Fast Data Structures for Orthogonal
Range Reporting

Marek Karpinski* Yakov Nekrich'

Abstract

In this paper we present new results for planar and multi-dimensional
orthogonal range reporting. We describe a dynamic data structure for
planar orthogonal range reporting with query time O(log n/ loglog n+
k) and space O(nlog® n) for any ¢ > 0 and k the answer size. This is
the first dynamic data structures with sublogarithmic query time for
that problem.

We also present a static data structure for three-dimensional range
reporting queries with O(logn/loglogn + k) query time. For three-
dimensional range reporting on a U? grid, we present a data structure
with query time O((loglogU)? logloglog U + k loglog U); this leads to
three-dimensional range reporting in O(y/logn/loglogn + kloglogn)
time. The last results can be extended to d-dimensional range report-
ing yielding also the best up to now query times for that case.

Our results depend on a new reductions method. This method could
be of independent interest.

Keywords: Algorithms and Data Structures, Range Reporting, Pla-
nar Orthogonal Range Reporting, Multi-Dimensional Range Reporting

1 Introduction

The orthogonal range reporting problem is to maintain a set of points S so
that for an arbitrary d-dimensional query rectangle ¢ all points from S that
belong to ¢} can be reported. This problem has been studied extensively;
surveys of the previous results are given in [2] and [12].

*Dept. of Computer Science, University of Bonn. E-mail marek@cs.uni-bonn.de. Work
partially supported by a DFG grant, Max-Planck Research Prize, and IST grant 14036
(RAND-APX).

Dept. of Computer Science, University of Bonn. E-mail yasha@cs.uni-bonn.de. Work
partially supported by IST grant 14036 (RAND-APX).

In this paper we present several new results for planar (two-dimensional)
and three-dimensional orthogonal range reporting. The methods used have
some common features. These results can be extended to d-dimensional
range reporting.

The results of this paper are valid in the unit-cost RAM model with the
word size logarithmic in the number of elements.

1.1 Planar Dynamic Range Reporting

Several space efficient static data structures for this problem with loga-
rithmic query time are described in Chazelle [10]. In particular, [10] de-
scribes a data structure with O(nlog®n) space and O(logn + k) time and a

i fl) query time and O(nloglogn)
space; here and further £ = |S N Q| is the size of the answer. Us-

ing a dynamization of the fractional cascading technique of Chazelle and
Guibas [9], Mehlhorn and Naher [17] described a dynamic data structure
with query time O(lognloglogn + k), update time O(lognloglogn) and
space O(nlogn). Mortensen [19] described a data structure that requires
O(nlogn/loglogn) space and supports queries and updates in O(logn -+ k)
and O(logn) time respectively. In [20] the space requirements for the
dynamic case are further reduced: the data structures of [20] use either
O(nlog® n) space and support queries in O(logn + k) time, or O(n loglogn)
space and O(logn + kloglogn) query time, thus matching the two above
mentioned results of Chazelle [10] for the static case.

In the case of orthogonal range reporting on an n x n grid, there exist
static data structures with sublogarithmic query time. For instance, Over-
mars [22| described a data structure with query time O(loglogn -+ k) using
space O(nlogn); in [3| a data structure with query time O(loglogn + k)
and space O(nlog® n) is described. Using the reduction to rank space tech-
nique(see, e.g., [10]) and data structures for predecessor queries, a sublog-
arithmic time can be achieved for the general case static data structures.
Combining the fusion trees of Willard with the result of [3], we obtain a
O(logn/loglogn + k) query time and O(nlog®n) space data structure; an-
other data structure with O(logn/loglogn + k) query time is described in
[26]. Combining the exponential search trees (see [4], [5],[6]) with [3], we
obtain a data structure with O(y/logn/loglogn -+ k) query time.

In the case of dynamic planar orthogonal range reporting queries, the
fastest previously known dynamic data structures (cf. [19], [20]) have query
time Q(logn + k). In this paper we present a dynamic data structure with

data structure with O(logn + kloglog

O(logn/ loglogn -+ k) query time for planar range reporting queries. To the
best of our knowledge, this is the first data structure with o(logn-+k) query
time.

The main idea of our data structure is a reduction of a planar range
reporting query to two three-sided queries.

1.2 Three-Dimensional Range Reporting

The static three-dimensional range reporting data structure with query time
O(log?n + k) and space O(nlog®n/loglogn) was described by Chazelle
[8]. Willard [26] has improved the query time to O(log?n/loglogn + k)
using fusion trees. Overmars [22] describes a data structure with query
time O(lognloglogn + k) and space O(nlog?n). In [23] the query time
was reduced to O(lognlog™n). In [3] a O(nlog! ™ n) space and O(logn)
time data structure was presented. To our knowledge, all previous data
structures for the general three-dimensional range reporting required loga-
rithmic query time, even in the case when non-constant penalties for each
point in the answer are allowed. In this paper we present the first data
structure for three-dimensional range reporting with sublogarithmic query
time; our data structure supports queries in O(logn/loglogn + k) time
and uses O(nlog?t®n) space for any ¢ > 0. If penalties for each re-
ported point are allowed, we construct a data structure with query time
O((loglogU)?logloglogU + kloglogU) and O(nlog®n) space for range
searching on a U?® grid. Applying the standard reduction to rank space
technique, we obtain a O(y/logn/loglogn + kloglogn) time data struc-
ture for range reporting in R®. Finally, the last results can be extended
to static d-dimensional range reporting: we present data structures with
O((logn/loglogn)?2 + k) query time and O(nlog? 1*¢n) space for any
e > 0, and O((logn/ loglogn)?—3(loglog n)?logloglogn + kloglogn) query
time and O(nlog?n) space respectively.

Our approach depends on a reduction of a three-dimensional range re-
porting query to several dominance reporting queries.

1.3 Main Results

We start with a more precise formulation of our main results.

Theorem 1 There is a data structure D that supports planar orthogo-
nal range reporting queries in O(logn/loglogn + k) time and updates in
O(log?n) amortized time, where k is the size of the answer. D can be

constructed in O(nlogn) time and requires O(nlog®n) space for arbitrary
> 0.

Theorem 2 There is a data structure D' that supports planar orthogonal
range reporting queries in O(logn/loglogn -+ kloglogn) time and updates
in O(log?n) amortized time, where k is the size of the answer. D' can be
constructed in O(nlogn) time and requires O(nloglogn) space.

The result of Theorem 1 is a loglogn factor improvement in query time
compared to [20] and an improvement in terms of both space and query time
compared to [19].

A three-sided range reporting query is a special case of the planar range
reporting query, in which one side of the query rectangle is constrained to lie
on one of the axes. Our result is based on two general reductions. The first
reduction converts a dynamic data structure for three-sided queries into a
dynamic data structure for planar range reporting. The second reduction
converts a dynamic data structure with space ©(nlogf n) into a dynamic
data structure with space O(nlog®n) for arbitrary constants p > 0, £ > 0.
The precise description of reductions is given in Theorems 7 and 8. These
reductions are of interest on their own, since they elucidate the connection
between data structures for three-sided range queries and (space efficient)
data structures for general planar range reporting queries.

In the case of three-dimensional range reporting, we achieve the following
results:

Theorem 3 There exists a data structure that uses space O(nlog?™en)
and answers three-dimensional orthogonal range reporting queries in
O(logn/loglogn + k) time.

Theorem 4 There exists a data structure that uses space O(nlog®™n)
and answers three-dimensional orthogonal range reporting queries in

O(+/logn/loglogn + kloglogmn) time.

Applying the technique from [3] and reduction to rank space, we can
obtain the following results for d > 3 dimensions.

Theorem 5 For d > 3, there exists a dota structure that uses space
O(nlogd_p“e n) and answers d-dimensional range reporting queries in
O((logn/loglogn)®=2 + k) time. There also exists a data structure that
uses space O(n log? n) and answers d-dimensional range reporting queries
in O((logn/loglogn)?3(loglogn)?logloglogn + kloglogn) time.

4

Our results for three-dimensional range reporting are based on reduc-
ing a three-dimensional orthogonal range reporting to dominance reporting
queries.

In section 2 we describe a data structure for dynamic orthogonal range
reporting on a polynomially bounded grid. In section 2.2 we show how the
space usage of this data structure can be reduced and generalize the result
for planar orthogonal range reporting. In section 3 we describe the results
for three-dimensional range reporting.

2 An O(logn/loglogn + k) Time Dynamic Data
Structure

In this section we describe a data structure for planar range reporting queries
ona U x U grid, where U = n°1). This data structure achieves query time
O(logn/loglogn + k) and requires O(nlog?n) space.

We will use the following lemma from [26]:

Lemma 1 There is a linear space dynamic data structure thal sup-
ports three-sided queries in O(logn/loglogn + k) time, updates in
O(logn/loglogn) amortized time, and can be constructed in O(n) time.

Following [26], we call the data structure from Lemma 1 a fusion priority
tree.

Theorem 6 There exists o dynamic data structure A that supports
planar orthogonal range reporting queries on a U x U grid in time
O(logn/loglogn + k) and update operations in O(log?n/loglogn) amor-
tized time. A uses O(nlogn) words of memory and can be constructed in
O(nlogn) time.

Main Idea The main idea of our approach is the recursive division of the
universe along the horizontal axis into intervals of equal size. That is, a
U x U universe is divided into two U/2 x U rectangles; each of the U/2 x U
rectangles is further subdivided into two U/4 x U rectangles, and so on.
Given an arbitrary query |a, b] X [¢, d], we can express |a, b] as [a, u|U[u+1, b,
so that [a,u] and [u + 1, b] belong to two adjacent horizontal intervals (say,
la, u|x C I and [u+ 1,b] C Ig) in our hierarchy. Using this representation,
we can answer the query |a, b| X [¢, d] by answering two three-sided queries:
(la,u+1) x [e,d)) N (I; x U) and ((u, b] X [¢,d])N ({2 x U).

Description of the Data Structure We assume w.l.o.g that U is a
power of 2. For ease of description we assume that all point coordinates

belong to the interval [0, U —1]. Let U® = [0, U — 1]. We divide U? into two
equal size intervals Ul = [0,U/2 — 1] and U? = [U/2,U —1]. U? and U®
are divided in the same way. The lower and upper bounds of the interval
U* are denoted by I* and r*. This division continues as long as the interval
U? contains elements from P, and the size of the interval is bigger than 1:
if Ut = [I%,uY, so that r* —I* > 0, and P, NU* £ @ U* is divided into
U% = [I5l;+ (r* =1 +1)/2—1] and U = [[;+ (r* —1*+1)/2,7%. Intervals
U% and U™ are called the children intervals of U'. We denote by P¢ the
z-coordinates of all points that belong to interval Ut: P! = UN P,. We say
that an interval U7 is empty (non-empty) if UV NP, = 0(U N P, # (). We

) o U
say that an interval U7 is on level [if (r7 =17 +1) = o We say that interval

U7 splits [a,b], if IV € [a,b] and 77 & [a, b], or v/ € [a,b] and I7 & [a, b].

For each non-empty set P¢ (i.e., for each non-empty interval U*) two data
structures for three-sided range reporting queries are stored. Data structures
for P contain all points in [I%,r*] x P, and support queries (I* — 1, b] X [c, d]
and [a,r® + 1) x [¢,d]. Using Lemma 1, such queries can be answered in
O(logn/loglogn + k) time. Each point belongs to O(logn) sets P; hence,
the total space used by all data structures is O(nlogn).

For each level [we store in a linear space data structure R the upper and
lower bounds of all non-empty intervals on level {. R’ supports predecessor
queries, so that intervals on level [that contain or split the query interval
[a, b] can be found efficiently. The total space used by all R! is also O(nlogn).

Range Reporting To answer an arbitrary planar query [a,b] X [c, d],
we find two adjacent intervals U7, U7T! so that both U7 and U711 split
[a,b]. Those intervals can be found as follows. Let I be such that U/2! >
(b—a-+1) > U/2'*1. There are at most two intervals on level [that split [a, b].
Using data structure R!, we can find such intervals in O(logn/loglogn)
time. If [a, b] does not intersect with any non-empty interval on level [, then
[a,b] N P, = @, and no points must be reported. If [a, b is contained in one
interval U®, then both children of U* split [a, b]. If two adjacent intervals
Ut and U split [a, b], then [a,b] = [a,r®] U [[*t1,b]. Therefore a query
la, b] X [¢, d] can be answered by answering at most two three-sided queries
as follows: If U* is non-empty, we report all points in ([a, 7t +1) x [¢, d]) N P
If U is non-empty, we report all points in ((I*"! — 1,8 x [¢,d]) N PEFL.
Both queries can be answered in O(logn/ loglogn + k) time.

Update Operations When we insert or delete an element e, it must
be inserted into or deleted from O(logn) data structures for three-sided
range queries. This takes time O(log?n/loglogn). Besides that, O(logn)
empty intervals U7 may become non-empty (in the case of an insertion), or

O(logn) non-empty intervals may become empty (in the case of a deletion).
The bounds {* and r* of those intervals must be inserted into or deleted
from the corresponding data structures R’. This incurs an additional cost
of O(log® n/loglogn).

2.1 A reduction from three-sided to planar range reporting
queries

The result of Theorem 6 can be generalized as follows.

Theorem 7 Suppose there is a data structure B for three-sided queries with
query time O(t(n) + k), where t(n) = Q(y/logn/loglogn), and (amortized)
update time u(n) that uses space s(n) and can be constructed in k(n) time.
Then there exists a data structure A for planar range reporting queries on
a U x U grid where U =n°M . A supports queries in time O(t(n) + k) and
updates in (amortized) time O(u(n)logn); A uses space O(s(n)logn) and
can be constructed in O(k(n)logn) time.

The proof of Theorem 7 is analogous to the proof of Theorem 6.

2.2 A Space Efficient Data Structure

In this section we describe a general method for decreasing the space re-
quirements of dynamic data structures for orthogonal range queries. The
first result described in the introduction follows from the combination of
Theorem 8 and Theorem 6.

Theorem 8 Let t(n) = Q(y/logn/loglogn). Suppose there exist a data
structure A for planar orthogonal range reporting queries on o U XU grid for

U =nPW) so that A has query time O(L(n) + k) and update time O(log?®n),
and requires space O(nlogfn) for any p > 0, and a linear space data struc-
ture B for three-sided queries with query time O(t(n) + k) and update time
O(log? n).

Then there is a data structure D that supports planar range reporting queries
in O(t(n) + k) time and requires O(nlog®n) space for any € > 0. There
is also a data structure D' that supports planar range reporting queries in
O(t(n) + kloglogn) time and requires O(nloglogn) space. Both D and D’
support updates in amortized time O(log?n). If A can be constructed in
O(nlogf n) time, and B can be constructed in O(n) time, then both D and
D’ can be constructed in O(nlogn) time.

This theorem is a generalization of the result presented in [20] and can
be proven in a similar way. For completeness we provide a sketch of the
proof in the Appendix.

3 Faster Three-Dimensional Range Reporting

In this section we present fast static data structures for three-dimensional
range reporting queries.

We show that three-dimensional orthogonal range reporting queries
can be “reduced” to three-dimensional dominance reporting queries, i.e.,
if there is a data structure that supports dominance reporting queries in
O(logn/loglogn) time, then a data structure for the general case of or-
thogonal range reporting queries can be constructed.

In this section we will use the reduction to rank space technique
(see e.g., [8]). Using this technique, a set of three-dimensional points
P C R3 can be translated into a set P C [0,n — 1]>. For a point
p € P, let p = (Pz,0y,p.). Each point p € P is translated into
t(p) = p € P, so that p, = rank(p,, P.), p, = rank(p,, P,), and
p. = rank(p,, P,), where rank(a, S) = [{y € S|y < a}|. A query [a,, by] X
lay, by] X [a.,b,] can be translated into a query [ag,be] X [ay, by X [z, 2],
so that @, = rank(pred(ag, Py), Py), by = rank(pred(by, Py), Py), a4y —
rank(pred(ay, P,), P,), b, = rank(pred(by, P,), P,), &, = rank(pred(a., P,), P,),
b, = rank(pred(b,, P,), P,) where pred(a, S) = max(y € (SU{—oo}y < a))
Obviously, p € (P N ([ae, be] X [ay, by] X [a2,0.])) < p € (P N (|4, ba] ¥
lay, by| X [@2,.])). Thus, if we answer six predecessor queries, we can reduce
an arbitrary three-dimensional query into a query on [0, 7 —1]2. Predecessor
queries can be answered in O(+/logn/ loglogn) time or in O(loglog U) time
where U is the size of the universe (see e.g., [6], [4], [5])-

We will use the following notation. Reporting all points in a product of a
two-dimensional rectangle [a, b] X [¢, d] and a half-open interval (—oo, ¢,] will
be further called a five-sided query; reporting all points in a product of an
interval [a, b] and two half-open intervals will be further called a four-sided
query. Reporting all points in a product of three half-open intervals (each
of those intervals can be open to the left or to the right) is called a three-
dimensional generalized dominance query. A three-dimensional generalized
dominance query is equivalent to a three-dimensional dominance query. Us-
ing the linear space and O(logn/loglogn) time data structure of [14], we
obtain the following

Fact 1 There exists a linear space data structure that supports generalized
dominance reporting queries in O(logn/loglogn + k) time.

Using the data structure from [16], we obtain

Fact 2 There exists a linear space dala structure that supports general-
ized dominance reporting queries on U grid in O((loglog U)?logloglog U +
kloglogU) time.

Our reduction consists of three stages: First, we show how a four-sided range
query can be reduced to a generalized dominance reporting query. Then, we
show that a five-sided range reporting can be reduced to four-sided range
reporting. Last, we demonstrate that a three-dimensional range reporting
query can be reduced to a five-sided query.

Let P be the set of points stored in a data structure; let P, B,, and P,
be the sets of z-,y-, and z-coordinates of points in P.

Theorem 9 Suppose there is a data structure for generalized dominance
reporting queries with O(t(n) + kp(n)) time and O(s(n)) space, so that
T(n) = Qu(n)) and v(n) is the time necessary to answer a predecessor
query.

Then there exists a data structure that:

(a) answers four-sided queries in O(t(n)+kp(n)) time and uses O(s(n) logn)
space.

(b) answers five-sided queries in O(t(n)-+kp(n)) time and uses O(s(n) log? n)
space.

(¢) answers three-dimensional orthogonal range queries in O(t(n) + kp(n))
time and uses O(s(n)log®n) space.

Proof: In this proof we assume that all coordinates are in the rank space.
(a) We divide P, into intervals U* (and sets P*) in the same way as in The-
orem 6. For each set P two data structures for three-dimensional general-
ized dominance reporting queries are stored. Data structures for P support
queries (I —1, a] x (—o0, b] x (—00, ¢] and queries [a, 77 +1) x (—o0, b] x (=00, ¢.
Since each point is stored in O(logn) data structures for generalized domi-
nance reporting, and each of those data structures requires O(s(n)) space,
the total space required by our construction is O(s(n)logn).

Consider a four-sided query [a, b] x (—00,¢] X (—o0,d|. To answer this
query, we find two adjacent intervals U?, U1, such that U? and U*t! are on
the same level, and both U? and U**! split [a, b]. We can do it using the same
procedure as in Theorem 6. Since [a, b] = [a, 7t + 1) U (I*T1 — 1, 8], all points

from [a, b] x (—o0, ¢] X (—00, d] are either in ([a, r®+1) x (—00, ¢| x (—o0, d])NP:
or in (I —1,b] x (—o0,¢| x (—00,d]) N PitL. By reporting all points in
the above queries we answer the four-sided query [a, b] X (—o0, ¢| X (—00, d].

(b) We divide P, into sets P} in the same way as in part (a). For each
set B, we store two data structures for four-sided range queries from part
(a). These data structure allow us to answer queries [a,b] x (I* — 1,d| X
[e, +00) and [a,b] x [c,r¢ + 1) x [e, +o0). Since every point is stored in
[logn] data structures, and each data structure for four-sided range queries
requires O(s(n)logn) space, the total space required by our construction is
O(s(n) log?n). Given a five-sided query [a, b] x [¢, d] x [e, +00), we find two
adjacent intervals U® and U*"! such that both U and U*'! split [c, d] using
the same algorithm as in part (a). Then, we can answer the five-sided query
by answering two four-sided queries ([a,b] x [¢,r* 4 1) X [e, +00)) N P}, and
(la,b] x (I"t1 —1,d] x [e, +00)) N Pt

(c) Again, P, is divided into sets P! in the same way as P, and P, above.
We store data structures for five-sided queries for each set P!: the queries
[a,b] x [¢,d] x [e,r*+ 1) and [a, b] X [¢, d] x (I* — 1, f] are supported. Given a
query [a, b] x [¢, d] x [e, f], we can find two adjacent U, U1 such that both
Ut and Ut split [e, f]. After this, the query is answered by reporting all
points in ([a, b] x [c, d] x [e, 7 +1))NP? and ([a, b] x [¢, d] x (IFF1 =1, f))NPEFL,
This data structure uses O(s(n) log® n) space because each point is stored
in O(logn) data structures from part (b). O

Corollary 1 There exists a data structure that answers three-dimensional

orthogonal range reporting queries in O(1/logn/ loglogn -+ kloglogn) time.
All data structures use space O(nlog®n).

This Corollary can be obtained by a combination of the reduction to
rank space technique, Fact 2, and Theorem 9 . In this case, the query time
is dominated by the search for predecessors.

We can further reduce the space requirements of the first data structure.

Theorem 10 Suppose there is a data structure that supports three-
dimensional dominance queries in O(t(n)+kp(n)) time and uses O(n) space

for t(n) = Q(y/logn/loglogn). Then there exists a data structure A that

uses space O(nlog®ten) for any e > 0 and answers three-dimensional range

reporting queries in O(t(n) + kp(n)) time.

Proof: We start with a description of the data structure A. We divide
P, into nl/? intervals [€i—1,;], so that each three-dimensional rectangle

10

[zi_1,%;] x P, x P, contains n%® points. We divide P, into n'/? intervals
[¥i—1, ¥i], so that each three-dimensional rectangle P, X [y;—1, ¥:] X P, contains
n?/3 points. We divide P, into n'/3/log®n intervals [2i_1, 2], so that each
P, x Py X |#i_1, 2| contains n2/3 log3 n points. Three-dimensional rectangles
[€i—1, 5] X Py X P, will be further called x-slices; three-dimensional rectangles
Py X [Yi—1, 4] x P, and P, x P, X [2_1, z;| will be called y-slices and z-slices
respectively.

For each z-slice [xz;-1,2;] x Py X P, two data structures for five-sided
range queries are stored: they support queries (z;—1 — 1,0] X [¢, d] X [e, f]
and [a, z;+1) X [¢, d] X [e, f]. Data structures for a y-slice Py, X [¢i—1, 4] X P,
support queries [a, b] x (y;_1 — 1, d| x [e, f] and [a, b] x [¢, y; +1) x [e, f]; data
structures for a z-slice P, x P, X [2;_1, 2| support queries [a,b] X [c,d]| x
(zic1 — 1, f] and [a, 0] X [¢,d] X [e, z; + 1).

The data structure A; contains points (4,7, k), such that the cell
[@i—1, @] ¥ [Yj—1,¥;] X [2k—1, 2] contains at least one point. A; supports
three-dimensional range reporting queries. The maximal number of points
in A; is O(n/ log® n); hence, we can use Theorem 9 to implement A; in O(n)
space. For each non-empty cell [z;_1, | X [yj—1, ¥;] X [2k—1, 2&], we also store
the list of points contained in this cell.

For each [x;_1, @;] X Py x Py, Py X [yi—1, 4| X P, and Py x P, X [2i_1, %] a
recursively defined data structure is stored. We call the data structure that
contains all points a level 0 data structure, and data structures that contain
all points in an z-, y—, or z-slice of a level [data structure are called level [+1
data structures. Observe that the total number of elements in all level [data
structures increases by a factor 3 with each level. On every r = § loglogn-
th level we apply reduction to rank space. We will explain later how the
parameter § can be chosen. Let D' be a data structure on ir-th recursion
level, and let S“*1 be the set of points in an arbitrary z-slice, y-slice, or
z-slice of D!. We store a table that allows us to find the coordinates of a
point in S**! in the rank space of S'™!; using hash functions, this table can
be implemented in O(|S™|log(|S*H1])) bits. We also store for each point
in the rank space of S*1 its “original” coordinates in D'. The total space
used by the tables for all slices is O(| D] log(|D*|)) bits.

Consider an arbitrary query [a, b] X [¢,d] X [e, f]. If the query rectangle
[a,b] X [¢,d] X [e, f] is contained in one slice, we transfer the query to a
data structure for the corresponding slice. Otherwise, let x;,_1 < a < ;,,
Zi—1 < b < Tins Yjir—1 < € < Yjys Yjo—1 < d < Yijo s and 21 < € < Zky,
Zky—1 < [< 2i,. We report all points in @i, Zis—1] X [Yj; s Yjo—1] X [2ky s Zho—1]
by finding all non-empty cells (%, j, k) € [i1, 42 — 1] X [j1,J2 — 1] X [k1, k2 — 1]
in A; and reporting all points in those cells. The rest of the points in

11

a, b] X [e, d| x [e, f] can be found by answering six five-sided queries: |[a, b] x
G d] (Zkz 1= .ﬂ [b] X [Cv d] x [67 Zk1+1)7 [av b] X (yj2—1_17 d] x [ka Zk2—1]7
a, b] [C Yjr + 1) [Zk17zk2—1]7 (xiQ—l - 17b] X [yjlvyjé—l] X [Zk17zk2—1]7
a, &y + 1) x [:1/31, y]2—1] X 2y s 2y —1]-

Query time can be computed by the formula ¢(n, k) = O({(n)+k'p(n))+
q(n*log® n, k"), where q(n, k) is the query time, k' + k" =k, and k is the
size of the answer. Hence, q(n, k) = O(t(n) + kp(n)).

The space used by our data structure can be computed as follows. Let
s'(n) be the maximal number of points stored in a level [data structure; s*(n)
can be estimated with a recursive formula st(n) = (s=1(n))¥3log®(s"~1(n));
hence, s'(n) = O((s=1(n))?/317) for an arbitrary constant 7. The maximum
number of levels is logy,3,y/3(1/2) loglogn = O(loglogn). Consider an
arbitrary group of dloglogn levels: ir,ir + 1,...,ir + dloglogn — 1, ¢ =
0,1,..., [log(s/(213y) 2/d] — 1. Each point is stored in 3" data structures on
level ir. Therefore, the total number of elements in all data structures on
level ir is n3"". Since reduction to rank space was applied on level ir, each
point is stored with O(s(n)) bits. A data structure on level ir requires
O(s'(n)log®(s™"(n))) bits. Each point in each data structure on level ir
takes O(log®(s% (n))) bits, and s (n) = O(n!+31/3)") Therefore the total
number of bits used is (up to a constant factor) n((2+~)/3)%"3 log® n For
a sufficiently small v, ((2+ 7)/3)® < 1/3 and n((2 + v)/3)%"37" log®> n <
nlog® n; hence, all data structures on level ir use O(nlog® n) bits.

The space used by the data structures on levels ir+1, ..., ir+d loglogn—
1 increases by a factor 3 with each level. Hence the total space used
by all recursive data structures on levels ir,... ir + dloglogn — 1 is
O(nlog®n) S 21o8len=13i W can choose 6 so that yologlogn=l g
O(log® n) for an arbitrary £ > 0. Hence all data structures on levels
ir+1,...,ir+0loglogn—1 use O(nlog® ™ n) bits. Since there is a constant
number of groups of levels, all recursively defined data structures require
O(nlog®*® n) words of logn bits.

[
[
[
[

Theorem 4 follows from Corollary 1 and Theorem 10. Theorem 3 follows
from Fact 1 and Theorem 10.

It was shown in [3] that given a O(s(n)) space and O(t(n) + kp(n)) time
data structure for d-dimensional range reporting queries, we can construct
for any £ > 0 a O(t(n)(logn/ loglogn)™ + kp(n)) time and O(s(n) log™ 1 n)
space data structure that supports (d + m)-dimensional orthogonal range
reporting queries. Applying the technique of [3] to Fact 1 combined with
Theorem 10 we obtain the first result of Theorem 5. Combining reduction to
rank space, Fact 2, and Theorem 9, we obtain the second result of Theorem

12

4 Summary

In this paper we presented the first dynamic data structure for planar or-
thogonal range reporting and static data structures for three-dimensional
orthogonal range reporting with sublogarithmic query time.

Our results are based on some important reductions. Using those re-
ductions a dynamic data structure for three-sided queries with query time
O(t(n) + k), where t(n) = Q(+/logn/loglogn) (i.e., t(n) is not asymptoti-
cally faster than the lower bound on the predecessor queries), can be con-
verted into a data structure for general planar range reporting queries with
only a small increase in space and without changing query time. We can
also reduce three-dimensional orthogonal range reporting queries to three-
dimensional dominance reporting queries.

Several modifications of the presented reductions can be proven in a
similar way. For instance, given a linear space data structure for three-sided
queries on the nxn grid with query time O(¢(n)+k) for an arbitrary function
t(n), a dynamic data structure for orthogonal range reporting on the n x n
grid with query time O(#(n) + k), such that /(n) = O(t'(n??) + t(n*?)),
and space O(nlog® n) can be constructed.

References

[1] P. K. Agarwal, L. Arge, A. Danner, B. Holland-Minkley “Cache-
oblivious Data Structures for Orthogonal Range Searching.” Proc. 9th
ACM Symp. on Computational Geometry (2003), 237-245.

2] P. K. Agarwal and J. Erickson “Geometric range search-
ing and its relatives” In “Advances in Discrete and Com-
putational Geometry”, vol. 23 of Contemporary Mathemat-
ics, 1-56. AMS Press, Providence, RI, 1999. Available at

http://citeseer.ist.psu.edu/article/agarwal99geometric.html.

[3] S. Alstrup, G. S. Brodal, T. Rauhe “ New Data Structures for Orthog-
onal Range Searching”, Proc. 41st IEEE FOCS(2000), 198-207.

[4] A. Andersson, Faster Deterministic Sorting and Searching in Linear
Space, Proc 37th IEEE FOCS (1996), 135-141.

13

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Andersson, M. Thorup, Tight(er) worst-case bounds on dynamic
searching and priority queues, Proc. 32nd ACM STOC(2000), 335-342.

P. Beame, F'. E. Fich, Optimal Bounds for the Predecessor Problem and
Related Problems, J. Comput. Syst. Sci. (65), 2002, 38-72.

M. A. Bender, E. D. Demaine, M. Farach-Colton “Cache-Oblivious B-
Trees”, Proc. 41st IEEE FOCS(2000), 399-409.

B. Chazelle “Filtering Search: A New Approach To Query Answering”,
SIAM J. on Computing (15), 1986, 703-724.

B. Chazelle, L. J. Guibas “ Fractional Cascading: I. A Data Structuring
Technique”, Algorithmica (1), 1986, 133-162

B. Chazelle “A Functional Approach to Dynamic Data Structures”,
SIAM J. on Computing (17), 1988, 427-462.

B. Chazelle “Lower Bounds for Orthogonal Range Search I1. The Arith-
metic Model”, J. of the ACM (37), 1990, 439 - 463.

J. L. Chiang, R. Tamassia “ Dynamic Algorithms in Computational
Geometry”, Technical Report CS-91-24, Dept. of Computer Science,
Brown University, 1991.

A. Ttai, A. G. Konheim, M. Rodeh “A Sparse Table Implementation of
Priority Queues”, Proc. 8th ICALP(1981), 417-431.

J. JaJa, C. W. Mortensen, Q. Shi “ Space-Efficient and Fast Algorithms
for Multidimensional Dominance Reporting and Counting” Proc. 15th
ISAAC(2004), 558-568.

G. S. Lueker “ A Data Structure for Orthogonal Range Queries”, Proc.
19th ACM FOCS(1978), 28-34.

C. Makris, A. K. Tsakalidis “Algorithms for Three-Dimensional Domi-
nance Searching in Linear Space” Information Processing Letters (66),
1998, 277-283.

K. Mehlhorn and S. N&her “Dynamic Fractional Cascading” , Algorith-
mica (5), 1990, 215-241.

E.M. McCreight “Priority Search Trees”, SIAM J. on Computing (14),
1985, 257-276.

14

[19]

[20]

[21]

[22]

[23]

C. W. Mortensen “Fully Dynamic Two Dimensional Orthogonal Range
and Line Segment Intersection Reporting in Logarithmic Time” Proc.
14th ACM-SIAM Symposium on Discrete Algorithms(2003), 618-627.

Y. Nekrich, “Space efficient dynamic orthogonal range reporting”, Proc.
21st ACM Symp. on Computational Geometry (2005), 306-313.

M. H. Overmars “Design of Dynamic Data Structures” Springer-Verlag
New York, Inc., Secaucus, NJ, 1987.

M. H. Overmars “Efficient Data Structures for Range Searching on a
Grid”, J. Algorithms (9),1988, 254-275.

S. Subramanian, S. Ramaswamy “The P-range Tree: A New Data
Structure for Range Searching in Secondary Memory”, Proc. 6th SODA
(1995), 378-387 .

D. E. Willard “New Data Structures for Orthogonal Range Queries”,
SIAM J. on Computing (14), 1985, 232-253.

D. E. Willard “Applications of Range Query Theory to Relational Data
Base Join and Select Operations”, Journal of Computer and System
Sciences (52), 1996, 157-169.

D. E. Willard, Examining Computational Geometry, Van Emde Boas
Trees, and Hashing from the Perspective of the Fusion Tree. STAM J.
Comput. (29), 2000, 1030-1049.

15

Appendix I. Proof of Theorem 8

Proof Sketch : The set of points S is divided into columns C; and rows R;, so
that the number of elements in every column (row) is between /nlog? n/2
and 2+/nlog? n. We store lists of points in all K;; = C; N R;; data structure
D, contains points (i, j) for K;; # 0. Given A, D; can be implemented in
O(n) space, so that queries and updates are supported in time O(t(n) + k)
and O(log? n) respectively. For each column and row two data structures for
three-sided range queries are stored. Using those data structures B, every
query of the kind (rj_1,d| x [a,b] or [d,r;) X |a,b] or (¢j—1,b] X [c,d] and
b, ¢;) X [¢, d] can be answered in O(t(n)+k) time. If the number of elements
in a row or a column exceeds t(n) a recursively defined data structure is
stored for this row or column.

Consider a query [a, b] X [¢, d]. We find imin, tmazs Jmins 80d fmaz, such
that ¢, -1 < 0, b < Cipory Tiin—1 < cand d < ;. Again, we distinguish
between two cases. If ¢;_1 < a and b < ¢; for some j, orr;_1 <cand d <r;
for some ¢, then the query is transferred to a data structure corresponding
to column C; or row R;. Otherwise we answer four three-sided range queries
to report all elements from marginal columns and rows, and we identify all
non-empty rectangles K;; by answering query [imin, tmaz — 1| X [Jmin, Jmaz —
1]. In the first case, the size of the data structure is reduced from n to
VnlogPn, and in the second case the query is answered in O(i(n) + k)
time. Let query time g(n,k) = O@{'(n) + k); t'(n) can be estimated as
t'(n) = max(O(t(n)), t'(y/nlogPn)). t'(n) < O(t(n)) +t'(y/nlogf n). Since
Vnlog?n = o(n®tD/2%) for any integer b, '(n) < O(t(n)) + t'(nb+1/2b),
For t(n) = Q(+/logn/loglogn), t'(n) = O(t(n)). Hence, queries can be
answered in O(t(n) + k) time.

We call the data structure that contains all points a level 0 data struc-
ture, and data structures that contain all points in a column or row of a
level I data structure are called level [+ 1 data structures. It can be shown
that the maximal recursion level l,,,,. = loglogn + ¢, where ¢ is a constant.
Every point is stored in D O(logn) times: once in a level 0 data structure,
twice in level 1 data structures, 2! times in level [data structures. The space
requirements can be reduced from O(nlogn) to O(nlog®n) for any € > 0
by using the dynamic range reduction to extended rank space technique de-
scribed in [20]. If we apply this technique on a recursion level [, every point in
each level [data structure can be stored with only O(log(s'(n))) bits, where
sl(n) is the maximal number of points in a level [data structure. To avoid
penalties for each point in the answer, we apply range reduction on every
loglog n-th level. Then every group of € loglogn levels takes O(nlog! ™ n)

16

bits, and the whole data structure D requires O(nlog®n) words of logn
bits. Alternatively, the dynamic range reduction can be applied on each
recursive level. Then all data structures on level [, { = 1,2, ..., loglogn + c,
use O(nlogn) bits, and the total space can be reduced to O(nloglogn)
words. But in this case the reverse range reduction must be applied up
to O(loglogn) times to restore the original point coordinates, and for each
point in the answer an O(loglogn) penalty must be paid. Therefore, the
data structure D’ uses O(nloglogn) words of memory, and supports queries
in time O(t(n) + kloglogn).

Update time can be estimated with help of a recursive formula: u(n) <
O(log? n)+2u(~/nlog? n) < O(log? n)+2u(n®1)/2) for an arbitrary integer
b > 1. Therefore, u(n) = O(log®n).

To construct D or D', we must construct a data structure A with
n/log? n elements, fusion priority trees for rows and columns, and
2¢/n/log’n data structures for rows and columns with /nlogfn ele-
ments each. Let ¢/(n) be the construction time of A and c¢(n) the con-
struction time of D. Then for ¢(n) a recursion c¢(n) = ¢(n/logfn) +
2¢/n/log? nc(y/nlogfn) + O(n) is valid. Let v(n) = c(n)/n. As
d(n/logfn) = O(n), v(n) = 2v(y/nlogfn) + O(1). Since the number
of recursive level is loglogn + ¢ for a constant ¢, v(n) = O(logn), and
c(n) = O(nlogn). O

17

