
Dynami Planar Orthogonal RangeReportingMarek Karpinski� Yakov NekrihyAbstratIn this paper we present a dynami data struture for planar orthog-onal range reporting with query time O(logn= log logn+ k) and spaeO(n log" n) for any " > 0 and k the answer size. We also present a spaeeÆient dynami data struture with O(logn= log logn + k log logn)query time that uses O(n log logn) spae. These are the �rst dynamidata strutures with sublogarithmi query time for that problem.Keywords: Algorithms and Data Strutures, Computational Geom-etry, Dynami Data Strutures, Range Reporting1 IntrodutionThe planar orthogonal range reporting problem is to maintain a set of pointsS so that for an arbitrary query retangle Q all points from S that belongto Q an be reported. This problem has been studied extensively; surveysof the previous results are given in [2℄ and [12℄.Several spae eÆient stati data strutures for this problem with log-arithmi query time are desribed in Chazelle [10℄. In partiular, [10℄ de-sribes a data struture with O(n log" n) spae and O(logn+ k) time and adata struture with O(logn + k log log 4nk+1) query time and O(n log logn)spae; here and further k = jS \ Qj is the size of the answer. Us-ing a dynamization of the frational asading tehnique of Chazelle andGuibas [9℄, Mehlhorn and N�aher [19℄ desribed a dynami data struturewith query time O(logn log logn + k), update time O(logn log logn) andspae O(n logn). Mortensen [21℄ desribed a data struture that requiresO(n logn= log logn) spae and supports queries and updates in O(logn+k)and O(logn) time respetively. In [22℄ the spae requirements for the�Dept. of Computer Siene, University of Bonn. E-mail marek�s.uni-bonn.de. Workpartially supported by a DFG grant, Max-Plank Researh Prize, and IST grant 14036(RAND-APX).yDept. of Computer Siene, University of Bonn. E-mail yasha�s.uni-bonn.de. Workpartially supported by IST grant 14036 (RAND-APX).1



dynami ase are further redued: the data strutures of [22℄ use eitherO(n log" n) spae and support queries in O(logn+k) time, or O(n log logn)spae and O(logn + k log logn) query time, thus mathing the two abovementioned results of Chazelle [10℄ for the stati ase.In the ase of orthogonal range reporting on an n � n grid, there existstati data strutures with sublogarithmi query time. For instane, Over-mars [24℄ desribed a data struture with query time O(log logn+ k) usingspae O(n logn); in [3℄ a data struture with query time O(log logn + k)and spae O(n log" n) is desribed. Using the redution to rank spae teh-nique(see, e.g., [10℄) and data strutures for predeessor queries, a sublog-arithmi time an be ahieved for the general ase stati data strutures.Combining the fusion trees of Willard with the result of [3℄, we obtain aO(logn= log logn+ k) query time and O(n log" n) spae data struture; an-other O(logn= log logn + k) time data struture was presented by Willard[29℄. Combining the exponential searh trees (see [4℄, [5℄,[6℄) with [3℄, weobtain a data struture with O(plogn= log logn+ k) query time.In the ase of dynami planar orthogonal range reporting queries, thefastest previously known dynami data strutures (f. [21℄, [22℄) have querytime 
(logn + k). In this paper we present a dynami data struture withO(logn= log logn+k) query time for planar range reporting queries. To thebest of our knowledge, this is the �rst data struture with o(logn+k) querytime.Our approah depends on a redution of a planar range reporting queryto several three-sided queries1 and a planar range reporting query on a setwith a muh smaller number of elements.1.1 Our ResultsWe start with formulating our main results.Theorem 1 Let a = log3=2 3 � 2:71. There is a data struture D thatsupports planar orthogonal range reporting queries in O(logn= log logn+ k)time and updates in O(loga n) time, where k is the size of the answer. D anbe onstruted in O(n logn) time and requires O(n log" n) spae for arbitrary" > 0.Theorem 2 Let a = log3=2 3 � 2:71. There is a data struture D0 thatsupports planar orthogonal range reporting queries in O(logn= log logn +k log logn) time and updates in O(loga n) time, where k is the size of theanswer. D0 an be onstruted in O(n logn) time and requires O(n log logn)spae.Our results are valid in the unit ost RAM; we assume that all pointoordinates are integers, but the size of point oordinates is not limited.1A three-sided query will be de�ned in the setion 1.12



The result of Theorem 1 is a log logn fator improvement in query timeompared to [22℄ and an improvement in terms of both spae and query timeompared to [21℄.A three-sided range reporting query is a speial ase of the planar rangereporting query, in whih one side of the query retangle is onstrained to lieon one of the axes. Our result is based on two general redutions. The �rstredution onverts a dynami data struture for three-sided queries into adynami data struture for planar range reporting. The seond redutiononverts a dynami data struture with spae �(n logp n) into a dynamidata struture with spae O(n log" n) for arbitrary onstants p > 0, " > 0.� Suppose there is a data struture B for three-sided range queries withquery time O(t(n)+k), where t(n) = 
(plogn= log logn), and updatetime u(n) that uses spae O(n) and an be onstruted in linear time.Then there exists a data struture A for planar range reporting withquery time O(t(n) + k) and update time u0(n), suh that u0(n) =O(u(n)) + 3u0(n2=3). A an be onstruted in O(n log2 n) time anduses O(n log2 n) words of memory.� Suppose there exist a dynami data struture A for planar range re-porting queries withO(t(n)+k) query time, t(n) = 
(plogn= log logn)and O(n logp n) spae, and a dynami linear spae data struture Bfor three-sided queries with query time O(t(n)+k). Then there existsa dynami data struture D for planar range reporting queries withquery time O(t(n) + k), and spae O(n log" n).The ondition t(n) = 
(plogn= log logn) means that the query time annotbe asymptotially faster than the time to answer a predeessor query (see[6℄). Basially, we show that any dynami linear-spae data struture forthree-sided queries whose query time is not asymptotially faster than thelower bound on predeessor queries an be onverted into a dynami datastruture for planar orthogonal range reporting queries with the same querytime and only a small inrease in spae. The preise desription of redutionsis given in Theorems 4 and 5. These redutions are of interest on their own,sine they eluidate the onnetion between data strutures for three-sidedrange queries and (spae eÆient) data strutures for general planar rangereporting queries.2 An O(log n= log log n + k) Time Data StrutureIn this setion we desribe a data struture that ahieves query timeO(logn= log logn+ k) but requires O(n log2 n) spae.We will use the following lemma from [29℄:3



Lemma 1 There is a dynami linear spae data struture that supportsthree-sided queries in O(logn= log logn+k) time, updates in O(logn= log logn)amortized time, and an be onstruted in O(n) time.Following [29℄, we all the data struture from Lemma 1 a fusion prioritytree.Theorem 3 There exists a dynami data struture A that supports planarorthogonal range reporting queries in time O(logn= log logn + k), updateoperations in O(loga n) time for a = log3=2 3 � 2:71. A uses O(n log2 n)words of memory and an be onstruted in O(n log2 n) time.In the data struture desribed in this setion the set of points storedin A is divided into olumns and rows. The set of points is divided intoolumns Ci = [i�1; i℄� (�1;+1) so that Ci ontains between n2=3=2 and2n2=3 points; the number of olumns is O(n1=3). In the same way the set ofpoints is divided into O(n2=3) rows Ri = (�1;+1)� [ri�1; ri℄, so that eahrow ontains between n2=3=2 and 2n2=3 elements.Our data struture onsists of the following omponents:1. For every olumn and every row we store two fusion priority treesof Willard [29℄ that allow us to answer three-sided range queries inO(logn= log logn) time. For every row Ri, data strutures that answerqueries (ri�1; d℄� [a; b℄ and [d; ri)� [a; b℄ are stored. For every olumnCj, data strutures that answer queries (j�1; b℄�[; d℄ and [b; j)�[; d℄are stored.2. We store data strutures T and Tr for one-dimensional predeessorqueries with O(logn= log logn) query time. T and Tr store all ol-umn borders i and all row borders ri respetively. T and Tr an beimplemented using e.g. the fusion tree of Willard.3. LetKij = Cj\Ri. We also store data strutureAt that stores all points(i; j) suh that Kij 6= ;. Data struture At is de�ned reursively,i.e., At onsists of the same type of omponents as our initial datastrutureA. Observe that At ontains at most O(n2=3) elements dueto the fat that the number of non-empty Kij is at most n1=3n1=3.4. For every row Ri and every olumn Cj , a reursively de�ned datastruture Ri(A) (Cj(A)) is stored. Ri(A) (Cj(A)) ontains all pointsfrom row Ri (olumn Cj) of A. A top level data struture is alled thelevel 0 data struture. A data struture that stores elements from aolumn or a row of some level l data struture Al, or a data struture(Al)t are alled level l + 1 data strutures.4



5. Consider a level l data struture Al. A point p in a level l + 1 datastruture (Al)t ontains all points in Kij . A point in data strutureCi(Al) or Ri(Al) on level l+1 ontains a single point of the level l datastruture. In the general ase, an element p in a level l data strutureontains a point p0 in a level l0 data struture, l > l0 + 1, if p ontainssome p00 on level l0+1 and p00 ontains p0. With every point p we storethe set of points ont(p) that onsists of all points in the level 0 datastruture that p ontains. The set ont(p) allows us to output diretlythe points whih are ontained in a ell Kij in a data struture At onlevel l > 0Lemma 2 Data struture A supports planar range reporting queries in timeO(logn= logn logn+ k).Proof: A query [a; b℄� [; d℄ is proessed as follows. We �nd imin, imax andjmin, jmax suh that imin�1 < a < imin , imax�1 < b < imax , rjmin�1 <  <rjmin , and rjmax�1 < d < rjmax , where ri and j are oordinates of row andolumn borders. Using T and Tr, imin, imax and jmin, jmax an be found inO(logn= log logn) time. We distinguish between two ases: 1. imin = imaxor jmin = jmax. 2. imax > imin and jmax > jmin. In the �rst ase thequery retangle is ontained in one row or olumn, and in the seond ase[a; b℄� [; d℄ intersets with more than one row and more than one olumn.A row [ri�1; ri℄ is alled a marginal row, if ri�1 <  < ri or ri > d > ri�1. Aolumn [i�1; i℄ is alled a marginal olumn, if i�1 < a < i or i > b > i�1.The query an be answered as follows:Case 1 [a; b℄� [; d℄ is ontained in one row Ri or in one olumn Cj . Thenthe searh ontinues in the data struture orresponding to Ri or Cj.Case 2 [a; b℄� [; d℄ intersets with more than one row and more than oneolumn, i.e., there are internal retangles. Then the query an beanswered by answering four three-sided queries for marginal rows andolumns and reporting all elements from non-empty internal retanglesusing At. Let imin�1 < a < imin < : : : < imax�1 < b < imaxand rjmin�1 <  < rjmin < : : : < rjmax�1 < d < rjmax . That is,Cimin ,Cimax, and Rjmin , Rjmax are respetively marginal olumns andmarginal rows. We answer three-sided range queries (jmax�1; b℄� [; d℄and [a; jmin)�[; d℄ using the fusion priority trees for Cjmax and Cjmin .Those queries an be answered in O(logn= log logn+ k) time, and forevery point p in the answer we report all points in ont(p) i.e., all pointsthat p ontains. We report the points from marginal rows in the sameway using the fusion priority trees for Rimin and Rimax . Finally, weidentify all non-empty retangles Kij using a two-dimensional query[jmin; jmax � 1℄� [imin; imax � 1℄ to At (see Fig. 1).5
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Figure 1: Range Query (Case 2). Three-sided range queries on marginalolumns and rows are marked by bold lines. Non-empty Kij are �lled withslanted lines and an be identi�ed by a query [1; 4℄� [2; 4℄ to At.Let q(n; k) be query time. In the �rst ase a query to a data struturewith n elements is redued to a query to a data struture with O(n2=3)elements in O(logn= log logn) time. Thus q(n; k) = O(logn= log logn) +q(n2=3) in the �rst ase. In the seond ase, a query is redued to fourthree-sided queries to marginal olumns and rows that an be answeredin O(logn= log logn + k0) time, and to query to a data struture At withO(n2=3) elements that an be answered in O(q(n2=3; k00)) time. Here k0denotes the number of points in marginal olumns and rows, and k00 denotesthe number of points in non-empty ells Kij ; k0 + k00 = k. Observe thatusing At we an output the points in the level 0 data struture with helpof ont(p). Summing up, q(n; k) � max((q(n2=3; k00) + O(logn= log logn +k0)); (q(n2=3; k) + O(logn= log logn))), where k0 + k00 = k. Thus q(n; k) �q(n2=3; k0) + O(logn= log logn + k00) and q(n; k) = O(logn= log logn + k).Lemma 3 Data struture A uses O(n log2 n) spae and an be onstrutedin time O(n log2 n)Proof: Spae s(n) used by data struture A is superlinear beause apolylogarithmi number of opies of eah point must be stored. On thetop level, every point must be stored in four fusion priority trees andtwo data strutures with O(n2=3) elements. Besides that, a data stru-ture At with O(n2=3) elements must be stored. We obtain a reursive for-mula s(n) = O(n) + 2n1=3s(n2=3) + s(n2=3). Let v(n) = s(n)=n. Then6



v(n) = O(1) + 2v(n2=3) + v(n2=3)=n1=3. Obviously, v(n) < 3v(n2=3). Letf(n) = v(2n), then f(n) < 3f((2=3)n), and f(n) = O(n3). Hene, v(n) =O(log3 n) and v(n) = 2v(n2=3) + (O(1)+O(log3 n=n1=3)) = 2v(n2=3) + o(n).Thus, v(n) = O((logn)log3=2(2)) and v(n) = O(log2 n). Therefore, s(n) =O(n log2 n).Constrution time (n) an be estimated with a reursive formula (n) =4O(n)+2n1=3(n2=3)+(n2=3). In the same way as above, (n) = O(n log2 n).Lemma 4 Update operations on the data struture A an be performed inO(loga n) amortized time, where a = log3=2 3 � 2:71.Proof: Suppose an element e is inserted into or deleted from a data strutureA of size n, and e 2 Cj(A), e 2 Ri(A) (e belongs to the j-th olumn and thei-th row). Then it must be inserted into or deleted from four fusion prioritytrees in time O(logn). Besides that, three data strutures of size O(n2=3),namely At, Cj(A) and Ri(A) for some i and j, must be modi�ed; in ase ofAt we either add/delete e from the set ont(p), where p orresponds to Kij ,or an element p with oordinates (i; j) is added/deleted from At. The datastruture an be updated in time u(n) = u(n2=3)+ 2u(n2=3)+O(logn). Letf(t) = u(2t), then f(t) = 3f(2t=3) + O(t). Applying master theorem, weobtain f(t) = �(tlog3=2 3), and u(n) = �(logn)log3=2 3 = �(loga n).In the above analysis we ignored the fat that some parts of the datastruture must be rebuilt if ertain onditions are violated (partial rebuild)and the whole data struture must be rebuilt sometimes (global rebuild).First onsider the ost of rebuilding A (global rebuild). Suppose the numberof elements after the last global rebuild was n0. Then the next global rebuildtakes plae when n0=2 > jAj or 3n0=2 < jAj. During the global rebuildingthe whole data struture is reonstruted \from srath". As was shown inLemma 3 this inurs the total ost of O(n0 log2 n0) and the amortized ostO(log2 n).Now we estimate the amortized ost of loal rebuilds. Consider somedata struture Al on level l ontainingm elements. Every row and olumn ofAl an hold between m2=3=2 and 2m2=3 elements. If after a series of updatesthe number of elements in olumn Ci violates these bounds, we onsider oneof the neighbor olumns Ci+1 and Ci�1. Sine m2=3 � jCi [ Ci+1j < 4m2=3(the same bounds are also true for jCi[Ci�1j), we an onstrut v olumnsfrom elements of Ci and Ci+1, where 1 � v � 4, so that eah new olumnontains between 3m2=3=4 and 3m2=3=2 elements. Sine these olumns anbe rebuilt in time O(m2=3 log2(m2=3)) (see Lemma 3) rebuilding olumnsinurs amortized ost O(log2m). Rebuilding rows is, of ourse, idential torebuilding olumns.When a row or a olumn is rebuilt, At must also be updated. Namely,up to O(m1=3) elements are inserted to or deleted from At. The total ost7



of updating At an be estimated as O(m2=3 log2m) (i.e., instead of insertingO(m1=3) elements, we rebuild the data struture with O(m2=3) elements inO(m2=3 log2m) time. Thus updating At also inurs O(log2m) time.The total amortized ost of rebuilds inurred by an insertion of anew element an be expressed as: g(n) = O(log2 n) + 3g(n2=3). Sub-stituting f(n) = g(2n) and solving the reurrene for f(n), we obtaing(n) = O(loga n). Thus the total amortized ost of an update operationis O(loga n).2.1 A redution from three-sided to planar range reportingqueriesThe result of Theorem 3 an be generalized as follows.Theorem 4 Suppose there is a data struture B for three-sided queries withquery time O(t(n) + k), where t(n) = 
(plogn= log logn), and update timeu(n) that uses spae O(n) and an be onstruted in O(n) time. Then thereexists a data struture A for planar range reporting queries that supportsqueries in time O(t(n) + k) and updates in time u0(n), suh that u0(n) =O(u(n)) + 3u0(n2=3); A uses spae O(n log2 n) and an be onstruted inO(n log2 n) time.Proof of Theorem 4 is analogous to the proof of Theorem 3.3 A Spae EÆient Data StrutureIn this setion we desribe a general method for dereasing the spae require-ments of dynami data strutures for orthogonal range queries. The resultsdesribed in the introdution follow from the ombination of Theorem 5,Theorem 3, and Lemma 1.Theorem 5 Let a = log3=2 3, t(n) = 
(plogn= log logn). Suppose thereexist a data struture A for planar orthogonal range reporting querieswith query time O(t(n) + k) and update time O(loga n) that requires spaeO(n logp n) for any p > 0 and a linear spae data struture B for three-sidedqueries with query time O(t(n) + k) and update time O(loga n).Then there is a data struture D that supports planar range reporting queriesin O(t(n) + k) time and requires O(n log" n) spae for any " > 0. Thereis also a data struture D0 that supports planar range reporting queries inO(t(n) + k log logn) time and requires O(n log logn) spae. Both D and D0support updates in amortized time O(loga n). If A an be onstruted inO(n logp n) time, and B an be onstruted in O(n) time, then both D andD0 an be onstruted in O(n logn) time.This theorem is a generalization of the result presented in [22℄ and anbe proven in the same way. For ompleteness we provide a sketh of the8



proof.Proof Sketh : The set of points S is divided into olumns Ci and rowsRi, sothat the number of elements in every olumn (row) is between pn logp n=2and 2pn logp n. We store lists of points in all Kij = Ci \Rj ; data strutureDt ontains points (i; j) for Kij 6= ;. Given A, Dt an be implemented inO(n) spae, so that queries and updates are supported in time O(t(n) + k)and O(loga n) respetively. For eah olumn and row two data strutures forthree-sided range queries are stored. Using those data strutures B, everyquery of the kind (ri�1; d℄ � [a; b℄ or [d; ri) � [a; b℄ or (j�1; b℄ � [; d℄ and[b; j)� [; d℄ an be answered in O(t(n)+k) time. If the number of elementsin a row or a olumn exeeds t(n) a reursively de�ned data struture isstored for this row or olumn.Consider a query [a; b℄� [; d℄. We �nd imin, imax, jmin, and jmax, suhthat imin�1 < a, b < imax , rjmin�1 <  and d < rjmax . Again, we distinguishbetween two ases. If j�1 < a and b < j for some j, or ri�1 <  and d < rifor some i, then the query is transferred to a data struture orrespondingto olumn Cj or row Ri. Otherwise we answer four three-sided range queriesto report all elements from marginal olumns and rows, and we identify allnon-empty retangles Kij by answering query [imin; imax�1℄� [jmin; jmax�1℄. In the �rst ase, the size of the data struture is redued from n topn logp n, and in the seond ase the query is answered in O(t(n) + k)time. Let query time q(n; k) = O(t0(n) + k); t0(n) an be estimated ast0(n) = max(O(t(n)); t0(pn logp n)). t0(n) < O(t(n)) + t0(pn logp n). Sinepn logp n = o(n(b+1)=2b) for any integer b > 0, t0(n) < O(t(n))+t0(n(b+1)=2b).For t(n) = 
(plogn= log logn), t0(n) = O(t(n)). Hene, queries an beanswered in O(t(n) + k) time.We all the data struture that ontains all points a level 0 data stru-ture, and data strutures that ontain all points in a olumn or row of alevel l data struture are alled level l+ 1 data strutures. It an be shownthat the maximal reursion level lmax = log logn+ , where  is a onstant.Every point is stored in D O(logn) times: one in a level 0 data struture,twie in level 1 data strutures, 2l times in level l data strutures. The spaerequirements an be redued from O(n logn) to O(n log" n) for any " > 0by using the dynami range redution to extended rank spae tehnique de-sribed in [22℄. If we apply this tehnique on a reursion level l, every point ineah level l data struture an be stored with only O(log(sl(n))) bits, wheresl(n) is the maximal number of points in a level l data struture. To avoidpenalties for eah point in the answer, we apply range redution on every" log logn-th level. Then every group of " log logn levels takes O(n log1+" n)bits, and the whole data strutureD requires O(n log" n) words of logn bits.Alternatively, to onstrut the data struture D0, the dynami rangeredution an be applied on eah reursive level. Then all data strutureson level l, l = 1; 2; : : : ; log logn + , use O(n logn) bits, and the total spaean be redued to O(n log logn) words. But in this ase the reverse range9



redution must be applied up to �(log logn) times to restore the originalpoint oordinates, and for eah point in the answer an O(log logn) penaltymust be paid. Therefore, the data struture D0 uses O(n log logn) words ofmemory, and supports queries in time O(t(n) + k log logn).Update time an be estimated with help of a reursive formula: u(n) �O(loga n)+2u(pn logp n) < O(loga n)+2u(n(b+1)=2b) for an arbitrary integerb > 1. Therefore, u(n) = O(loga n).To onstrut D or D0, we must onstrut a data struture A withn= logp n elements, fusion priority trees for rows and olumns, and2pn= logp n data strutures for rows and olumns with pn logp n ele-ments eah. Let 0(n) be the onstrution time of A and (n) the on-strution time of D. Then for (n) a reursion (n) = 0(n= logp n) +2pn= logp n(pn logp n) + O(n) is valid. Let v(n) = (n)=n. As0(n= logp n) = O(n), v(n) = 2v(pn logp n) + O(1). Sine the numberof reursive levels is log logn +  for a onstant , v(n) = O(logn), and(n) = O(n logn).4 ConlusionIn this paper we presented a dynami data struture for planar orthogonalrange reporting with sublogarithmi query time.Our results are based on two important redutions. Using those re-dutions a dynami data struture for three-sided queries with query timeO(t(n) + k), where t(n) = 
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