
Dynami
 Planar Orthogonal RangeReportingMarek Karpinski� Yakov Nekri
hyAbstra
tIn this paper we present a dynami
 data stru
ture for planar orthog-onal range reporting with query time O(logn= log logn+ k) and spa
eO(n log" n) for any " > 0 and k the answer size. We also present a spa
eeÆ
ient dynami
 data stru
ture with O(logn= log logn + k log logn)query time that uses O(n log logn) spa
e. These are the �rst dynami
data stru
tures with sublogarithmi
 query time for that problem.Keywords: Algorithms and Data Stru
tures, Computational Geom-etry, Dynami
 Data Stru
tures, Range Reporting1 Introdu
tionThe planar orthogonal range reporting problem is to maintain a set of pointsS so that for an arbitrary query re
tangle Q all points from S that belongto Q 
an be reported. This problem has been studied extensively; surveysof the previous results are given in [2℄ and [12℄.Several spa
e eÆ
ient stati
 data stru
tures for this problem with log-arithmi
 query time are des
ribed in Chazelle [10℄. In parti
ular, [10℄ de-s
ribes a data stru
ture with O(n log" n) spa
e and O(logn+ k) time and adata stru
ture with O(logn + k log log 4nk+1) query time and O(n log logn)spa
e; here and further k = jS \ Qj is the size of the answer. Us-ing a dynamization of the fra
tional 
as
ading te
hnique of Chazelle andGuibas [9℄, Mehlhorn and N�aher [19℄ des
ribed a dynami
 data stru
turewith query time O(logn log logn + k), update time O(logn log logn) andspa
e O(n logn). Mortensen [21℄ des
ribed a data stru
ture that requiresO(n logn= log logn) spa
e and supports queries and updates in O(logn+k)and O(logn) time respe
tively. In [22℄ the spa
e requirements for the�Dept. of Computer S
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dynami
 
ase are further redu
ed: the data stru
tures of [22℄ use eitherO(n log" n) spa
e and support queries in O(logn+k) time, or O(n log logn)spa
e and O(logn + k log logn) query time, thus mat
hing the two abovementioned results of Chazelle [10℄ for the stati
 
ase.In the 
ase of orthogonal range reporting on an n � n grid, there existstati
 data stru
tures with sublogarithmi
 query time. For instan
e, Over-mars [24℄ des
ribed a data stru
ture with query time O(log logn+ k) usingspa
e O(n logn); in [3℄ a data stru
ture with query time O(log logn + k)and spa
e O(n log" n) is des
ribed. Using the redu
tion to rank spa
e te
h-nique(see, e.g., [10℄) and data stru
tures for prede
essor queries, a sublog-arithmi
 time 
an be a
hieved for the general 
ase stati
 data stru
tures.Combining the fusion trees of Willard with the result of [3℄, we obtain aO(logn= log logn+ k) query time and O(n log" n) spa
e data stru
ture; an-other O(logn= log logn + k) time data stru
ture was presented by Willard[29℄. Combining the exponential sear
h trees (see [4℄, [5℄,[6℄) with [3℄, weobtain a data stru
ture with O(plogn= log logn+ k) query time.In the 
ase of dynami
 planar orthogonal range reporting queries, thefastest previously known dynami
 data stru
tures (
f. [21℄, [22℄) have querytime 
(logn + k). In this paper we present a dynami
 data stru
ture withO(logn= log logn+k) query time for planar range reporting queries. To thebest of our knowledge, this is the �rst data stru
ture with o(logn+k) querytime.Our approa
h depends on a redu
tion of a planar range reporting queryto several three-sided queries1 and a planar range reporting query on a setwith a mu
h smaller number of elements.1.1 Our ResultsWe start with formulating our main results.Theorem 1 Let a = log3=2 3 � 2:71. There is a data stru
ture D thatsupports planar orthogonal range reporting queries in O(logn= log logn+ k)time and updates in O(loga n) time, where k is the size of the answer. D 
anbe 
onstru
ted in O(n logn) time and requires O(n log" n) spa
e for arbitrary" > 0.Theorem 2 Let a = log3=2 3 � 2:71. There is a data stru
ture D0 thatsupports planar orthogonal range reporting queries in O(logn= log logn +k log logn) time and updates in O(loga n) time, where k is the size of theanswer. D0 
an be 
onstru
ted in O(n logn) time and requires O(n log logn)spa
e.Our results are valid in the unit 
ost RAM; we assume that all point
oordinates are integers, but the size of point 
oordinates is not limited.1A three-sided query will be de�ned in the se
tion 1.12



The result of Theorem 1 is a log logn fa
tor improvement in query time
ompared to [22℄ and an improvement in terms of both spa
e and query time
ompared to [21℄.A three-sided range reporting query is a spe
ial 
ase of the planar rangereporting query, in whi
h one side of the query re
tangle is 
onstrained to lieon one of the axes. Our result is based on two general redu
tions. The �rstredu
tion 
onverts a dynami
 data stru
ture for three-sided queries into adynami
 data stru
ture for planar range reporting. The se
ond redu
tion
onverts a dynami
 data stru
ture with spa
e �(n logp n) into a dynami
data stru
ture with spa
e O(n log" n) for arbitrary 
onstants p > 0, " > 0.� Suppose there is a data stru
ture B for three-sided range queries withquery time O(t(n)+k), where t(n) = 
(plogn= log logn), and updatetime u(n) that uses spa
e O(n) and 
an be 
onstru
ted in linear time.Then there exists a data stru
ture A for planar range reporting withquery time O(t(n) + k) and update time u0(n), su
h that u0(n) =O(u(n)) + 3u0(n2=3). A 
an be 
onstru
ted in O(n log2 n) time anduses O(n log2 n) words of memory.� Suppose there exist a dynami
 data stru
ture A for planar range re-porting queries withO(t(n)+k) query time, t(n) = 
(plogn= log logn)and O(n logp n) spa
e, and a dynami
 linear spa
e data stru
ture Bfor three-sided queries with query time O(t(n)+k). Then there existsa dynami
 data stru
ture D for planar range reporting queries withquery time O(t(n) + k), and spa
e O(n log" n).The 
ondition t(n) = 
(plogn= log logn) means that the query time 
annotbe asymptoti
ally faster than the time to answer a prede
essor query (see[6℄). Basi
ally, we show that any dynami
 linear-spa
e data stru
ture forthree-sided queries whose query time is not asymptoti
ally faster than thelower bound on prede
essor queries 
an be 
onverted into a dynami
 datastru
ture for planar orthogonal range reporting queries with the same querytime and only a small in
rease in spa
e. The pre
ise des
ription of redu
tionsis given in Theorems 4 and 5. These redu
tions are of interest on their own,sin
e they elu
idate the 
onne
tion between data stru
tures for three-sidedrange queries and (spa
e eÆ
ient) data stru
tures for general planar rangereporting queries.2 An O(log n= log log n + k) Time Data Stru
tureIn this se
tion we des
ribe a data stru
ture that a
hieves query timeO(logn= log logn+ k) but requires O(n log2 n) spa
e.We will use the following lemma from [29℄:3



Lemma 1 There is a dynami
 linear spa
e data stru
ture that supportsthree-sided queries in O(logn= log logn+k) time, updates in O(logn= log logn)amortized time, and 
an be 
onstru
ted in O(n) time.Following [29℄, we 
all the data stru
ture from Lemma 1 a fusion prioritytree.Theorem 3 There exists a dynami
 data stru
ture A that supports planarorthogonal range reporting queries in time O(logn= log logn + k), updateoperations in O(loga n) time for a = log3=2 3 � 2:71. A uses O(n log2 n)words of memory and 
an be 
onstru
ted in O(n log2 n) time.In the data stru
ture des
ribed in this se
tion the set of points storedin A is divided into 
olumns and rows. The set of points is divided into
olumns Ci = [
i�1; 
i℄� (�1;+1) so that Ci 
ontains between n2=3=2 and2n2=3 points; the number of 
olumns is O(n1=3). In the same way the set ofpoints is divided into O(n2=3) rows Ri = (�1;+1)� [ri�1; ri℄, so that ea
hrow 
ontains between n2=3=2 and 2n2=3 elements.Our data stru
ture 
onsists of the following 
omponents:1. For every 
olumn and every row we store two fusion priority treesof Willard [29℄ that allow us to answer three-sided range queries inO(logn= log logn) time. For every row Ri, data stru
tures that answerqueries (ri�1; d℄� [a; b℄ and [d; ri)� [a; b℄ are stored. For every 
olumnCj, data stru
tures that answer queries (
j�1; b℄�[
; d℄ and [b; 
j)�[
; d℄are stored.2. We store data stru
tures T
 and Tr for one-dimensional prede
essorqueries with O(logn= log logn) query time. T
 and Tr store all 
ol-umn borders 
i and all row borders ri respe
tively. T
 and Tr 
an beimplemented using e.g. the fusion tree of Willard.3. LetKij = Cj\Ri. We also store data stru
tureAt that stores all points(i; j) su
h that Kij 6= ;. Data stru
ture At is de�ned re
ursively,i.e., At 
onsists of the same type of 
omponents as our initial datastru
tureA. Observe that At 
ontains at most O(n2=3) elements dueto the fa
t that the number of non-empty Kij is at most n1=3n1=3.4. For every row Ri and every 
olumn Cj , a re
ursively de�ned datastru
ture Ri(A) (Cj(A)) is stored. Ri(A) (Cj(A)) 
ontains all pointsfrom row Ri (
olumn Cj) of A. A top level data stru
ture is 
alled thelevel 0 data stru
ture. A data stru
ture that stores elements from a
olumn or a row of some level l data stru
ture Al, or a data stru
ture(Al)t are 
alled level l + 1 data stru
tures.4



5. Consider a level l data stru
ture Al. A point p in a level l + 1 datastru
ture (Al)t 
ontains all points in Kij . A point in data stru
tureCi(Al) or Ri(Al) on level l+1 
ontains a single point of the level l datastru
ture. In the general 
ase, an element p in a level l data stru
ture
ontains a point p0 in a level l0 data stru
ture, l > l0 + 1, if p 
ontainssome p00 on level l0+1 and p00 
ontains p0. With every point p we storethe set of points 
ont(p) that 
onsists of all points in the level 0 datastru
ture that p 
ontains. The set 
ont(p) allows us to output dire
tlythe points whi
h are 
ontained in a 
ell Kij in a data stru
ture At onlevel l > 0Lemma 2 Data stru
ture A supports planar range reporting queries in timeO(logn= logn logn+ k).Proof: A query [a; b℄� [
; d℄ is pro
essed as follows. We �nd imin, imax andjmin, jmax su
h that 
imin�1 < a < 
imin , 
imax�1 < b < 
imax , rjmin�1 < 
 <rjmin , and rjmax�1 < d < rjmax , where ri and 
j are 
oordinates of row and
olumn borders. Using T
 and Tr, imin, imax and jmin, jmax 
an be found inO(logn= log logn) time. We distinguish between two 
ases: 1. imin = imaxor jmin = jmax. 2. imax > imin and jmax > jmin. In the �rst 
ase thequery re
tangle is 
ontained in one row or 
olumn, and in the se
ond 
ase[a; b℄� [
; d℄ interse
ts with more than one row and more than one 
olumn.A row [ri�1; ri℄ is 
alled a marginal row, if ri�1 < 
 < ri or ri > d > ri�1. A
olumn [
i�1; 
i℄ is 
alled a marginal 
olumn, if 
i�1 < a < 
i or 
i > b > 
i�1.The query 
an be answered as follows:Case 1 [a; b℄� [
; d℄ is 
ontained in one row Ri or in one 
olumn Cj . Thenthe sear
h 
ontinues in the data stru
ture 
orresponding to Ri or Cj.Case 2 [a; b℄� [
; d℄ interse
ts with more than one row and more than one
olumn, i.e., there are internal re
tangles. Then the query 
an beanswered by answering four three-sided queries for marginal rows and
olumns and reporting all elements from non-empty internal re
tanglesusing At. Let 
imin�1 < a < 
imin < : : : < 
imax�1 < b < 
imaxand rjmin�1 < 
 < rjmin < : : : < rjmax�1 < d < rjmax . That is,Cimin ,Cimax, and Rjmin , Rjmax are respe
tively marginal 
olumns andmarginal rows. We answer three-sided range queries (
jmax�1; b℄� [
; d℄and [a; 
jmin)�[
; d℄ using the fusion priority trees for Cjmax and Cjmin .Those queries 
an be answered in O(logn= log logn+ k) time, and forevery point p in the answer we report all points in 
ont(p) i.e., all pointsthat p 
ontains. We report the points from marginal rows in the sameway using the fusion priority trees for Rimin and Rimax . Finally, weidentify all non-empty re
tangles Kij using a two-dimensional query[jmin; jmax � 1℄� [imin; imax � 1℄ to At (see Fig. 1).5
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Figure 1: Range Query (Case 2). Three-sided range queries on marginal
olumns and rows are marked by bold lines. Non-empty Kij are �lled withslanted lines and 
an be identi�ed by a query [1; 4℄� [2; 4℄ to At.Let q(n; k) be query time. In the �rst 
ase a query to a data stru
turewith n elements is redu
ed to a query to a data stru
ture with O(n2=3)elements in O(logn= log logn) time. Thus q(n; k) = O(logn= log logn) +q(n2=3) in the �rst 
ase. In the se
ond 
ase, a query is redu
ed to fourthree-sided queries to marginal 
olumns and rows that 
an be answeredin O(logn= log logn + k0) time, and to query to a data stru
ture At withO(n2=3) elements that 
an be answered in O(q(n2=3; k00)) time. Here k0denotes the number of points in marginal 
olumns and rows, and k00 denotesthe number of points in non-empty 
ells Kij ; k0 + k00 = k. Observe thatusing At we 
an output the points in the level 0 data stru
ture with helpof 
ont(p). Summing up, q(n; k) � max((q(n2=3; k00) + O(logn= log logn +k0)); (q(n2=3; k) + O(logn= log logn))), where k0 + k00 = k. Thus q(n; k) �q(n2=3; k0) + O(logn= log logn + k00) and q(n; k) = O(logn= log logn + k).Lemma 3 Data stru
ture A uses O(n log2 n) spa
e and 
an be 
onstru
tedin time O(n log2 n)Proof: Spa
e s(n) used by data stru
ture A is superlinear be
ause apolylogarithmi
 number of 
opies of ea
h point must be stored. On thetop level, every point must be stored in four fusion priority trees andtwo data stru
tures with O(n2=3) elements. Besides that, a data stru
-ture At with O(n2=3) elements must be stored. We obtain a re
ursive for-mula s(n) = O(n) + 2n1=3s(n2=3) + s(n2=3). Let v(n) = s(n)=n. Then6



v(n) = O(1) + 2v(n2=3) + v(n2=3)=n1=3. Obviously, v(n) < 3v(n2=3). Letf(n) = v(2n), then f(n) < 3f((2=3)n), and f(n) = O(n3). Hen
e, v(n) =O(log3 n) and v(n) = 2v(n2=3) + (O(1)+O(log3 n=n1=3)) = 2v(n2=3) + o(n).Thus, v(n) = O((logn)log3=2(2)) and v(n) = O(log2 n). Therefore, s(n) =O(n log2 n).Constru
tion time 
(n) 
an be estimated with a re
ursive formula 
(n) =4O(n)+2n1=3
(n2=3)+
(n2=3). In the same way as above, 
(n) = O(n log2 n).Lemma 4 Update operations on the data stru
ture A 
an be performed inO(loga n) amortized time, where a = log3=2 3 � 2:71.Proof: Suppose an element e is inserted into or deleted from a data stru
tureA of size n, and e 2 Cj(A), e 2 Ri(A) (e belongs to the j-th 
olumn and thei-th row). Then it must be inserted into or deleted from four fusion prioritytrees in time O(logn). Besides that, three data stru
tures of size O(n2=3),namely At, Cj(A) and Ri(A) for some i and j, must be modi�ed; in 
ase ofAt we either add/delete e from the set 
ont(p), where p 
orresponds to Kij ,or an element p with 
oordinates (i; j) is added/deleted from At. The datastru
ture 
an be updated in time u(n) = u(n2=3)+ 2u(n2=3)+O(logn). Letf(t) = u(2t), then f(t) = 3f(2t=3) + O(t). Applying master theorem, weobtain f(t) = �(tlog3=2 3), and u(n) = �(logn)log3=2 3 = �(loga n).In the above analysis we ignored the fa
t that some parts of the datastru
ture must be rebuilt if 
ertain 
onditions are violated (partial rebuild)and the whole data stru
ture must be rebuilt sometimes (global rebuild).First 
onsider the 
ost of rebuilding A (global rebuild). Suppose the numberof elements after the last global rebuild was n0. Then the next global rebuildtakes pla
e when n0=2 > jAj or 3n0=2 < jAj. During the global rebuildingthe whole data stru
ture is re
onstru
ted \from s
rat
h". As was shown inLemma 3 this in
urs the total 
ost of O(n0 log2 n0) and the amortized 
ostO(log2 n).Now we estimate the amortized 
ost of lo
al rebuilds. Consider somedata stru
ture Al on level l 
ontainingm elements. Every row and 
olumn ofAl 
an hold between m2=3=2 and 2m2=3 elements. If after a series of updatesthe number of elements in 
olumn Ci violates these bounds, we 
onsider oneof the neighbor 
olumns Ci+1 and Ci�1. Sin
e m2=3 � jCi [ Ci+1j < 4m2=3(the same bounds are also true for jCi[Ci�1j), we 
an 
onstru
t v 
olumnsfrom elements of Ci and Ci+1, where 1 � v � 4, so that ea
h new 
olumn
ontains between 3m2=3=4 and 3m2=3=2 elements. Sin
e these 
olumns 
anbe rebuilt in time O(m2=3 log2(m2=3)) (see Lemma 3) rebuilding 
olumnsin
urs amortized 
ost O(log2m). Rebuilding rows is, of 
ourse, identi
al torebuilding 
olumns.When a row or a 
olumn is rebuilt, At must also be updated. Namely,up to O(m1=3) elements are inserted to or deleted from At. The total 
ost7



of updating At 
an be estimated as O(m2=3 log2m) (i.e., instead of insertingO(m1=3) elements, we rebuild the data stru
ture with O(m2=3) elements inO(m2=3 log2m) time. Thus updating At also in
urs O(log2m) time.The total amortized 
ost of rebuilds in
urred by an insertion of anew element 
an be expressed as: g(n) = O(log2 n) + 3g(n2=3). Sub-stituting f(n) = g(2n) and solving the re
urren
e for f(n), we obtaing(n) = O(loga n). Thus the total amortized 
ost of an update operationis O(loga n).2.1 A redu
tion from three-sided to planar range reportingqueriesThe result of Theorem 3 
an be generalized as follows.Theorem 4 Suppose there is a data stru
ture B for three-sided queries withquery time O(t(n) + k), where t(n) = 
(plogn= log logn), and update timeu(n) that uses spa
e O(n) and 
an be 
onstru
ted in O(n) time. Then thereexists a data stru
ture A for planar range reporting queries that supportsqueries in time O(t(n) + k) and updates in time u0(n), su
h that u0(n) =O(u(n)) + 3u0(n2=3); A uses spa
e O(n log2 n) and 
an be 
onstru
ted inO(n log2 n) time.Proof of Theorem 4 is analogous to the proof of Theorem 3.3 A Spa
e EÆ
ient Data Stru
tureIn this se
tion we des
ribe a general method for de
reasing the spa
e require-ments of dynami
 data stru
tures for orthogonal range queries. The resultsdes
ribed in the introdu
tion follow from the 
ombination of Theorem 5,Theorem 3, and Lemma 1.Theorem 5 Let a = log3=2 3, t(n) = 
(plogn= log logn). Suppose thereexist a data stru
ture A for planar orthogonal range reporting querieswith query time O(t(n) + k) and update time O(loga n) that requires spa
eO(n logp n) for any p > 0 and a linear spa
e data stru
ture B for three-sidedqueries with query time O(t(n) + k) and update time O(loga n).Then there is a data stru
ture D that supports planar range reporting queriesin O(t(n) + k) time and requires O(n log" n) spa
e for any " > 0. Thereis also a data stru
ture D0 that supports planar range reporting queries inO(t(n) + k log logn) time and requires O(n log logn) spa
e. Both D and D0support updates in amortized time O(loga n). If A 
an be 
onstru
ted inO(n logp n) time, and B 
an be 
onstru
ted in O(n) time, then both D andD0 
an be 
onstru
ted in O(n logn) time.This theorem is a generalization of the result presented in [22℄ and 
anbe proven in the same way. For 
ompleteness we provide a sket
h of the8



proof.Proof Sket
h : The set of points S is divided into 
olumns Ci and rowsRi, sothat the number of elements in every 
olumn (row) is between pn logp n=2and 2pn logp n. We store lists of points in all Kij = Ci \Rj ; data stru
tureDt 
ontains points (i; j) for Kij 6= ;. Given A, Dt 
an be implemented inO(n) spa
e, so that queries and updates are supported in time O(t(n) + k)and O(loga n) respe
tively. For ea
h 
olumn and row two data stru
tures forthree-sided range queries are stored. Using those data stru
tures B, everyquery of the kind (ri�1; d℄ � [a; b℄ or [d; ri) � [a; b℄ or (
j�1; b℄ � [
; d℄ and[b; 
j)� [
; d℄ 
an be answered in O(t(n)+k) time. If the number of elementsin a row or a 
olumn ex
eeds t(n) a re
ursively de�ned data stru
ture isstored for this row or 
olumn.Consider a query [a; b℄� [
; d℄. We �nd imin, imax, jmin, and jmax, su
hthat 
imin�1 < a, b < 
imax , rjmin�1 < 
 and d < rjmax . Again, we distinguishbetween two 
ases. If 
j�1 < a and b < 
j for some j, or ri�1 < 
 and d < rifor some i, then the query is transferred to a data stru
ture 
orrespondingto 
olumn Cj or row Ri. Otherwise we answer four three-sided range queriesto report all elements from marginal 
olumns and rows, and we identify allnon-empty re
tangles Kij by answering query [imin; imax�1℄� [jmin; jmax�1℄. In the �rst 
ase, the size of the data stru
ture is redu
ed from n topn logp n, and in the se
ond 
ase the query is answered in O(t(n) + k)time. Let query time q(n; k) = O(t0(n) + k); t0(n) 
an be estimated ast0(n) = max(O(t(n)); t0(pn logp n)). t0(n) < O(t(n)) + t0(pn logp n). Sin
epn logp n = o(n(b+1)=2b) for any integer b > 0, t0(n) < O(t(n))+t0(n(b+1)=2b).For t(n) = 
(plogn= log logn), t0(n) = O(t(n)). Hen
e, queries 
an beanswered in O(t(n) + k) time.We 
all the data stru
ture that 
ontains all points a level 0 data stru
-ture, and data stru
tures that 
ontain all points in a 
olumn or row of alevel l data stru
ture are 
alled level l+ 1 data stru
tures. It 
an be shownthat the maximal re
ursion level lmax = log logn+ 
, where 
 is a 
onstant.Every point is stored in D O(logn) times: on
e in a level 0 data stru
ture,twi
e in level 1 data stru
tures, 2l times in level l data stru
tures. The spa
erequirements 
an be redu
ed from O(n logn) to O(n log" n) for any " > 0by using the dynami
 range redu
tion to extended rank spa
e te
hnique de-s
ribed in [22℄. If we apply this te
hnique on a re
ursion level l, every point inea
h level l data stru
ture 
an be stored with only O(log(sl(n))) bits, wheresl(n) is the maximal number of points in a level l data stru
ture. To avoidpenalties for ea
h point in the answer, we apply range redu
tion on every" log logn-th level. Then every group of " log logn levels takes O(n log1+" n)bits, and the whole data stru
tureD requires O(n log" n) words of logn bits.Alternatively, to 
onstru
t the data stru
ture D0, the dynami
 rangeredu
tion 
an be applied on ea
h re
ursive level. Then all data stru
tureson level l, l = 1; 2; : : : ; log logn + 
, use O(n logn) bits, and the total spa
e
an be redu
ed to O(n log logn) words. But in this 
ase the reverse range9



redu
tion must be applied up to �(log logn) times to restore the originalpoint 
oordinates, and for ea
h point in the answer an O(log logn) penaltymust be paid. Therefore, the data stru
ture D0 uses O(n log logn) words ofmemory, and supports queries in time O(t(n) + k log logn).Update time 
an be estimated with help of a re
ursive formula: u(n) �O(loga n)+2u(pn logp n) < O(loga n)+2u(n(b+1)=2b) for an arbitrary integerb > 1. Therefore, u(n) = O(loga n).To 
onstru
t D or D0, we must 
onstru
t a data stru
ture A withn= logp n elements, fusion priority trees for rows and 
olumns, and2pn= logp n data stru
tures for rows and 
olumns with pn logp n ele-ments ea
h. Let 
0(n) be the 
onstru
tion time of A and 
(n) the 
on-stru
tion time of D. Then for 
(n) a re
ursion 
(n) = 
0(n= logp n) +2pn= logp n
(pn logp n) + O(n) is valid. Let v(n) = 
(n)=n. As
0(n= logp n) = O(n), v(n) = 2v(pn logp n) + O(1). Sin
e the numberof re
ursive levels is log logn + 
 for a 
onstant 
, v(n) = O(logn), and
(n) = O(n logn).4 Con
lusionIn this paper we presented a dynami
 data stru
ture for planar orthogonalrange reporting with sublogarithmi
 query time.Our results are based on two important redu
tions. Using those re-du
tions a dynami
 data stru
ture for three-sided queries with query timeO(t(n) + k), where t(n) = 
(plogn= log logn) (i.e., t(n) is not asymp-toti
ally faster than the lower bound on the prede
essor queries), 
an be
onverted into a data stru
ture for general planar range reporting querieswith only a small in
rease in spa
e and without 
hanging query time.Several modi�
ations of those redu
tions 
an be proven in a similar way.For instan
e, given a linear spa
e data stru
ture for three-sided queries onthe n � n grid with query time O(t(n) + k) for an arbitrary t(n), a dy-nami
 data stru
ture for orthogonal range reporting on the n� n grid withquery time O(t0(n) + k), su
h that t0(n) = O(t0(n2=3) + t(n2=3)), and spa
eO(n log" n) 
an be 
onstru
ted. A similar redu
tion for data stru
tures forthree-sided queries with superlinear spa
e 
an be also proven.Referen
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