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In this paper we present several new results for planar (two-dimensional)and three-dimensional orthogonal range reporting. The methods used havesome 
ommon features. These results 
an be extended to d-dimensionalrange reporting.The results of this paper are valid in the unit-
ost RAM model with theword size logarithmi
 in the number of elements.1.1 Planar Dynami
 Range ReportingSeveral spa
e eÆ
ient stati
 data stru
tures for this problem with loga-rithmi
 query time are des
ribed in Chazelle [10℄. In parti
ular, [10℄ de-s
ribes a data stru
ture with O(n log" n) spa
e and O(logn+ k) time and adata stru
ture with O(logn+ k log log 4nk + 1) query time and O(n log logn)spa
e; here and further k = jS \ Qj is the size of the answer. Us-ing a dynamization of the fra
tional 
as
ading te
hnique of Chazelle andGuibas [9℄, Mehlhorn and N�aher [17℄ des
ribed a dynami
 data stru
turewith query time O(logn log logn + k), update time O(logn log logn) andspa
e O(n logn). Mortensen [19℄ des
ribed a data stru
ture that requiresO(n logn= log logn) spa
e and supports queries and updates in O(logn+k)and O(logn) time respe
tively. In [20℄ the spa
e requirements for thedynami
 
ase are further redu
ed: the data stru
tures of [20℄ use eitherO(n log" n) spa
e and support queries in O(logn+k) time, or O(n log logn)spa
e and O(logn + k log logn) query time, thus mat
hing the two abovementioned results of Chazelle [10℄ for the stati
 
ase.In the 
ase of orthogonal range reporting on an n � n grid, there existstati
 data stru
tures with sublogarithmi
 query time. For instan
e, Over-mars [22℄ des
ribed a data stru
ture with query time O(log logn+ k) usingspa
e O(n logn); in [3℄ a data stru
ture with query time O(log logn + k)and spa
e O(n log" n) is des
ribed. Using the redu
tion to rank spa
e te
h-nique(see, e.g., [10℄) and data stru
tures for prede
essor queries, a sublog-arithmi
 time 
an be a
hieved for the general 
ase stati
 data stru
tures.Combining the fusion trees of Willard with the result of [3℄, we obtain aO(logn= log logn+ k) query time and O(n log" n) spa
e data stru
ture; an-other data stru
ture with O(logn= log logn + k) query time is des
ribed in[26℄. Combining the exponential sear
h trees (see [4℄, [5℄,[6℄) with [3℄, weobtain a data stru
ture with O(plogn= log logn+ k) query time.In the 
ase of dynami
 planar orthogonal range reporting queries, thefastest previously known dynami
 data stru
tures (
f. [19℄, [20℄) have querytime 
(logn + k). In this paper we present a dynami
 data stru
ture with2



O(logn= log logn+k) query time for planar range reporting queries. To thebest of our knowledge, this is the �rst data stru
ture with o(logn+k) querytime.The main idea of our data stru
ture is a redu
tion of a planar rangereporting query to two three-sided queries.1.2 Three-Dimensional Range ReportingThe stati
 three-dimensional range reporting data stru
ture with query timeO(log2 n + k) and spa
e O(n log2 n= log logn) was des
ribed by Chazelle[8℄. Willard [26℄ has improved the query time to O(log2 n= log logn + k)using fusion trees. Overmars [22℄ des
ribes a data stru
ture with querytime O(logn log logn + k) and spa
e O(n log2 n). In [23℄ the query timewas redu
ed to O(logn log�� n). In [3℄ a O(n log1+" n) spa
e and O(logn)time data stru
ture was presented. To our knowledge, all previous datastru
tures for the general three-dimensional range reporting required loga-rithmi
 query time, even in the 
ase when non-
onstant penalties for ea
hpoint in the answer are allowed. In this paper we present the �rst datastru
ture for three-dimensional range reporting with sublogarithmi
 querytime; our data stru
ture supports queries in O(logn= log logn + k) timeand uses O(n log2+" n) spa
e for any " > 0. If penalties for ea
h re-ported point are allowed, we 
onstru
t a data stru
ture with query timeO((log logU)2 log log logU + k log logU) and O(n log3 n) spa
e for rangesear
hing on a U3 grid. Applying the standard redu
tion to rank spa
ete
hnique, we obtain a O(plogn= log logn + k log logn) time data stru
-ture for range reporting in R3. Finally, the last results 
an be extendedto stati
 d-dimensional range reporting: we present data stru
tures withO((logn= log logn)d�2 + k) query time and O(n logd�1+" n) spa
e for any" > 0, and O((logn= log logn)d�3(log logn)2 log log logn+ k log logn) querytime and O(n logd n) spa
e respe
tively.Our approa
h depends on a redu
tion of a three-dimensional range re-porting query to several dominan
e reporting queries.1.3 Main ResultsWe start with a more pre
ise formulation of our main results.Theorem 1 There is a data stru
ture D that supports planar orthogo-nal range reporting queries in O(logn= log logn + k) time and updates inO(log2 n) amortized time, where k is the size of the answer. D 
an be3




onstru
ted in O(n logn) time and requires O(n log" n) spa
e for arbitrary" > 0.Theorem 2 There is a data stru
ture D0 that supports planar orthogonalrange reporting queries in O(logn= log logn + k log logn) time and updatesin O(log2 n) amortized time, where k is the size of the answer. D0 
an be
onstru
ted in O(n logn) time and requires O(n log logn) spa
e.The result of Theorem 1 is a log logn fa
tor improvement in query time
ompared to [20℄ and an improvement in terms of both spa
e and query time
ompared to [19℄.A three-sided range reporting query is a spe
ial 
ase of the planar rangereporting query, in whi
h one side of the query re
tangle is 
onstrained to lieon one of the axes. Our result is based on two general redu
tions. The �rstredu
tion 
onverts a dynami
 data stru
ture for three-sided queries into adynami
 data stru
ture for planar range reporting. The se
ond redu
tion
onverts a dynami
 data stru
ture with spa
e �(n logp n) into a dynami
data stru
ture with spa
e O(n log" n) for arbitrary 
onstants p > 0, " > 0.The pre
ise des
ription of redu
tions is given in Theorems 7 and 8. Theseredu
tions are of interest on their own, sin
e they elu
idate the 
onne
tionbetween data stru
tures for three-sided range queries and (spa
e eÆ
ient)data stru
tures for general planar range reporting queries.In the 
ase of three-dimensional range reporting, we a
hieve the followingresults:Theorem 3 There exists a data stru
ture that uses spa
e O(n log2+" n)and answers three-dimensional orthogonal range reporting queries inO(logn= log logn + k) time.Theorem 4 There exists a data stru
ture that uses spa
e O(n log2+" n)and answers three-dimensional orthogonal range reporting queries inO(plogn= log logn+ k log logn) time.Applying the te
hnique from [3℄ and redu
tion to rank spa
e, we 
anobtain the following results for d > 3 dimensions.Theorem 5 For d � 3, there exists a data stru
ture that uses spa
eO(n logd�1+" n) and answers d-dimensional range reporting queries inO((logn= log logn)d�2 + k) time. There also exists a data stru
ture thatuses spa
e O(n logd n) and answers d-dimensional range reporting queriesin O((logn= log logn)d�3(log logn)2 log log logn + k log logn) time.4



Our results for three-dimensional range reporting are based on redu
-ing a three-dimensional orthogonal range reporting to dominan
e reportingqueries.In se
tion 2 we des
ribe a data stru
ture for dynami
 orthogonal rangereporting on a polynomially bounded grid. In se
tion 2.2 we show how thespa
e usage of this data stru
ture 
an be redu
ed and generalize the resultfor planar orthogonal range reporting. In se
tion 3 we des
ribe the resultsfor three-dimensional range reporting.2 An O(log n= log log n + k) Time Dynami
 DataStru
tureIn this se
tion we des
ribe a data stru
ture for planar range reporting querieson a U �U grid, where U = nO(1). This data stru
ture a
hieves query timeO(logn= log logn + k) and requires O(n log2 n) spa
e.We will use the following lemma from [26℄:Lemma 1 There is a linear spa
e dynami
 data stru
ture that sup-ports three-sided queries in O(logn= log logn + k) time, updates inO(logn= log logn) amortized time, and 
an be 
onstru
ted in O(n) time.Following [26℄, we 
all the data stru
ture from Lemma 1 a fusion prioritytree.Theorem 6 There exists a dynami
 data stru
ture A that supportsplanar orthogonal range reporting queries on a U � U grid in timeO(logn= log logn + k) and update operations in O(log2 n= log logn) amor-tized time. A uses O(n logn) words of memory and 
an be 
onstru
ted inO(n logn) time.Main Idea The main idea of our approa
h is the re
ursive division of theuniverse along the horizontal axis into intervals of equal size. That is, aU �U universe is divided into two U=2�U re
tangles; ea
h of the U=2�Ure
tangles is further subdivided into two U=4 � U re
tangles, and so on.Given an arbitrary query [a; b℄�[
; d℄, we 
an express [a; b℄ as [a; u℄[[u+1; b℄,so that [a; u℄ and [u+ 1; b℄ belong to two adja
ent horizontal intervals (say,[a; u℄� � I1 and [u+ 1; b℄ � I2) in our hierar
hy. Using this representation,we 
an answer the query [a; b℄� [
; d℄ by answering two three-sided queries:([a; u+ 1)� [
; d℄)\ (I1 � U) and ((u; b℄� [
; d℄)\ (I2 � U).Des
ription of the Data Stru
ture We assume w.l.o.g that U is apower of 2. For ease of des
ription we assume that all point 
oordinates5



belong to the interval [0; U � 1℄. Let U0 = [0; U � 1℄. We divide U0 into twoequal size intervals U1 = [0; U=2� 1℄ and U2 = [U=2; U � 1℄. U2 and U3are divided in the same way. The lower and upper bounds of the intervalU i are denoted by li and ri. This division 
ontinues as long as the intervalU i 
ontains elements from Px and the size of the interval is bigger than 1:if U i = [li; ui℄, so that ri � li > 0, and Px \ U i 6= ; U i is divided intoU2i = [li; li+(ri� li+1)=2�1℄ and U2i+1 = [li+(ri� li+1)=2; ri℄. IntervalsU2i and U2i+1 are 
alled the 
hildren intervals of U i. We denote by P ix thex-
oordinates of all points that belong to interval U i: P ix = U i\Px. We saythat an interval U j is empty (non-empty) if U j \ Px = ;( U j \ Px 6= ;). Wesay that an interval U j is on level l if (rj� lj+1) = U2l . We say that intervalU j splits [a; b℄, if lj 2 [a; b℄ and rj 62 [a; b℄, or rj 2 [a; b℄ and lj 62 [a; b℄.For ea
h non-empty set P ix (i.e., for ea
h non-empty interval U i) two datastru
tures for three-sided range reporting queries are stored. Data stru
turesfor P ix 
ontain all points in [li; ri℄� Py and support queries (li� 1; b℄� [
; d℄and [a; ri + 1) � [
; d℄. Using Lemma 1, su
h queries 
an be answered inO(logn= log logn + k) time. Ea
h point belongs to O(logn) sets P ix; hen
e,the total spa
e used by all data stru
tures is O(n logn).For ea
h level l we store in a linear spa
e data stru
ture Rl the upper andlower bounds of all non-empty intervals on level l. Rl supports prede
essorqueries, so that intervals on level l that 
ontain or split the query interval[a; b℄ 
an be found eÆ
iently. The total spa
e used by allRl is alsoO(n logn).Range Reporting To answer an arbitrary planar query [a; b℄ � [
; d℄,we �nd two adja
ent intervals U j , U j+1, so that both U j and U j+1 split[a; b℄. Those intervals 
an be found as follows. Let l be su
h that U=2l �(b�a+1) > U=2l+1. There are at most two intervals on level l that split [a; b℄.Using data stru
ture Rl, we 
an �nd su
h intervals in O(logn= log logn)time. If [a; b℄ does not interse
t with any non-empty interval on level l, then[a; b℄\ Px = ;, and no points must be reported. If [a; b℄ is 
ontained in oneinterval U i, then both 
hildren of U i split [a; b℄. If two adja
ent intervalsU i and U i+1 split [a; b℄, then [a; b℄ = [a; ri℄ [ [li+1; b℄. Therefore a query[a; b℄� [
; d℄ 
an be answered by answering at most two three-sided queriesas follows: If U i is non-empty, we report all points in ([a; ri+1)� [
; d℄)\P ix.If U i+1 is non-empty, we report all points in ((li+1 � 1; b℄� [
; d℄) \ P i+1x .Both queries 
an be answered in O(logn= log logn+ k) time.Update Operations When we insert or delete an element e, it mustbe inserted into or deleted from O(logn) data stru
tures for three-sidedrange queries. This takes time O(log2 n= log logn). Besides that, O(logn)empty intervals U j may be
ome non-empty (in the 
ase of an insertion), or6



O(logn) non-empty intervals may be
ome empty (in the 
ase of a deletion).The bounds li and ri of those intervals must be inserted into or deletedfrom the 
orresponding data stru
tures Rl. This in
urs an additional 
ostof O(log2 n= log logn).2.1 A redu
tion from three-sided to planar range reportingqueriesThe result of Theorem 6 
an be generalized as follows.Theorem 7 Suppose there is a data stru
ture B for three-sided queries withquery time O(t(n) + k), where t(n) = 
(plogn= log logn), and (amortized)update time u(n) that uses spa
e s(n) and 
an be 
onstru
ted in k(n) time.Then there exists a data stru
ture A for planar range reporting queries ona U � U grid where U = nO(1). A supports queries in time O(t(n) + k) andupdates in (amortized) time O(u(n) logn); A uses spa
e O(s(n) logn) and
an be 
onstru
ted in O(k(n) logn) time.The proof of Theorem 7 is analogous to the proof of Theorem 6.2.2 A Spa
e EÆ
ient Data Stru
tureIn this se
tion we des
ribe a general method for de
reasing the spa
e re-quirements of dynami
 data stru
tures for orthogonal range queries. The�rst result des
ribed in the introdu
tion follows from the 
ombination ofTheorem 8 and Theorem 6.Theorem 8 Let t(n) = 
(plogn= log logn). Suppose there exist a datastru
ture A for planar orthogonal range reporting queries on a U�U grid forU = nO(1), so that A has query time O(t(n)+k) and update time O(log2 n),and requires spa
e O(n logp n) for any p > 0, and a linear spa
e data stru
-ture B for three-sided queries with query time O(t(n) + k) and update timeO(log2 n).Then there is a data stru
ture D that supports planar range reporting queriesin O(t(n) + k) time and requires O(n log" n) spa
e for any " > 0. Thereis also a data stru
ture D0 that supports planar range reporting queries inO(t(n) + k log logn) time and requires O(n log logn) spa
e. Both D and D0support updates in amortized time O(log2 n). If A 
an be 
onstru
ted inO(n logp n) time, and B 
an be 
onstru
ted in O(n) time, then both D andD0 
an be 
onstru
ted in O(n logn) time.7



This theorem is a generalization of the result presented in [20℄ and 
anbe proven in a similar way. For 
ompleteness we provide a sket
h of theproof in the Appendix.3 Faster Three-Dimensional Range ReportingIn this se
tion we present fast stati
 data stru
tures for three-dimensionalrange reporting queries.We show that three-dimensional orthogonal range reporting queries
an be \redu
ed" to three-dimensional dominan
e reporting queries, i.e.,if there is a data stru
ture that supports dominan
e reporting queries inO(logn= log logn) time, then a data stru
ture for the general 
ase of or-thogonal range reporting queries 
an be 
onstru
ted.In this se
tion we will use the redu
tion to rank spa
e te
hnique(see e.g., [8℄). Using this te
hnique, a set of three-dimensional pointsP � R3 
an be translated into a set P̂ � [0; n � 1℄3. For a pointp 2 P , let p = (px; py; pz). Ea
h point p 2 P is translated intot(p) = p̂ 2 P̂ , so that p̂x = rank(px; Px), p̂y = rank(py ; Py), andp̂z = rank(pz ; Pz), where rank(a; S) = jfy 2 Sjy < agj. A query [ax; bx℄ �[ay ; by℄ � [az ; bz℄ 
an be translated into a query [âx; b̂x℄ � [ây ; b̂y℄ � [âz ; b̂z℄,so that âx = rank(pred(ax; Px); Px), b̂x = rank(pred(bx; Px); Px), ây =rank(pred(ay; Py); Py), b̂y = rank(pred(by; Py); Py), âz = rank(pred(az; Pz); Pz),b̂z = rank(pred(bz; Pz); Pz) where pred(a; S) = max(y 2 (S [ f�1gjy � a))Obviously, p 2 (P \ ([ax; bx℄ � [ay ; by℄ � [az ; bz℄)) , p̂ 2 (P̂ \ ([âx; b̂x℄ �[ây ; b̂y℄� [âz ; b̂z℄)). Thus, if we answer six prede
essor queries, we 
an redu
ean arbitrary three-dimensional query into a query on [0; n�1℄3. Prede
essorqueries 
an be answered in O(plogn= log logn) time or in O(log logU) timewhere U is the size of the universe (see e.g., [6℄, [4℄, [5℄).We will use the following notation. Reporting all points in a produ
t of atwo-dimensional re
tangle [a; b℄� [
; d℄ and a half-open interval (�1; e;℄ willbe further 
alled a �ve-sided query; reporting all points in a produ
t of aninterval [a; b℄ and two half-open intervals will be further 
alled a four-sidedquery. Reporting all points in a produ
t of three half-open intervals (ea
hof those intervals 
an be open to the left or to the right) is 
alled a three-dimensional generalized dominan
e query. A three-dimensional generalizeddominan
e query is equivalent to a three-dimensional dominan
e query. Us-ing the linear spa
e and O(logn= log logn) time data stru
ture of [14℄, weobtain the following 8



Fa
t 1 There exists a linear spa
e data stru
ture that supports generalizeddominan
e reporting queries in O(logn= log logn+ k) time.Using the data stru
ture from [16℄, we obtainFa
t 2 There exists a linear spa
e data stru
ture that supports general-ized dominan
e reporting queries on U3 grid in O((log logU)2 log log logU+k log logU) time.Our redu
tion 
onsists of three stages: First, we show how a four-sided rangequery 
an be redu
ed to a generalized dominan
e reporting query. Then, weshow that a �ve-sided range reporting 
an be redu
ed to four-sided rangereporting. Last, we demonstrate that a three-dimensional range reportingquery 
an be redu
ed to a �ve-sided query.Let P be the set of points stored in a data stru
ture; let Px, Py , and Pzbe the sets of x-,y-, and z-
oordinates of points in P .Theorem 9 Suppose there is a data stru
ture for generalized dominan
ereporting queries with O(t(n) + kp(n)) time and O(s(n)) spa
e, so thatT (n) = 
(v(n)) and v(n) is the time ne
essary to answer a prede
essorquery.Then there exists a data stru
ture that:(a) answers four-sided queries in O(t(n)+kp(n)) time and uses O(s(n) logn)spa
e.(b) answers �ve-sided queries in O(t(n)+kp(n)) time and uses O(s(n) log2 n)spa
e.(
) answers three-dimensional orthogonal range queries in O(t(n) + kp(n))time and uses O(s(n) log3 n) spa
e.Proof: In this proof we assume that all 
oordinates are in the rank spa
e.(a) We divide Px into intervals U i (and sets P ix) in the same way as in The-orem 6. For ea
h set P ix two data stru
tures for three-dimensional general-ized dominan
e reporting queries are stored. Data stru
tures for P jx supportqueries (lj�1; a℄�(�1; b℄�(�1; 
℄ and queries [a; rj+1)�(�1; b℄�(�1; 
℄.Sin
e ea
h point is stored in O(logn) data stru
tures for generalized domi-nan
e reporting, and ea
h of those data stru
tures requires O(s(n)) spa
e,the total spa
e required by our 
onstru
tion is O(s(n) logn).Consider a four-sided query [a; b℄� (�1; 
℄� (�1; d℄. To answer thisquery, we �nd two adja
ent intervals U i, U i+1, su
h that U i and U i+1 are onthe same level, and both U i and U i+1 split [a; b℄. We 
an do it using the samepro
edure as in Theorem 6. Sin
e [a; b℄ = [a; ri+ 1)[ (li+1� 1; b℄, all points9



from [a; b℄�(�1; 
℄�(�1; d℄ are either in ([a; ri+1)�(�1; 
℄�(�1; d℄)\P ixor in ((li+1 � 1; b℄� (�1; 
℄� (�1; d℄)\ P i+1x . By reporting all points inthe above queries we answer the four-sided query [a; b℄� (�1; 
℄� (�1; d℄.(b) We divide Py into sets P iy in the same way as in part (a). For ea
hset P iy we store two data stru
tures for four-sided range queries from part(a). These data stru
ture allow us to answer queries [a; b℄ � (li � 1; d℄ �[e;+1) and [a; b℄ � [
; ri + 1) � [e;+1). Sin
e every point is stored indlogne data stru
tures, and ea
h data stru
ture for four-sided range queriesrequires O(s(n) logn) spa
e, the total spa
e required by our 
onstru
tion isO(s(n) log2 n). Given a �ve-sided query [a; b℄� [
; d℄� [e;+1), we �nd twoadja
ent intervals U i and U i+1 su
h that both U i and U i+1 split [
; d℄ usingthe same algorithm as in part (a). Then, we 
an answer the �ve-sided queryby answering two four-sided queries ([a; b℄� [
; ri + 1)� [e;+1))\ P iy and([a; b℄� (li+1 � 1; d℄� [e;+1))\ P i+1y .(
) Again, Pz is divided into sets P iz in the same way as Px and Py above.We store data stru
tures for �ve-sided queries for ea
h set P iz : the queries[a; b℄� [
; d℄� [e; ri+ 1) and [a; b℄� [
; d℄� (li� 1; f ℄ are supported. Given aquery [a; b℄� [
; d℄� [e; f ℄, we 
an �nd two adja
ent U i, U i+1, su
h that bothU i and U i+1 split [e; f ℄. After this, the query is answered by reporting allpoints in ([a; b℄�[
; d℄�[e; ri+1))\P iz and ([a; b℄�[
; d℄�(li+1�1; f ℄)\P i+1z .This data stru
ture uses O(s(n) log3 n) spa
e be
ause ea
h point is storedin O(logn) data stru
tures from part (b).Corollary 1 There exists a data stru
ture that answers three-dimensionalorthogonal range reporting queries in O(plogn= log logn+k log logn) time.All data stru
tures use spa
e O(n log3 n).This Corollary 
an be obtained by a 
ombination of the redu
tion torank spa
e te
hnique, Fa
t 2, and Theorem 9 . In this 
ase, the query timeis dominated by the sear
h for prede
essors.We 
an further redu
e the spa
e requirements of the �rst data stru
ture.Theorem 10 Suppose there is a data stru
ture that supports three-dimensional dominan
e queries in O(t(n)+kp(n)) time and uses O(n) spa
efor t(n) = 
(plogn= log logn). Then there exists a data stru
ture A thatuses spa
e O(n log2+" n) for any " > 0 and answers three-dimensional rangereporting queries in O(t(n) + kp(n)) time.Proof: We start with a des
ription of the data stru
ture A. We dividePx into n1=3 intervals [xi�1; xi℄, so that ea
h three-dimensional re
tangle10



[xi�1; xi℄ � Py � Pz 
ontains n2=3 points. We divide Py into n1=3 intervals[yi�1; yi℄, so that ea
h three-dimensional re
tangle Px�[yi�1; yi℄�Pz 
ontainsn2=3 points. We divide Pz into n1=3= log3 n intervals [zi�1; zi℄, so that ea
hPx�Py� [zi�1; zi℄ 
ontains n2=3 log3 n points. Three-dimensional re
tangles[xi�1; xi℄�Px�Pz will be further 
alled x-sli
es; three-dimensional re
tanglesPx� [yi�1; yi℄�Pz and Px�Py � [zi�1; zi℄ will be 
alled y-sli
es and z-sli
esrespe
tively.For ea
h x-sli
e [xi�1; xi℄ � Px � Pz two data stru
tures for �ve-sidedrange queries are stored: they support queries (xi�1 � 1; b℄� [
; d℄� [e; f ℄and [a; xi+1)� [
; d℄� [e; f ℄. Data stru
tures for a y-sli
e Px� [yi�1; yi℄�Pzsupport queries [a; b℄� (yi�1�1; d℄� [e; f ℄ and [a; b℄� [
; yi+1)� [e; f ℄; datastru
tures for a z-sli
e Px � Py � [zi�1; zi℄ support queries [a; b℄ � [
; d℄�(zi�1 � 1; f ℄ and [a; b℄� [
; d℄� [e; zi + 1).The data stru
ture At 
ontains points (i; j; k), su
h that the 
ell[xi�1; xi℄ � [yj�1; yj ℄ � [zk�1; zk℄ 
ontains at least one point. At supportsthree-dimensional range reporting queries. The maximal number of pointsin At is O(n= log3 n); hen
e, we 
an use Theorem 9 to implement At in O(n)spa
e. For ea
h non-empty 
ell [xi�1; xi℄� [yj�1; yj ℄� [zk�1; zk℄, we also storethe list of points 
ontained in this 
ell.For ea
h [xi�1; xi℄�Py�Pz , Px� [yi�1; yi℄�Pz and Px�Py � [zi�1; zi℄ are
ursively de�ned data stru
ture is stored. We 
all the data stru
ture that
ontains all points a level 0 data stru
ture, and data stru
tures that 
ontainall points in an x-, y�, or z-sli
e of a level l data stru
ture are 
alled level l+1data stru
tures. Observe that the total number of elements in all level l datastru
tures in
reases by a fa
tor 3 with ea
h level. On every r = Æ log logn-th level we apply redu
tion to rank spa
e. We will explain later how theparameter Æ 
an be 
hosen. Let Dl be a data stru
ture on ir-th re
ursionlevel, and let Sl+1 be the set of points in an arbitrary x-sli
e, y-sli
e, orz-sli
e of Dl. We store a table that allows us to �nd the 
oordinates of apoint in Sl+1 in the rank spa
e of Sl+1; using hash fun
tions, this table 
anbe implemented in O(jSl+1j log(jSl+1j)) bits. We also store for ea
h pointin the rank spa
e of Sl+1 its \original" 
oordinates in Dl. The total spa
eused by the tables for all sli
es is O(jDlj log(jDlj)) bits.Consider an arbitrary query [a; b℄� [
; d℄� [e; f ℄. If the query re
tangle[a; b℄ � [
; d℄ � [e; f ℄ is 
ontained in one sli
e, we transfer the query to adata stru
ture for the 
orresponding sli
e. Otherwise, let xi1�1 < a < xi1 ,xi2�1 < b < xi2 , yj1�1 < 
 < yj1 , yj2�1 < d < yj2 , and zk1�1 < e < zk1 ,zk2�1 < f < zk2 . We report all points in [xi1 ; xi2�1℄�[yj1 ; yj2�1℄�[zk1 ; zk2�1℄by �nding all non-empty 
ells (i; j; k) 2 [i1; i2� 1℄� [j1; j2� 1℄� [k1; k2� 1℄in At and reporting all points in those 
ells. The rest of the points in11



[a; b℄� [
; d℄� [e; f ℄ 
an be found by answering six �ve-sided queries: [a; b℄�[
; d℄�(zk2�1�1; f ℄, [a; b℄�[
; d℄�[e; zk1+1), [a; b℄�(yj2�1�1; d℄�[zk1; zk2�1℄,[a; b℄ � [
; yj1 + 1) � [zk1 ; zk2�1℄, (xi2�1 � 1; b℄ � [yj1 ; yj2�1℄ � [zk1 ; zk2�1℄,[a; xi1 + 1)� [yj1 ; yj2�1℄� [zk1 ; zk2�1℄.Query time 
an be 
omputed by the formula q(n; k) = O(t(n)+k0p(n))+q(n2=3 log3 n; k00), where q(n; k) is the query time, k0 + k00 = k, and k is thesize of the answer. Hen
e, q(n; k) = O(t(n) + kp(n)).The spa
e used by our data stru
ture 
an be 
omputed as follows. Letsl(n) be the maximal number of points stored in a level l data stru
ture; sl(n)
an be estimated with a re
ursive formula sl(n) = (sl�1(n))2=3 log3(sl�1(n));hen
e, sl(n) = O((sl�1(n))2=3+
) for an arbitrary 
onstant 
. The maximumnumber of levels is log(2+3
)=3(1=2) loglogn = O(log logn). Consider anarbitrary group of Æ log logn levels: ir; ir + 1; : : : ; ir + Æ log logn � 1, i =0; 1; : : : ; dlog(3=(2+3
) 2=Æe� 1. Ea
h point is stored in 3ir data stru
tures onlevel ir. Therefore, the total number of elements in all data stru
tures onlevel ir is n3ir. Sin
e redu
tion to rank spa
e was applied on level ir, ea
hpoint is stored with O(sir(n)) bits. A data stru
ture on level ir requiresO(sir(n) log3(sir(n))) bits. Ea
h point in ea
h data stru
ture on level irtakes O(log3(sir(n))) bits, and sir(n) = O(n((2+3
)=3)ir). Therefore the totalnumber of bits used is (up to a 
onstant fa
tor) n((2+
)=3)3ir3ir log3 n Fora suÆ
iently small 
, ((2 + 
)=3)3 < 1=3 and n((2 + 
)=3)3ir3ir log3 n <n log3 n; hen
e, all data stru
tures on level ir use O(n log3 n) bits.The spa
e used by the data stru
tures on levels ir+1; : : : ; ir+Æ log logn�1 in
reases by a fa
tor 3 with ea
h level. Hen
e the total spa
e usedby all re
ursive data stru
tures on levels ir; : : : ; ir + Æ log logn � 1 isO(n log3 n)PÆ log logn�1i=0 3i. We 
an 
hoose Æ so that PÆ log logn�1i=0 3i =O(log" n) for an arbitrary " > 0. Hen
e all data stru
tures on levelsir+1; : : : ; ir+Æ log logn�1 use O(n log3+" n) bits. Sin
e there is a 
onstantnumber of groups of levels, all re
ursively de�ned data stru
tures requireO(n log2+" n) words of logn bits.Theorem 4 follows from Corollary 1 and Theorem 10. Theorem 3 followsfrom Fa
t 1 and Theorem 10.It was shown in [3℄ that given a O(s(n)) spa
e and O(t(n)+kp(n)) timedata stru
ture for d-dimensional range reporting queries, we 
an 
onstru
tfor any " > 0 a O(t(n)(logn= log logn)m+kp(n)) time and O(s(n) logm+" n)spa
e data stru
ture that supports (d + m)-dimensional orthogonal rangereporting queries. Applying the te
hnique of [3℄ to Fa
t 1 
ombined withTheorem 10 we obtain the �rst result of Theorem 5. Combining redu
tion torank spa
e, Fa
t 2, and Theorem 9, we obtain the se
ond result of Theorem12



5.4 SummaryIn this paper we presented the �rst dynami
 data stru
ture for planar or-thogonal range reporting and stati
 data stru
tures for three-dimensionalorthogonal range reporting with sublogarithmi
 query time.Our results are based on some important redu
tions. Using those re-du
tions a dynami
 data stru
ture for three-sided queries with query timeO(t(n) + k), where t(n) = 
(plogn= log logn) (i.e., t(n) is not asymptoti-
ally faster than the lower bound on the prede
essor queries), 
an be 
on-verted into a data stru
ture for general planar range reporting queries withonly a small in
rease in spa
e and without 
hanging query time. We 
analso redu
e three-dimensional orthogonal range reporting queries to three-dimensional dominan
e reporting queries.Several modi�
ations of the presented redu
tions 
an be proven in asimilar way. For instan
e, given a linear spa
e data stru
ture for three-sidedqueries on the n�n grid with query timeO(t(n)+k) for an arbitrary fun
tiont(n), a dynami
 data stru
ture for orthogonal range reporting on the n� ngrid with query time O(t0(n) + k), su
h that t0(n) = O(t0(n2=3) + t(n2=3)),and spa
e O(n log" n) 
an be 
onstru
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Appendix I. Proof of Theorem 8Proof Sket
h : The set of points S is divided into 
olumns Ci and rowsRi, sothat the number of elements in every 
olumn (row) is between pn logp n=2and 2pn logp n. We store lists of points in all Kij = Ci\Rj ; data stru
tureDt 
ontains points (i; j) for Kij 6= ;. Given A, Dt 
an be implemented inO(n) spa
e, so that queries and updates are supported in time O(t(n) + k)and O(log2 n) respe
tively. For ea
h 
olumn and row two data stru
tures forthree-sided range queries are stored. Using those data stru
tures B, everyquery of the kind (ri�1; d℄ � [a; b℄ or [d; ri) � [a; b℄ or (
j�1; b℄ � [
; d℄ and[b; 
j)� [
; d℄ 
an be answered in O(t(n)+k) time. If the number of elementsin a row or a 
olumn ex
eeds t(n) a re
ursively de�ned data stru
ture isstored for this row or 
olumn.Consider a query [a; b℄� [
; d℄. We �nd imin, imax, jmin, and jmax, su
hthat 
imin�1 < a, b < 
imax , rjmin�1 < 
 and d < rjmax . Again, we distinguishbetween two 
ases. If 
j�1 < a and b < 
j for some j, or ri�1 < 
 and d < rifor some i, then the query is transferred to a data stru
ture 
orrespondingto 
olumn Cj or row Ri. Otherwise we answer four three-sided range queriesto report all elements from marginal 
olumns and rows, and we identify allnon-empty re
tangles Kij by answering query [imin; imax�1℄� [jmin; jmax�1℄. In the �rst 
ase, the size of the data stru
ture is redu
ed from n topn logp n, and in the se
ond 
ase the query is answered in O(t(n) + k)time. Let query time q(n; k) = O(t0(n) + k); t0(n) 
an be estimated ast0(n) = max(O(t(n)); t0(pn logp n)). t0(n) < O(t(n)) + t0(pn logp n). Sin
epn logp n = o(n(b+1)=2b) for any integer b, t0(n) < O(t(n)) + t0(n(b+1)=2b).For t(n) = 
(plogn= log logn), t0(n) = O(t(n)). Hen
e, queries 
an beanswered in O(t(n) + k) time.We 
all the data stru
ture that 
ontains all points a level 0 data stru
-ture, and data stru
tures that 
ontain all points in a 
olumn or row of alevel l data stru
ture are 
alled level l+ 1 data stru
tures. It 
an be shownthat the maximal re
ursion level lmax = log logn+ 
, where 
 is a 
onstant.Every point is stored in D O(logn) times: on
e in a level 0 data stru
ture,twi
e in level 1 data stru
tures, 2l times in level l data stru
tures. The spa
erequirements 
an be redu
ed from O(n logn) to O(n log" n) for any " > 0by using the dynami
 range redu
tion to extended rank spa
e te
hnique de-s
ribed in [20℄. If we apply this te
hnique on a re
ursion level l, every point inea
h level l data stru
ture 
an be stored with only O(log(sl(n))) bits, wheresl(n) is the maximal number of points in a level l data stru
ture. To avoidpenalties for ea
h point in the answer, we apply range redu
tion on every" log logn-th level. Then every group of " log logn levels takes O(n log1+" n)16



bits, and the whole data stru
ture D requires O(n log" n) words of lognbits. Alternatively, the dynami
 range redu
tion 
an be applied on ea
hre
ursive level. Then all data stru
tures on level l, l = 1; 2; : : : ; log logn+ 
,use O(n logn) bits, and the total spa
e 
an be redu
ed to O(n log logn)words. But in this 
ase the reverse range redu
tion must be applied upto �(log logn) times to restore the original point 
oordinates, and for ea
hpoint in the answer an O(log logn) penalty must be paid. Therefore, thedata stru
ture D0 uses O(n log logn) words of memory, and supports queriesin time O(t(n) + k log logn).Update time 
an be estimated with help of a re
ursive formula: u(n) �O(log2 n)+2u(pn logp n) < O(log2 n)+2u(n(b+1)=2b) for an arbitrary integerb > 1. Therefore, u(n) = O(log2 n).To 
onstru
t D or D0, we must 
onstru
t a data stru
ture A withn= logp n elements, fusion priority trees for rows and 
olumns, and2pn= logp n data stru
tures for rows and 
olumns with pn logp n ele-ments ea
h. Let 
0(n) be the 
onstru
tion time of A and 
(n) the 
on-stru
tion time of D. Then for 
(n) a re
ursion 
(n) = 
0(n= logp n) +2pn= logp n
(pn logp n) + O(n) is valid. Let v(n) = 
(n)=n. As
0(n= logp n) = O(n), v(n) = 2v(pn logp n) + O(1). Sin
e the numberof re
ursive level is log logn + 
 for a 
onstant 
, v(n) = O(logn), and
(n) = O(n logn).
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