Dynamic Planar Orthogonal Range
Reporting

Marek Karpinski* Yakov Nekrichf

Abstract

In this paper we present a dynamic data structure for planar orthog-
onal range reporting with query time O(logn/loglogn + k) and space
O(nlog® n) for any € > 0 and k the answer size. We also present a space
efficient dynamic data structure with O(logn/loglogn + kloglogn)
query time that uses O(nloglogn) space. These are the first dynamic
data structures with sublogarithmic query time for that problem.

Keywords: Algorithms and Data Structures, Computational Geom-
etry, Dynamic Data Structures, Range Reporting

1 Introduction

The planar orthogonal range reporting problem is to maintain a set of points
S so that for an arbitrary query rectangle @ all points from S that belong
to ¢ can be reported. This problem has been studied extensively; surveys
of the previous results are given in [2]| and [12].

Several space efficient static data structures for this problem with log-
arithmic query time are described in Chazelle [10]. In particular, [10] de-
scribes a data structure with O(nlog® n) space and O(logn + k) time and a
data structure with O(logn + kloglog k”‘%) query time and O(nloglogn)
space; here and further & = |S N Q| is the size of the answer. Us-
ing a dynamization of the fractional cascading technique of Chazelle and
Guibas [9], Mehlhorn and Naher [19] described a dynamic data structure
with query time O(lognloglogn + k), update time O(lognloglogn) and
space O(nlogn). Mortensen [21] described a data structure that requires
O(nlogn/loglogn) space and supports queries and updates in O(logn -+ k)
and O(logn) time respectively. In [22] the space requirements for the

*Dept. of Computer Science, University of Bonn. E-mail marek@cs.uni-bonn.de. Work
partially supported by a DFG grant, Max-Planck Research Prize, and IST grant 14036
(RAND-APX).

TDept. of Computer Science, University of Bonn. E-mail yasha@cs.uni-bonn.de. Work
partially supported by IST grant 14036 (RAND-APX).

dynamic case are further reduced: the data structures of [22] use either
O(nlog® n) space and support queries in O(logn + k) time, or O(nloglogn)
space and O(logn + kloglogn) query time, thus matching the two above
mentioned results of Chazelle [10] for the static case.

In the case of orthogonal range reporting on an n x n grid, there exist
static data structures with sublogarithmic query time. For instance, Over-
mars [24] described a data structure with query time O(loglogn -+ k) using
space O(nlogn); in [3] a data structure with query time O(loglogn + k)
and space O(nlog® n) is described. Using the reduction to rank space tech-
nique(see, e.g., [10]) and data structures for predecessor queries, a sublog-
arithmic time can be achieved for the general case static data structures.
Combining the fusion trees of Willard with the result of [3], we obtain a
O(logn/loglogn + k) query time and O(nlog®n) space data structure; an-
other O(logn/loglogn + k) time data structure was presented by Willard
[29]. Combining the exponential search trees (see [4], [5],[6]) with [3], we
obtain a data structure with O(y/logn/loglogn -+ k) query time.

In the case of dynamic planar orthogonal range reporting queries, the
fastest previously known dynamic data structures (cf. [21], [22]) have query
time Q(logn + k). In this paper we present a dynamic data structure with
O(logn/ loglogn -+ k) query time for planar range reporting queries. To the
best of our knowledge, this is the first data structure with o(logn-+k) query
time.

Our approach depends on a reduction of a planar range reporting query
to several three-sided queries’ and a planar range reporting query on a set
with a much smaller number of elements.

1.1 Our Results
We start with formulating our main results.

Theorem 1 Lel a = logs /3 ~ 2.71. There is a data structure D that
supports planar orthogonal range reporting queries in O(logn/loglogn + k)
time and updates in O(log® n) time, where k is the size of the answer. D can
be constructed in O(nlogn) time and requires O(nlog®n) space for arbitrary
e>0.

Theorem 2 Let a = logg/s3 ~ 2.71. There is a data structure D' that
supports planar orthogonal range reporting queries in O(logn/loglogn +
kloglogn) time and updates in O(log®n) time, where k is the size of the
answer. D' can be constructed in O(nlogn) time and requires O(nloglogn)
space.

Our results are valid in the unit cost RAM; we assume that all point
coordinates are integers, but the size of point coordinates is not limited.

LA three-sided query will be defined in the section 1.1

The result of Theorem 1 is a loglogn factor improvement in query time
compared to [22] and an improvement in terms of both space and query time
compared to [21].

A three-sided range reporting query is a special case of the planar range
reporting query, in which one side of the query rectangle is constrained to lie
on one of the axes. Our result is based on two general reductions. The first
reduction converts a dynamic data structure for three-sided queries into a
dynamic data structure for planar range reporting. The second reduction
converts a dynamic data structure with space ©(nlog?fn) into a dynamic
data structure with space O(nlog®n) for arbitrary constants p > 0, £ > 0.

e Suppose there is a data structure B for three-sided range queries with
query time O(t(n)+k), where t(n) = Q(+/logn/ loglogn), and update
time u(n) that uses space O(n) and can be constructed in linear time.
Then there exists a data structure A for planar range reporting with
query time O(t(n) + k) and update time u'(n), such that u'(n) =
O(u(n)) + 3w (n?/3). A can be constructed in O(nlog?n) time and
uses O(nlog?n) words of memory.

e Suppose there exist a dynamic data structure A for planar range re-
porting queries with O(t(n)+k) query time, t(n) = Q(+/logn/loglogn)
and O(nlogf n) space, and a dynamic linear space data structure B
for three-sided queries with query time O(¢(n) + k). Then there exists
a dynamic data structure D for planar range reporting queries with
query time O(t(n) + k), and space O(nlog® n).

The condition t(n) = Q(1/logn/ loglogn) means that the query time cannot
be asymptotically faster than the time to answer a predecessor query (see

[6]). Basically, we show that any dynamic linear-space data structure for
three-sided queries whose query time is not asymptotically faster than the
lower bound on predecessor queries can be converted into a dynamic data
structure for planar orthogonal range reporting queries with the same query
time and only a small increase in space. The precise description of reductions
is given in Theorems 4 and 5. These reductions are of interest on their own,
since they elucidate the connection between data structures for three-sided
range queries and (space efficient) data structures for general planar range
reporting queries.

2 An O(logn/loglogn + k) Time Data Structure

In this section we describe a data structure that achieves query time
O(logn/loglogn + k) but requires O(nlog®n) space.
We will use the following lemma from [29]:

Lemma 1 There is a dynamic linear space data structure that supports
three-sided queries in O(logn/ loglog n+k) time, updates in O(logn/ loglogn)
amortized time, and can be constructed in O(n) time.

Following [29], we call the data structure from Lemma 1 a fusion priority
tree.

Theorem 3 There exists a dynamic data structure A that supports planar
orthogonal range reporting queries in time O(logn/loglogn + k), update
operations in O(log®n) time for a = logs/n3 ~ 2.71. A uses O(n log? n)
words of memory and can be constructed in O(nlog®n) time.

In the data structure described in this section the set of points stored
in A is divided into columns and rows. The set of points is divided into
columns C; = [¢i_1, ¢;] X (—o0, +00) so that C; contains between n%/%/2 and
2n?/3 points; the number of columns is O(n!/?). In the same way the set of
points is divided into O(n?/?) rows R; = (—o0, +00) X [ri_1, 73], so that each
row contains between n?/2/2 and 2n2/3 elements.

Our data structure consists of the following components:

1. For every column and every row we store two fusion priority trees
of Willard [29] that allow us to answer three-sided range queries in
O(logn/ loglogn) time. For every row R;, data structures that answer
queries (r;_1,d| X [a, b] and [d, ;) X |a, b] are stored. For every column
C;, data structures that answer queries (¢;_1, b] X[c, d| and [b, ¢;) x|¢, d]
are stored.

2. We store data structures 7. and 7, for one-dimensional predecessor
queries with O(logn/loglogn) query time. T, and T, store all col-
umn borders ¢; and all row borders r; respectively. T, and 7). can be
implemented using e.g. the fusion tree of Willard.

3. Let K;; = C;NR;. We also store data structure A; that stores all points
(4,7) such that K;; # (0. Data structure A; is defined recursively,
i.e., A; consists of the same type of components as our initial data
structureA. Observe that A, contains at most O(n?/3) elements due
to the fact that the number of non-empty K;; is at most n'/3n!/3.

4. For every row I; and every column C}, a recursively defined data
structure R;(A) (C;(A)) is stored. R;(A) (C;(A)) contains all points
from row R; (column C}) of A. A top level data structure is called the
level 0 data structure. A data structure that stores elements from a
column or a row of some level [data structure A’, or a data structure
(A" are called level [+ 1 data structures.

5. Consider a level [data structure A'. A point p in a level [+ 1 data
structure (A%); contains all points in K;;. A point in data structure
Ci(AY) or R;(AY) on level [+1 contains a single point of the level [data
structure. In the general case, an element p in a level [data structure
contains a point p’ in a level I’ data structure, [> I’ -+ 1, if p contains
some p” on level I’+1 and p” contains p’. With every point p we store
the set of points cont(p) that consists of all points in the level 0 data
structure that p contains. The set cont(p) allows us to output directly
the points which are contained in a cell K;; in a data structure A; on
level [>0

Lemma 2 Data structure A supports planar range reporting queries in time
O(logn/lognlogn + k).

Proof: A query [a, b] X [c, d] is processed as follows. We find 4505 Gymae and
Jmins Jmaz sSuch that ¢; . 1 <a <€ .y Ciman—1 <0 < Cinpars Timin—1 < €<
Timim, a0d 751 <d <rj,.., where r; and c; are coordinates of row and
column borders. Using T, and T}, imin, tmae @0d Jmin, Jmaz can be found in
O(logn/loglogn) time. We distinguish between two cases: 1. tmin = bmax
O fimin = Jmaz- 2+ Umaz > Umin a0A Jmaz > Jmin. In the first case the
query rectangle is contained in one row or column, and in the second case
la, b] X [c, d] intersects with more than one row and more than one column.
A row [ri_1,7;] is called a marginal row, ifriy <c<r;orr;>d>r,_1. A
column [¢;_1, ¢;] is called a marginal column, ifc;_1 < a < c;orc; > b > ¢i_q.
The query can be answered as follows:

Case 1 [a,b] X [¢, d] is contained in one row R; or in one column C;. Then
the search continues in the data structure corresponding to E; or C}.

Case 2 [a,b] X [¢, d] intersects with more than one row and more than one
column, i.e., there are internal rectangles. Then the query can be
answered by answering four three-sided queries for marginal rows and
columns and reporting all elements from non-empty internal rectangles
using A¢. Let ¢ -1 < @ < Gy < oo < Ciaee1 < b < Cinas
and rj . 1 < ¢ <. < oo < Tipaa—1 < d < 7. That is,

Ci,insCi and R; ., R;,... are respectively marginal columns and

marginal rows. We answer three-sided range queries (¢j,,..—1, 0] X [c, d]

and |a, ¢;,,.,..) X ¢, d| using the fusion priority trees for C;, ... and Cj,_. .

Those queries can be answered in O(logn/ loglogn + k) time, and for

every point p in the answer we report all points in cont(p) i.e., all points

that p contains. We report the points from marginal rows in the same
way using the fusion priority trees for R; , and R Finally, we
identify all non-empty rectangles K;; using a two-dimensional query

[Jmins Jmaz — 1| X [fmin, tmaz — 1] to Ap (see Fig. 1).

min? mazx? 'max

Tmazx*

Cq c9 Cc3 C4 Cy Cq

1

r4

Figure 1: Range Query (Case 2). Three-sided range queries on marginal
columns and rows are marked by bold lines. Non-empty Kj;; are filled with
slanted lines and can be identified by a query [1,4] x [2,4] to A;.

Let q(n, k) be query time. In the first case a query to a data structure
with n elements is reduced to a query to a data structure with O(n?/3)
elements in O(logn/loglogn) time. Thus ¢g(n, k) = O(logn/loglogn) +
q(n?/?) in the first case. In the second case, a query is reduced to four
three-sided queries to marginal columns and rows that can be answered
in O(logn/loglogn + k') time, and to query to a data structure A; with
O(n?/3) elements that can be answered in O(g(n?/3, k")) time. Here k'
denotes the number of points in marginal columns and rows, and k" denotes
the number of points in non-empty cells K;j; k¥ + k" = k. Observe that
using A; we can output the points in the level 0 data structure with help
of cont(p). Summing up, q(n, k) < max((q(n?/3, k") + O(logn/loglogn +
k), (g(n?/3, k) + O(logn/ loglogn))), where k' + k" = k. Thus g(n, k) <
q(n?/3, k") + O(logn/loglogn + k") and ¢(n, k) = O(logn/loglogn + k).
O

Lemma 3 Data structure A uses O(nlog®n) space and can be constructed
in time O(nlog? n)

Proof: ~ Space s(n) used by data structure A is superlinear because a
polylogarithmic number of copies of each point must be stored. On the
top level, every point must be stored in four fusion priority trees and
two data structures with O(n?/3) clements. Besides that, a data struc-
ture A; with O(n?/3) elements must be stored. We obtain a recursive for-
mula s(n) = O(n) + 2n/3s(n%?) + s(n??). Let v(n) = s(n)/n. Then

v(n) = O(1) + 2v(n?3) + v(n??)/n'/3. Obviously, v(n) < 3v(n??). Let
f(n) = v(2"), then f(n) < 3f((2/3)n), and f() = O(n®). Hence, v(n) =
O(log® n) and v(n) = 2v(n?/3) + (O(1) + O(log® n/nl/?’)) = 20(n?*3) + o(n).
Thus, v(n) = O((logn)°#/2(2)) and v(n) = O(log?n). Therefore, s(n) =
O(nlog®n).

Construction time ¢(n) can be estimated with a recursive formula ¢(n)
40(n)+2n3¢(n?/?)+¢(n?/?). In the same way as above, ¢(n) = O(nlog? n).

O

Lemma 4 Update operations on the data structure A can be performed in
O(log® n) amortized time, where a =logz/, 3 ~ 2.71.

Proof: Suppose an element e is inserted into or deleted from a data structure
A of size n, and e € C;(A4), e € R;(A) (e belongs to the j-th column and the
i-th row). Then it must be inserted into or deleted from four fusion priority
trees in time O(logn). Besides that, three data structures of size O(n?/?),
namely A;, C;(A) and R;(A) for some ¢ and j, must be modified; in case of
A; we either add/delete e from the set cont(p), where p corresponds to Kjj,
or an element p with coordinates (i, j) is added/deleted from A;. The data
structure can be updated in time w(n) = w(n?/?) + 2u(n?/3) + O(logn). Let
f(t) = w(2Y), then f(t) = 3f(2t/3) + O(t). Applying master theorem, we
obtain f(t) = ©(t°%/23), and u(n) = O(logn)'°83/23 — O(log® n).

In the above analysis we ignored the fact that some parts of the data
structure must be rebuilt if certain conditions are violated (partial rebuild)
and the whole data structure must be rebuilt sometimes (global rebuild).
First consider the cost of rebuilding A (global rebuild). Suppose the number
of elements after the last global rebuild was ng. Then the next global rebuild
takes place when ng/2 > |A| or 3ng/2 < |A|. During the global rebuilding
the whole data structure is reconstructed “from scratch”. As was shown in
Lemma 3 this incurs the total cost of O(ng log2 ng) and the amortized cost
O(log?n).

Now we estimate the amortized cost of local rebuilds. Consider some
data structure A’ on level [containing m elements. Every row and column of
At can hold between m?/3/2 and 2m?/3 elements. If after a series of updates
the number of elements in column C; violates these bounds, we consider one
of the neighbor columns C;;1 and C;_;. Since m2/3 < |C;UCia| < Am?2/3
(the same bounds are also true for |C; U C;_1]), we can construct v columns
from elements of C; and C;11, where 1 < v < 4, so that each new column
contains between 3m?/3/4 and 3m?/3/2 elements. Since these columns can
be rebuilt in time O(m?/3log?(m?/?)) (see Lemma 3) rebuilding columns
incurs amortized cost O(log®m). Rebuilding rows is, of course, identical to
rebuilding columns.

When a row or a column is rebuilt, 4; must also be updated. Namely,
up to O(m1/3) elements are inserted to or deleted from A;. The total cost

of updating A; can be estimated as O(m?/®log?m) (i.e., instead of inserting
O(m1/3) elements, we rebuild the data structure with O(m?/3) elements in
O(m?/log?m) time. Thus updating A4, also incurs O(log?m) time.

The total amortized cost of rebuilds incurred by an insertion of a
new element can be expressed as: g(n) = O(log?n) + 3¢g(n?*?). Sub-

stituting f(n) = ¢(2") and solving the recurrence for f(n), we obtain
g(n) = O(log®n). Thus the total amortized cost of an update operation
is O(log®n). O

2.1 A reduction from three-sided to planar range reporting
queries

The result of Theorem 3 can be generalized as follows.

Theorem 4 Suppose there is a data structure B for three-sided queries with
query time O(t(n) + k), where t(n) = Q(+/logn/loglogn), and update time
u(n) that uses space O(n) and can be constructed in O(n) time. Then there
exists o data structure A for planar range reporting queries that supports
queries in time O(t(n) + k) and updates in time u'(n), such that v'(n) =
O(u(n)) + 3w/ (n?/%); A uses space O(nlog®n) and can be constructed in
O(nlog®n) time.

Proof of Theorem 4 is analogous to the proof of Theorem 3.

3 A Space Efficient Data Structure

In this section we describe a general method for decreasing the space require-
ments of dynamic data structures for orthogonal range queries. The results
described in the introduction follow from the combination of Theorem 5,
Theorem 3, and Lemma 1.

Theorem 5 Let a = loggy 3, 1(n) = (y/logn/loglogn). Suppose there
exist o data structure A for planar orthogonal range reporting queries
with query time O(t(n) + k) and update time O(log®n) that requires space
O(nlog? n) for any p > 0 and a linear space data structure B for three-sided
queries with query time O(t(n) + k) and update time O(log® n).

Then there is a data structure D that supports planar range reporting queries
in O(t(n) + k) time and requires O(nlog®n) space for any € > 0. There
is also a data structure D' that supports planar range reporting queries in
O(t(n) + kloglogn) time and requires O(nloglogn) space. Both D and D’
support updates in amortized time O(log®n). If A can be constructed in
O(nlogf n) time, and B can be constructed in O(n) time, then both D and
D’ can be constructed in O(nlogn) time.

This theorem is a generalization of the result presented in [22] and can
be proven in the same way. For completeness we provide a sketch of the

proof.

Proof Sketch : The set of points S is divided into columns C; and rows R;, so
that the number of elements in every column (row) is between \/n log? n/2
and 2y/nlog? n. We store lists of points in all K;; = C; N R;; data structure
D, contains points (¢, j) for K;; # 0. Given A, D, can be implemented in
O(n) space, so that queries and updates are supported in time O(t(n) + k)
and O(log” n) respectively. For each column and row two data structures for
three-sided range queries are stored. Using those data structures B, every
query of the kind (rj_1,d| x [a,b] or [d,r;) X |a,b] or (¢j—1,b] X [c,d] and
b, ¢;) X [¢, d] can be answered in O(t(n)+k) time. If the number of elements
in a row or a column exceeds t(n) a recursively defined data structure is
stored for this row or column.

Consider a query [a, b] X [¢, d]. We find imin, tmazs Jmins 80d Jmaz, such
that ¢, -1 < 0, b < Cippas Tiin—1 < cand d < ;... Again, we distinguish
between two cases. If ¢;_1 < a and b < ¢; for some j, orr;_1 < cand d <r;
for some %, then the query is transferred to a data structure corresponding
to column C; or row R;. Otherwise we answer four three-sided range queries
to report all elements from marginal columns and rows, and we identify all
non-empty rectangles K;; by answering query [imin, tmaz — 1| X [Jmin, Jmaz —
1]. In the first case, the size of the data structure is reduced from n to
v/nlogPn, and in the second case the query is answered in O(i(n) + k)
time. Let query time g(n,k) = O@{'(n) + k); t'(n) can be estimated as
t'(n) = max(O(t(n)), t'(y/nlogPn)). t'(n) < O(t(n)) +t'(y/nlogfn). Since
v/nlogP n = o(n®+1D/28) for any integer b > 0, t'(n) < O(t(n))+t' (nlb+1)/20),
For t(n) = Q(y/logn/loglogn), t'(n) = O(i(n)). Hence, queries can be
answered in O(t(n) + k) time.

We call the data structure that contains all points a level 0 data struc-
ture, and data structures that contain all points in a column or row of a
level I data structure are called level [+ 1 data structures. It can be shown
that the maximal recursion level l,,,,. = loglogn + ¢, where ¢ is a constant.
Every point is stored in D O(logn) times: once in a level 0 data structure,
twice in level 1 data structures, 2 times in level [data structures. The space
requirements can be reduced from O(nlogn) to O(nlog®n) for any € > 0
by using the dynamic range reduction to extended rank space technique de-
scribed in [22]. If we apply this technique on a recursion level [, every point in
each level [data structure can be stored with only O(log(s!(n))) bits, where
st(n) is the maximal number of points in a level / data structure. To avoid
penalties for each point in the answer, we apply range reduction on every
eloglogn-th level. Then every group of € loglogn levels takes O(n log! ™ n)
bits, and the whole data structure D requires O(n log® n) words of logn bits.

Alternatively, to construct the data structure D', the dynamic range
reduction can be applied on each recursive level. Then all data structures
onlevel [, 1 =1,2,...,loglogn + ¢, use O(nlogn) bits, and the total space
can be reduced to O(nloglogn) words. But in this case the reverse range

reduction must be applied up to ©(loglogn) times to restore the original
point coordinates, and for each point in the answer an O(loglogn) penalty
must be paid. Therefore, the data structure D’ uses O(nloglogn) words of
memory, and supports queries in time O(t(n) + kloglogn).

Update time can be estimated with help of a recursive formula: u(n) <
O(log® n)+2u(~/nlog? n) < O(log?®n)+2u(n®+t1/25) for an arbitrary integer
b > 1. Therefore, u(n) = O(log® n).

To construct D or D', we must construct a data structure A with
n/log? n elements, fusion priority trees for rows and columns, and
2¢/n/logPn data structures for rows and columns with /nlogPn ele-
ments each. Let ¢/(n) be the construction time of A and ¢(n) the con-
struction time of D. Then for ¢(n) a recursion c¢(n) = ¢'(n/logfn) +
2¢/n/logf nc(y/nlogPn) + O(n) is valid. Let v(n) = c(n)/n. As
d(n/logfn) = O(n), v(n) = 2v(y/nlogfn) + O(1). Since the number
of recursive levels is loglogn + ¢ for a constant ¢, v(n) = O(logn), and
c(n) = O(nlogn). O

4 Conclusion

In this paper we presented a dynamic data structure for planar orthogonal
range reporting with sublogarithmic query time.

Our results are based on two important reductions. Using those re-
ductions a dynamic data structure for three-sided queries with query time
O(t(n) + k), where t(n) = Q(+/logn/loglogn) (i.e., t(n) is not asymp-
totically faster than the lower bound on the predecessor queries), can be
converted into a data structure for general planar range reporting queries
with only a small increase in space and without changing query time.

Several modifications of those reductions can be proven in a similar way.
For instance, given a linear space data structure for three-sided queries on
the n x n grid with query time O(t(n) + k) for an arbitrary t(n), a dy-
namic data structure for orthogonal range reporting on the n x n grid with
query time O(#(n) + k), such that ¢ (n) = O (n?/3) 4+ t(n*/?)), and space
O(nlog®n) can be constructed. A similar reduction for data structures for
three-sided queries with superlinear space can be also proven.

References

[1] P. K. Agarwal, L. Arge, A. Danner, B. Holland-Minkley “Cache-
oblivious Data Structures for Orthogonal Range Searching.” Proc. 9th
ACM Symp. on Computational Geometry (2003), 237-245.

2] P. K. Agarwal and J. Erickson “Geometric range searching and
its relatives” In B. Chazelle, J. E. Goodman, and R. Pollack, ed-

10

[13]

[14]

[15]

[16]

itors, “Advances in Discrete and Computational Geometry”, vol.
23 of Contemporary Mathematics, 1-56. AMS Press, Providence,
RI, 1999. Available at http://citeseer.ist.psu.edu/article/
agarwal99geometric.html.

S. Alstrup, G. S. Brodal, T. Rauhe “ New Data Structures for Orthog-
onal Range Searching”, Proc. 41st IEEE FOCS(2000), 198-207.

A. Andersson, Faster Deterministic Sorting and Searching in Linear
Space, Proc 37th IEEE FOCS (1996), 135-141.

A. Andersson, M. Thorup, Tight(er) worst-case bounds on dynamic
searching and priority queues, Proc. 32nd ACM STOC(2000), 335-342.

P. Beame, F. E. Fich, Optimal Bounds for the Predecessor Problem and
Related Problems, J. Comput. Syst. Sci. vol. 65(1), 2002, 38-72.

M. A. Bender, E. D. Demaine, M. Farach-Colton “Cache-Oblivious B-
Trees”, Proc. 41st IEEE FOCS(2000), 399-409.

B. Chazelle “Filtering Search: A New Approach To Query Answering”,
SIAM J. on Computing, vol. 15, 1986, 703-724.

B. Chazelle, L. J. Guibas “ Fractional Cascading: I. A Data Structuring
Technique”, Algorithmica, vol. 1(2), 1986, 133-162

B. Chazelle “A Functional Approach to Dynamic Data Structures”,
SIAM J. on Computing, vol. 17, 1988, 427-462.

B. Chazelle “Lower Bounds for Orthogonal Range Search II. The Arith-
metic Model”, J. of the ACM, vol. 37, 1990, 439 - 463.

J. L. Chiang, R. Tamassia “ Dynamic Algorithms in Computational
Geometry”, Technical Report CS-91-24, Dept. of Computer Science,
Brown University, 1991.

A. Ttai, A. G. Konheim, M. Rodeh “A Sparse Table Implementation of
Priority Queues”, Proc. 8th ICALP(1981), 417-431.

R. Klein, O. Nurmi, T. Ottman and D. Wood “ A Dynamic Fixed
Windowing Problem”, Algorithmica vol. 4, 1989, 535-550.

M. Van Kreveld and M.H. Overmars “ Divided K-d Trees”, Algorith-
mica vol. 6(6), 1991, 840-858.

M. Van Kreveld and M.H. Overmars “Concatenable Structures for
Decomposable Problems” Information and Computation, vol. 110(1),
1994, 130-148

11

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

G. S. Lueker “ A Data Structure for Orthogonal Range Queries”, Proc.
19th ACM FOCS(1978), 28-34.

Kurt Mehlhorn “Data Structures and Algorithms 3: Multi-dimensional

Searching and Computational Geometry” Springer-Verlag New York,
Inc., New York, NY, 1984.

K. Mehlhorn and S. Ndher “Dynamic Fractional Cascading” , Algorith-
mica vol. 5, 1990, 215-241.

E.M. McCreight “Priority Search Trees”, SIAM J. on Computing, vol.
14, 1985, 257-276.

C. W. Mortensen “Fully Dynamic Two Dimensional Orthogonal Range
and Line Segment Intersection Reporting in Logarithmic Time” Proc.
14th ACM-STAM Symposium on Discrete Algorithms(2003), 618-627.

Y. Nekrich, “Space efficient dynamic orthogonal range reporting”, Proc.
21st ACM Symp. on Computational Geometry(2005), 306-313.

M. H. Overmars “Design of Dynamic Data Structures” Springer-Verlag
New York, Inc., Secaucus, NJ, 1987.

M. H. Overmars “Efficient Data Structures for Range Searching on a
Grid”, J. Algorithms, vol. 9(2),1988, 254-275.

R.E. Tarjan “A Class of Algorithms Which Require Nonlinear Time to
Maintain Disjoint Sets”, Journal of Computer and System Sciences vol.
18, 1979, 110-127.

D. E. Willard “New Data Structures for Orthogonal Range Queries”,
SIAM J. on Computing, vol. 14, 1985, 232-253.

D. E. Willard “Multidimensional Search Trees That Provide New Types
of Memory Reductions”, J. of the ACM, vol. 34, 1987, 846-858.

D. E. Willard “Applications of Range Query Theory to Relational Data
Base Join and Select Operations”, Journal of Computer and System
Sciences, vol. 52, 1996, 157-169.

D. E. Willard, Examining Computational Geometry, Van Emde Boas
Trees, and Hashing from the Perspective of the Fusion Tree. STAM J.
Comput., vol. 29(3), 2000, 1030-1049.

12

