 2 would lead us to define a metric for which the
distance between σ and σ∪{w} is (1−2p1∆)+2

∑m−2
i=0 pi|Ei|. By Lemma 1, we

know that this metric contracts in expectation. However, prompted by the form
of this metric, but retaining the freedom to optimise constants, we will instead
define the new metric d to be d(σ, σ ∪ {w}) =

∑m−2
i=0 ci|Ei|, where 0 < ci ≤ 1

(0 ≤ i ≤ m − 2) are a nondecreasing sequence of constants to be determined.
Using this metric, we obtain the following theorem.

Theorem 3. Let ∆ be fixed, and let H be a hypergraph such that m ≥ ∆+2 ≥ 5,
or ∆ = 3 and m ≥ 2. Then the Markov chain M(H) has mixing time O(n log n).

Proof. Without loss of generality, we take cm−2 = 1 and we will define c−1 =
c0, cm−1 ≥ ∆ + 1. Note that c−1 has no real role in the analysis, and is chosen
only for convenience, but cm−1 is chosen so that cm−1 − cm−2 ≥ ∆ ≥ d(σ, σ′)



for any pair (σ, σ′) ∈ S. We require ci > 0 for all i so that we will always have
d(σ, σ′) > 0 if σ 6= σ′.

Now consider the expected change in distance between σ and σ ∪ {w} after
one step of the chain.

If w is chosen, then the distance decreases by
∑m−2

i=0 ci|Ei|. The contribution

to the expected change in distance is − 2
2n

∑m−2
i=0 ci|Ei|.

If we insert a vertex v in an edge containing w, then we increase the distance
by (ci+1−ci) ≥ 0 for each edge in Ei containing v. This holds for i = 0, . . . , m−2,
by the choice of cm−1 = ∆ + 1. Let U be the set of unoccupied neighbours of w,
and νi(v) be the number of edges with i occupants containing w and v. Then
∑

v∈U

νi(v) =
∑

v∈U

∑

e∈Ei

1v∈e =
∑

e∈Ei

∑

v∈e∩U

1 =
∑

e∈Ei

(m − i − 1) = (m − i − 1)|Ei|.

implies that
∑

v∈U

1

2n

m−2
∑

i=0

νi(v)(ci+1 − ci) =
1

2n

m−2
∑

i=0

(ci+1 − ci)(m − i − 1)|Ei|.

If we delete a vertex v in an edge containing w, then we decrease the distance
by (ci − ci−1) for each edge in Ei containing v. This holds for i = 0, . . . , m − 2,
by the choice of c−1. Let O be the set of occupied neighbours of w, and νi(v)
be the number of edges with i occupants containing w and v. Then a similar
argument gives the contribution as

−
∑

v∈O

1

2n

m−2
∑

i=0

νi(v)(ci − ci−1) = −
1

2n

m−2
∑

i=0

(ci − ci−1)i|Ei|.

Let d0 = d(σ, σ ∪ {w}), and let d1 be the distance after one step of the chain.
The change in expected distance E′ = E[d1 − d0] satisfies

2nE′ ≤− 2

m−2
∑

i=0

ci|Ei| +
m−2
∑

i=0

(ci+1 − ci)(m − i − 1)|Ei| −
m−2
∑

i=0

(ci − ci−1)i|Ei|

=

m−2
∑

i=0

(ici−1 − (m + 1)ci + (m − i − 1)ci+1) |Ei|.

We require E[d1−d0] ≤ −γ, for some γ ≥ 0, which holds for all possible choices of
Ei if and only if (m−i−1)ci+1−(m+1)ci+ici−1 ≤ −γ for all i = 0, 1, . . . , m−2.
Thus we need a solution to

ici−1 − (m + 1)ci + (m − i − 1)ci+1 ≤ −γ (i = 0, . . . , m − 2), (5)

0 = c−1 < c0 ≤ c1 ≤ · · · ≤ cm−3 ≤ cm−2 = 1, cm−1 ≥ ∆ + 1, γ ≥ 0,

with γ > 0 if possible. Solving for the optimal solution gives

ci =
γ

∑i
j=0

(

m−1
j

)

− m−∆−2+γ
m

∑i
j=0

(

m
j

)

(

m−1
i

) (i = 0, . . . , m − 2),

γ =
2m − 1 − m

(m − 2)2m−1 + 1

(

m − ∆ − 2 +
m(m − 1)

2m − 1 − m

)

.



Let f(m) = m − 2 + m(m−1)
2m−1−m , then we can have γ ≥ 0 if and only if f(m) ≥ ∆,

and γ > 0 if and only if f(m) > ∆.
If m ≥ 5 then m(m−1)/(2m−1−m) < 1, so we will have f(m) > ∆ exactly

when m ≥ ∆ + 2. For smaller values of m, f(2) = 2, f(3) = 2 1
2 and f(3) = 3 1

11 .
The new case here is ∆ = 3, m ≥ 4. In any case for which f(m) > ∆,

standard path coupling arguments yield the mixing times claimed since we have
contraction in the metric and the minimum distance is at least c0. Mixing for
∆ = 3, m ≤ 3 was shown in [13]), so we have mixing for ∆ = 3 and every m. ⊓⊔

Remark 4. The independent set problem here has a natural dual, that of sam-
pling an edge cover from a hypergraph with edge size ∆ and degree m. An edge
cover is a subset of E whose union contains V . For the graph case of this sam-
pling problem, with arbitrary m, see [5]. By duality this gives the case ∆ = 2 of
the independent set problem here.

4 Colouring 3-uniform hypergraphs

In our second application, also from [3], we consider proper colourings of 3-
uniform hypergraphs. We again use Glauber dynamics. Our hypergraph H will
have maximum degree ∆, uniform edge size 3, and we will have a set of q colours.
For a discussion of the easier problem of colouring hypergraphs with larger edge
size see [3]. A colouring of the vertices of H is proper if no edge is monochromatic.
Let Ω′(H) be the set of all proper q-colourings of H. We define the Markov chain
C(H) with state space Ω′(H) by the following transition process. If the state of
C at time t is Xt, the state at t + 1 is determined by

1. selecting a vertex v ∈ V and a colour k ∈ {1, 2, . . . , q} uniformly at random,
2. let X ′

t be the colouring obtained by recolouring v colour k
3. if X ′

t is a proper colouring let Xt+1 = X ′
t

otherwise let Xt+1 = Xt.

This chain is easily shown to be ergodic with the uniform stationary distribution.
For some large enough constant ∆0, it was shown in [3] to be rapidly mixing
for q > 1.65∆ and ∆ > ∆0, using a stopping times analysis. Here we improve
this result, and simplify the proof, by using a carefully chosen metric which is
prompted by the new insight into stopping times analyses. If w is the change
vertex, the intuition in [3] was that edges which contain both colours of w are
initially “dangerous” but tend to become less so after a time. Thus our metric
will be a function of the numbers of edges containing w with various relevant
colourings.

Theorem 4. Let ∆ be fixed, and let H be a 3-uniform hypergraph of maxi-
mum degree ∆. Then if q ≥

⌈

3
2∆ + 1

⌉

, the Markov chain C(H) has mixing time
O(n log n).

Proof. Consider two proper colourings X and Y differing in a single vertex w.
Without loss of generality let the change vertex w be coloured 1 in X and 2 in Y .



We will partition the edges e ∈ E containing w into four classes E1, E2, E3, E4,
determined by the colouring of e \ {w}, as follows:

E1 : {1, 2}, E2 :
⋃

i>2{1, i} ∪ {2, i}, E3 :
⋃

i>2{i, i}, E4 :
⋃

2<i<j{i, j}.

Instead of Hamming distance, we define a metric d by d(X, Y ) =
∑4

i=1 ci|Ei|,
where 1 = c1 ≥ c2 ≥ c3 ≥ c4 > 0, and for convenience c0 = ∆ + 1. Note that
d(X, Y ) ≤ ∆ if X, Y have Hamming distance 1. The diameter is therefore at
most ∆n in the metric d. Arguing as in Section 3, we have

nqE[d1 − d0] ≤ −(q − |E3|)
(

c1|E1| + c2|E2| + c3|E3| + c4|E4|
)

+|E1|
(

−2(q − ∆ − 1)(c1 − c2) + 2(c0 − c1)
)

+|E2|
(

−(q − ∆ − 2)(c2 − c4) − (c2 − c3) + (c0 − c2) + (c1 − c2)
)

+|E3|
(

−2(q − ∆ − 2)(c3 − c4) + 4(c2 − c3)
)

+|E4|
(

2(c3 − c4) + 4(c2 − c4)
)

.

(6)

If we set c1 = 1,

c2 =
2q − 2∆ + 1

2q − ∆ + 1
, c3 = c4 =

2q − 3∆ + 1

2q − ∆ + 1
, γ =

2q2 − q(3∆ − 1) − 4∆

2q − ∆ + 1
, (7)

then (6) yields

E[d1] ≤ d0 −
γ∆

nq
≤

(

1 −
γ

nq

)

d0. (8)

The condition γ ≥ 0 is equivalent to

q ≥ 3∆−1
4

(

1 +
√

1 + 32∆
(3∆−1)2

)

, i.e. q ≥
⌈

3
2∆

⌉

+ 1. (9)

Note that we have ci > 0 (i = 1, . . . , 4) under this condition. Note also that
γ > 0 and hence, using (8), the mixing time satisfies

τ(ε) ≤
2q2 − q∆ + q

2q2 − q(3∆ − 1) − 4∆
n ln

(∆n

ε

)

.

5 Colouring bipartite graphs

Let G = (V, E) be a bipartite graph with bipartition V1, V2, and maximum degree
∆. For v ∈ V , let N (v) = {w : {v, w} ∈ E} denote the neighbourhood of v, and
let d(v) = |N (v)| be its degree. Let Q = [q] be a colour set, and X : V → Q be a
colouring of G, not necessarily proper. Let CX(v) = {X(w) : w ∈ N (v)} be the
set of colours occurring in the neighbourhood of v, and cX(v) denote the size of
CX(v). We consider the Markov chain Multicolour on colourings of G, which
in each step picks one side of the bipartition at random, and then recolours every
vertex on that side, followed by recolouring every vertex in the other half of the
bipartition. If the state of Multicolour at time t is Xt, the state at time t+1
is given by



Multicolour

1. choosing r ∈ {1, 2} uniformly at random,
2. for each vertex v ∈ Vr,

(i) choosing a colour q(v) ∈ Q\CXt
(v) uniformly at random,

(ii) setting Xt+1(v) = q(v). (Heat bath recolouring)
3. for each vertex v ∈ V \Vr,

(i) choosing a colour q(v) ∈ Q\CXt+1(v) uniformly at random,
(ii) setting Xt+1(v) = q(v).

Note that the order in which the vertices are processed in steps 2 and 3 is
immaterial, and that in step 3, CXt+1(v) is well defined since all of v’s neighbours
have been recoloured in step 2. We prove the following theorem.

Theorem 5. The mixing time of Multicolour is O(log(n)) for q > f(∆),
where f is a function such that
(1) f(∆) → β∆, as ∆ → ∞, where β satisfies βeβ = 1,
(3) f(∆) < ⌈11∆/6⌉ for ∆ ≥ 31.
(2) f(∆) ≤ ⌈11∆/6⌉ for ∆ ≥ 14.

This chain is a single-site dynamics intermediate between Glauber and Scan

(which uses the same vertex update procedure as Glauber, but choses the vertices
in a deterministic order). It is easy to see that it is ergodic if q > ∆ + 1, and
has equilibrium distribution uniform on all proper colourings of G. Observe also
that it uses many fewer random bits than Glauber. Indeed the following easy
Corollary of Theorem 5 is proved in the full paper [4].

Corollary 1. The mixing time for Scan is at most that for Multicolour.

To prove Theorem 5 we need the following lemmas, whose proofs are given
in [4].

Lemma 2. For 1 ≤ i ≤ ∆ let Si be a subset of (Q − q0) such that mi = |Si| ≥
q −∆. Let si be selected uniformly at random from Si, independently for each i.
Finally let C = {si : 1 ≤ i ≤ ∆} and c = |C|. Then

E[q − c | s1 = q1] ≥ 1 + (q − 2)

(

1 −
1

q − ∆

)

(∆−1)(q−∆)
q−2

= α.

Lemma 3. For 1 ≤ i ≤ ∆ let Si be a subset of (Q − q0) such that mi = |Si| ≥
q −∆. Let si be selected uniformly at random from Si, independently for each i.
Finally let C = {si : 1 ≤ i ≤ ∆} and c = |C|. Then

E

[

1

q − c
| s1 = q1

]

≤
1

α

(

1 +
(q − α − 1)(α − 1)

(q − ∆)(q − 2)α

)

= α′.

Proof (Proof of Theorem 5). In the path coupling setting, we will take S to be
the set of pairs of colourings which differ at exactly one vertex. Let v be the
change vertex for some pair (X, Y ) ∈ S, and assume without loss that v ∈ V1.
The distance between X and Y is defined to be d(X, Y ) =

∑

w∈N (v)
1

q−cX,Y (w) ,



where cX,Y (w) is taken to be min{cX(w), cY (w)} in the case that they differ.
We couple as follows (the usual path coupling for Glauber dynamics). If we are
recolouring a vertex which is not a neighbour of v, then the sets of available
colours in X and Y are the same, and we use the same colour in both copies of
the chain. If we are recolouring a vertex w ∈ N (v) then there are three cases:

1. |{X(v), Y (v)} ∩ {X(z) : z ∈ N (w)\{v}}| = 2.
Colours X(v) and Y (v) are not available for w in either X or Y , the sets of
available colours are the same, and we use the same colour in both X , Y .

2. |{X(v), Y (v)} ∩ {X(z) : z ∈ N (w)\{v}}| = 1.
Without loss assume X(v) is not available to w in either X or Y , and Y (v)
is only available in X . For any colour other than Y (v), we couple the same
colour for w in X and Y . For Y (v), we couple recolouring w with Y (v) in X
by uniformly recolouring w from the available colours in Y .

3. |{X(v), Y (v)} ∩ {X(z) : z ∈ N (w)\{v}}| = 0.
Here colour Y (v) is only available in chain X , and X(v) in only available in
Y . We couple these colours together, and for each other colour available to
both X, Y , we recolour w with the same colour.

In case 1, there is no probability of w being coloured differently in the two chains.
In the other cases, the probability of disagreement at w is 1

q−cX,Y (w) .

Let X ′, Y ′ be the colourings after recolouring Vr (half a step of Multi-

colour) and X ′′, Y ′′ be the colourings after the full step of Multicolour. We
use primes and double primes to denote the quantities in X ′ and X ′′ respectively,
corresponding to those in X . If we randomly select V1 to be recoloured first, then
the two copies of the chain have coupled in X ′ and Y ′ since the vertices in V1

have the same set of available colours in each chain.
So suppose that we select V2 to be recoloured first. The only vertices in

V2 that have different sets of available colours are the neighbours of v. Let
N (v) = {w1, . . . , wk} and consider the path W0, W1, . . . , Wk+1 from X ′ to Y ′,
where for 1 ≤ i ≤ k, Wi agrees with X ′ on all vertices except w1, . . . , wi which
are coloured as in Y ′, and W0 = X ′ and Wk+1 = Y ′. Then for i ≤ k we have

d(Wi−1, Wi) = 1wi

∑

z∈N (wi)

1

q − cWi−1,Wi
(z)

≤ 1wi

∑

z∈N (wi)

1

q − cWi
(z)

, (10)

where 1wi
indicates whether X ′ and Y ′ differ on wi.

Note that Pr[1wi
= 1] ≤ 1

q−cX,Y (wi)
. Furthermore, by the construction of

the coupling either conditioning on 1wi
= 1 is the same as conditioning that

Wi−1(wi) = q1, or that Wi(wi) = q1, for some q1. We assume without loss that
this is Wi. Then for each z ∈ N (wi)−v the selection of colours in CWi

(z) satisfies
the conditions of Lemma 3, since we may take q0 = X(z) and q1 as above. For v,
there is no colour q0 which is necessarily unavailable for all its neighbours, since
some are coloured as in X ′ and some as in Y ′. Hence we use a slightly weaker
bound on α and α′, given by

αv = (q−1)

(

1 −
1

q − ∆

)

(∆−1)(q−∆)
q−1

and α′
v =

1

αv

(

1 +
(q − αv)(αv)

(q − ∆)(q − 1)αv

)

.



Hence for i ≤ k, E[d(Wi−1, Wi)] ≤ 1
q−cX,Y (wi)

((∆ − 1)α′ + α′
v). The value of

d(Wk, Wk+1) is still d(X, Y ) since the vertices in V1 have not yet been recoloured.
Now we consider the vertices in V1. We apply the same analysis as above to

each path segment Wi−1, Wi, but augment the analysis using the fact that at the
time a vertex z ∈ V1 is recoloured, its neighbours (in V2) will already have been
randomly recoloured. Let the neighbours of wi be z1, z2, . . . zl, and consider the
path Z0, Z1, . . . Zl+1, where for 1 ≤ j ≤ l, Zj agrees with Wi−1 on all vertices
except z1, . . . , zj which are coloured as in Wi, and Z0 = Wi−1 and Zl+1 = Wi.
Arguing as above, for j ≤ l we have

d(Zj−1, Zj) = 1zj

∑

w∈N (zj)

1

q − cZi−1,Zi
(w)

.

But now Pr[1zj
= 1| Wi−1, Wi] ≤ 1

q−cWi−1,Wi
(zj)

1wi
. This is similar to equa-

tion (10), and the same argument gives E[1zj
= 1] ≤ 1

q−cX,Y (wi)
α′, for zj 6= v

and E[1zj
= 1] ≤ 1

q−cX,Y (wi)
α′

v if zj = v. Also, since it depends only on the

colouring of V2, we have d(Zl, Zl+1) = d(Wi−1, Wi). So

E[

l+1
∑

j=1

d(Zj−1, Zj)] ≤
1

q − cX,Y (wi)
((∆ − 1)α′ + α′

v)(((∆ − 1)α′ + α′
v) + 1).

Finally note that Wk and Wk+1 differ only in V1, so after recolouring V1 they
have coupled. Hence

E[d(X ′′, Y ′′)] =
1

2

k
∑

i=1

l+1
∑

j=1

E[d(Zj−1, Zj)]

≤
k

∑

i=1

(∆ − 1)α′ + α′
v)(((∆ − 1)α′ + α′

v) + 1

2(q − cX,Y (wi))

= d(X, Y )((∆ − 1)α′ + α′
v)

(((∆ − 1)α′ + α′
v) + 1)

2
.

This gives contraction if ((∆ − 1)α′ + α′
v) < 1. For large ∆, α′ and α′

v both
approach 1

q e∆/q. Hence we have contraction when ∆
q e∆/q < 1. For small ∆, we

can compute the smallest integral q giving contraction (see table). If we have
contraction, standard path coupling gives the mixing time bounds claimed. ⊓⊔

∆ q ⌈11∆/6⌉ q/∆ ∆ q ⌈11∆/6⌉ q/∆
22 40 41 1.82 35 63 65 1.80
23 42 43 1.83 40 72 74 1.80
25 46 46 1.84 50 90 92 1.80
30 55 55 1.83 10000 17634 18334 1.76

Minimum values of q for contraction.

Remark 5. Our analysis shows that one-step analysis of a single-site chain on
graph colourings need not break down at q = 2∆ [15, 19]. This apparent bound-
ary seems merely to be an artefact of using Hamming distance.
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