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Abstract

We study the computational complexity of decision and optimization problems that
may be expressed as boolean constraint satisfaction problem with the global cardinality
constraints. In this paper we establish a characterization theorem for the decision prob-
lems and derive approximation hardness results for the corresponding global optimization
problems.

1 Introduction

Constraints of the global nature arise naturally in some optimization problems. For example,
MiIN BISECTION can be viewed as MIN CUT with the restriction that the two sets of vertices
that determine the cut must be of equal size. It is known that MIN CUT is polynomial while
MiIN BISECTION is NP-hard. MIN BISECTION, MAX BISECTION and other optimization
problems can be written as boolean constraint satisfaction problems where a feasible solution
is a balanced assignment (where the number of variables set to 1 is the same as the number
of variables set to 0). It was an increased interest in global optimization problems recently,

of. [HZ01, FLO1, JSO04].

In this paper we study the complexity of decision and optimization problems of the bal-
anced versions of boolean constraint satisfaction problems depending on the type of con-
straints. Schaefer [Sch78] established a dichotomy theorem for the boolean constraint satis-
faction problems distinguishing six polynomial time solvable cases. For the decision versions
we show that if the set of constraints contains only equations of width 2 or it contains only
conjunctions of literals, then the balanced version is polynomial time solvable and otherwise
it is NP-complete.

Creigou [Cre95] and Khanna and Sudan [KS96] established a dichotomy theorem for max-
imization versions of boolean constraint satisfaction problems that classify the problems into
polynomially solvable or APX-hard. The balanced versions of these problems where also
studied. Sviridenko [Svi0l] proved that the balanced version of MAX SAT is 1/(1 — 1)-
approximable. For the balanced version of MAX 2SAT, Blaser and Manthey [BMO02] es-
tablished a 1.514-approximation factor and Hofmeister [Hof03] a 4/3-approximation factor.
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Lower bound were also studied for these problems. Holmerin [Hol02] showed that the bal-
anced version of MAX E4-0H-LIN2 (see for the definition Section 2) cannot be approximated
within 1.0957 in polynomial time, unless P=NP. Also Holmerin and Khot [HK03] showed that
balanced version of MAX E3-OH-LIN2 is hard to approximate within % — ¢ and in [HKO04]
they improved their result showing that this problem is hard to approximate within 2 — ¢, for
any € > 0, if NP € Ng>o DTIME(Z"(S), thus obtaining the best possible inapproximability
factor result for this problem. We prove in this paper that all the cases that were consid-
ered by Creigou [Cre95] and Khanna and Sudan [KS96] in the dichotomy theorem become
APX-hard and also that most of the trivial maximization constraint satisfaction problems
have their balanced version APX-hard. In particular, using an inapproximability result for
DENSEST k& SUBGRAPH established recently by Khot [Kho04], we prove that the balanced
version of MIN MONOTONE-E2SAT has no polynomial time approximation scheme, if NP
Z Ns>0 BTIME(Q"‘;), for BTIME denoting randomized polynomial time.

Khanna, Sudan and Trevisan [KST97] established a classification theorem for minimiza-
tion versions of boolean constraint satisfaction problems. The complexity of approximation
of MIN BISECTION was for long time widely open. Feige and Krautghamer [FKO00] estab-
lished an approximation algorithm for this problem within O(log2 n) approximation factor.
This result has been recently improved to O(log1'5 n) by the recent result of Arora, Rao and
Vazirani [ARV04]. Very recently, Khot [KhoO4] established that under the assumption that
NP & Ns>o BTIME(Q"(S), MiIN BISECTION has no polynomial time approximation scheme.
Under the assumption that refuting SAT formulas is hard to approximate on average, Feige
[Fei02] proved also that MIN BISECTION is hard to approximate below 3.

Holmerin studied the hardness of approximating some generalizations of MIN BISECTION.
In particular he showed [Hol02] that the balanced version of MIN E4-1H-LIN2 is not (2 —
e)-approximable for any € > 0, unless P=NP. We prove several inapproximability result
for balanced minimization problem. In particular, using the inapproximability result for
DENSEST k& SUBGRAPH established by Khot [Kho0O4], we prove that the balanced version
of MIN MONOTONE-E2SAT has no polynomial time approximation scheme, if NP & Ngsg
BTIME(2").

The paper is organized as follows: in Section 2 we introduce some preliminary notation
and definitions, Section 3 contains our results on decision problems and Section 4 contains a
summary of these results.

In Section 5 and 6 we present our results concerning maximization and minimization
optimization problems. In Section 7 we summarize chains of reductions preserving the ap-
proximation and in Section 8 we briefly consider dense instances of the problems considered
in the chains of reductions. Section 9 contains some open questions.

2 Preliminaries
We refer a general reader to [KST97, KSW97, KSTWO01, CKS01] for a background on the
boolean constraint satisfaction problems.

A constraint is a boolean function f : {0,1}* — {0,1}. A constraint application is a pair
< f,(i1,...,ir) > where r is the arity of f and the iy € [n] indicate to which r of the n



boolean variables a given constraint is applied. This constraint application will be denoted
in the following by f(zi,,...,z;,).

Let F = {f1,..., ft} be a finite collection of boolean functions. An F-set of constraints on
n boolean variables 1,...,x, is a collection of constraint applications {f;(x;,,...  Tj, ) i
for some integer m, where f; € F and r; is the arity of f;. We say that an assignment satisfies
an F-set of constraints if it satisfies every constraint in the collection.

The satisfiability problem CSP (F) consists of deciding whether there exists an assignment
that satisfies a given F-set of constraints.

kCSP(F) (respectively, ExCSP(F)) is the variant of CSP(F) where each boolean func-
tion f; is a function of at most (respectively, exactly) k variables, for j < ¢. The problems
Max (MiN) CSP(F) consist of finding a boolean assignment that maximizes (minimizes) the
number of constraints that are satisfied. MAX (MIN) kCSP(F) (respectively, Max (MIN)
EkCSP(F)) are variants of MAX (MIN) CSP(F) where each constraint depends on at most
(respectively, exactly) k literals.

Given a problem A, the BALANCED version of A is the problem A with a new set of feasible
solutions being assignments where the number of variables set to true (denoted by 1) is the
same as the number of variables set to false (denoted by 0). Such assignments will be called
balanced assignments.

We consider also a generalization of this problem. Given a problem A, the a-BALANCED
version of A, 0 < o < 1, is the problem A with a new set of feasible solutions being assignments
with the number of true variables being an « ratio of the total number of variables. Such
assignments will be called in the following a-balanced.

In this paper we study the complexity of decision and optimization problems related to
BALANCED CSP(F) depending on the type of constraints defined by a class F.

We start by defining the types of constraints studied in this paper.

A boolean function f will be called

O-valid if £(0,...,0) = 1.
o l-valid if f(1,...,1)=1.

e weakly negative (Horn) if f is expressible as a CNF-formula having at most one un-
negated variable in each clause.

e weakly positive (anti-Horn) if f is expressible as a CNF-formula having at most one
negated variable in each clause.

e affine if f is expressible as a conjunction of linear equations over GF'(2) and affine with
width 2 if each equation depend on 2 variables.

e bijunctive if f is expressible as a 2CNF-formula

e 2-monotone if f is expressible as a DNF of the type x;; A... Ax;, or Tj A... AT;, or
(g Ao ANz, ) V (Tjy Ao AN TG)-



In the following we give definitions of the problems that we consider in this paper.

kESAT (respectively, EkSAT) is the version of SAT where each clause is of size at most
(respectively, exactly) k. kSAT (B, B) is the variant of kSAT where each literal appears at
most B times. MONOTONE-ELSAT is the variant of the EAXSAT problem where either all
clauses contain only positive literals or all clauses contain only negative literals.

In this paper we use the notation AND instead of DNF for the problem of deciding
whether a set of conjunctions of literals has a satisfiable assignment. MONOTONE-EKAND is
the variant of the ExAND problem where either all conjunctions contain only positive literals
or they contain only negative literals.

The input of the ELLIN2 problem is a set of equations of the type z;, ® ... ® xz;, = 0
or zj; © ... dx; = 1, and we have to decide if there is a satisfiable assignment. In the
homogenous variants of linear equations problem, Ek-bH-LIN2, b € {0, 1}, the input consists
of a set of equations of the type x;, © ... ® x;, = b on n boolean variables z1,...,z, and the
problem consists of deciding if there is an assignment satisfying all equations.

MAX kESAT is the problem, given a set of clauses, of constructing an assignment satisfying
a maximum number of clauses.

MaXx kAND is the problem, given a set of conjunctions of size at most k, of determining
an assignment maximizing the number of conjunctions satisfied.

MAax EELIN2 is the problem, given a set of equations mod 2, of constructing an assignment
maximizing the number of equations satisfied.

MIN ESAT is the problem, given a set of clauses, of constructing an assignment satisfying
a minimum number of clauses.

MIN kAND is the problem, given a set of conjunctions of size at most k, of determining
an assignment minimizing the number of conjunctions satisfied.

MiN EELIN2 is the problem, given a set of equations mod 2, of constructing an assignment
minimizing the number of equations satisfied.

We give now some basic notions on approximation complexity of optimization problems.

Given an NPO optimization problem ([ACG+99]) A and an instance I of A, we use |I|
to denote the size of I, opt(I) to denote the optimum value for this instance and val(1,.S)
to denote the value of a feasible solution S of instance I. The performance ratio of S (or

approzimation factor) is r(I,S) = max { U;ﬁﬁ), UZZI)ZI;) } . The error of S, e(I,5), is defined
by e(I,S) =r(1,S) — 1.

For a function f, an algorithm A is an f(n)-approximation, if for every instance I of the
problem A, it returns a solution S such that (I, S) < f(|I]). For a constant ¢, an algorithm A
is a (randomized) c-approximation, if for any instance I of the problem, it returns a solution
S such that r(I,5) < ¢. We say that an optimization problem is constant factor approzimable
if, for some constant ¢, there exists a polynomial time c-approximation algorithm for it. The
class of problems which are constant factor approximable is denoted by APX.

The notion of an E-reduction (error-preserving reduction), denoted here by <, was in-
troduced by Khanna, Motwani, Sudan and Vazirani in [KMSV94]. A problem A is called
E-reducible to a problem B, if there exist polynomial time computable functions f, g and a
constant (3 such that



e f maps an instance I of A to an instance I’ of B such that opt(I) and opt(I') are
related by a polynomial factor, i.e. there exists a polynomial p(n) such that opt(I’) <

p(H])opt(I),
e g maps solutions S’ of I’ to solutions S of I such that ¢(I,S) < Be(I',5").

An important property of that reduction is that it can be applied uniformly to all levels of
approximability; that is, if A is F-reducible to B and B belongs to C then A belongs to C as
well, where C is a class of optimization problems with any kind of approximation guarantee

(see also [KMSV94)).
We call two optimization problems A and B, F-equivalent if A < B and B < A.

A problem A is APX-hard, if every problem B € APX is such that B < A. A problem
is called APX-complete if it belongs to APX, and it is APX-hard.

We formulate our results in terms of E-reductions (note that some authors use, say for
minimization problems, different kind of reductions [KSTWO01, CP91]). Given two optimiza~
tion problems A and B we say that B is A-complete if A is E-reducible to B, and vice
versa.

3 Complexity of Decision Problems

The decision complexity of boolean constraint satisfaction problems is well established. In
particular, Schaefer [Sch78] established the following remarkable dichotomy theorem:

Theorem 1 (Dichotomy Theorem for CSP(F) [Sch78]) Given an F-set of constraints,
the problem CSP(F) is polynomial time computable if F satisfies one of the conditions below,
and CSP(F) is NP-complete otherwise.

1. Every function in F is O-valid.
Every function in F is 1-valid.
Every function in F is weakly positive.
Every function in F is weakly negative.

Every function in F is affine.

S v e e

Every function in F is bijunctive.

Motivated by the above result, we aim at formulating analogous result for balanced prob-
lems. Firstly we show that for any F-set of constraints, BALANCED CSP(F) is at least as
difficult as CSP(F).

Lemma 1 If CSP(F) is NP-complete, then BALANCED CSP(F) is also NP-complete.



Proof: We reduce CSP(F) to BALANCED CSP(F). Given an instance I of CSP(F)
on n variables z1,...,x, and with m constraints, we construct an instance I’ of BAL-
ANCED CSP(F) on 2n variables z1,...,x, and n new variables yi,...,y,. For each con-
straint f;(z;, ... >95jrj) of I we add to I’ the following two constraints: fj(x;,, ... ,xjrj) and
Fi@gis ey gjrj). It is easy to see that if z; = v;,7 =1,...,n is an assignment that satisfies I
then z; = v;,y; = v;,1 = 1,...,nis a balanced assignment that satisfies I’, where ¥ means the
complemented value of v. Conversely, if z; = v;,y; = w;,i = 1,...,n is a balanced assignment
that satisfies I’ then z; = v;,7 = 1,...,n is an assignment that satisfies I. O

We turn now to a polynomial time case. We formulate our result in slightly more general
setting of the a-balanced problems.

Theorem 2 For any 0 < a < 1, a-BALANCED E2-LIN2 is solvable in polynomial time.

Proof: Let us consider first o« = % Given an instance I of BALANCED E2-LIN2 on

n variables and m equations, we construct some equivalence classes on the set of literals
by considering the equations one after another as follows. Given an equation z; © x; = 0

(x; @ xj=1), we distinguish the following cases.

If literals x;,Z;,xj,Z; do not appear in a class, then we construct a new class and we
put together z; and x; (z; and Z; respectively).

If either x; or Z; appears in a class C} and x;,Z; do not appear in a class, then

— if &; € C} then we introduce z; (Z; respectively) in Cj.

— if z; € C}, then we introduce z; (x; respectively) in Cj.

If literals x; or Z; and x; or T; appear in the same class C}, then I is not satisfiable if
{xi,2;} C Cy or {z;,x;} C C ({z4,2;} C Cy or {z;,z;} C Cj respectively).

If either x; or Z; appears in a class C}, and either z; or Z; appears in a class Cy then

— if z; € C} and z; € Cyp then we put together the literals of both classes Cj and C;
(we put together the literals of the class Cy with the negated literals of the class

Cy).

— it #; € Cp, and z; € Cy then we put together the literals of the class C}, with the
negated literals of the class Cy (we put together the literals of both classes Cy and

Cy).

Suppose that at the end we obtain ¢ equivalence classes C1,...,C;. Denote by ag;—1 and
as; the number of literals that appear positive and respectively negative in C;. BALANCED
E2-LIN2 on I consists of deciding if there exists a partition of these 2t integers in two equal
size sets P and N such that P and N contain exactly one of a9;_1,a9; for i = 1,...,t. This
problem in solvable in polynomial time by dynamic programming [GJ76]. If such a partition
P, N exists then the following assignment is balanced and satisfies I:

e if ag; 1 € P then we assign to the positive variables of C; the value 1 and to the negated
variables of C; the value 0.



e if ag; 1 € N then we assign to the positive variables of C; the value 0 and to the negated
variables of C; the value 1.

If a # % then as below we construct equivalence classes C1, ...,y and compute integers
ay,...,az. We add two other integers agi11 = n|l — 2a, agry2 = 0 and solve the above
partition problem on this new instance. O

Before we attack the "Ek”-situation for k > 3, we establish some auxiliary results.

Proposition 1 BALANCED E.-OH-LIN2 and BALANCED Ek-1H-LIN2 are polynomial equiv-
alent, for every odd k > 3.

Proof: We reduce BALANCED Ek-OH-LIN2 to BALANCED Ek-1H-LIN2. From an instance
I of BALANCED Ek-OH-LIN2 on n variables x1,...,z, we construct an instance I’ on the
same set of variables and we associate to each equation x;, © ... ® x;, = 0 of I the equation
Ty, ®...0x;, =1in I'. It is easy to see, since k is odd, an assignment satisfies I if and only
if the complemented assignment satisfies I’. The reduction in the other direction is similar.

O
We define a new problem to be used later.
kONEs(E3-bH-LIN2), b € {0,1}
Input: A set of equations of the type z;, ® z;, ® z;; = b on n boolean variables z1, ..., z),.
Question: Is there an assignment, with exactly k variables set to 1, satisfying all equations
?

MAaX ONES(F) consists of determining an assignment that satisfies all constraints of F-
type and maximizes the number of variables assigned to 1.

Theorem 3 ([KSW97, KSTWO1]) If every function in F is of the type x;, ®xiy Bxiy =0
or if every function in F is of the type x;, @ xi, ® xiy = 1 then the problem MAX ONES(F)
is APX-complete.

A consequence of the previous theorem is that KONES(E3-0H-LiN2) and KONES(E3-1H-
LIN2) are NP-complete.

Proposition 2 BALANCED E3-0H-LIN2 and BALANCED E3-1H-LIN2 are both NP-complete.

Proof: We construct a reduction between kONES(E3-0H-LIN2) and BALANCED E3-0H-
LiN2. Given an instance I of KONES(E3-0H-LIN2) on n variables z1, ..., z, we construct an
instance I’ on 2n variables x1,...,%n, Y1,.. . Yn—ks 21,--., 2 as follows. For each equation
Ty, B i, D x4, = 0 from I, we associate in I’ the same equation and let us denote in the
following this set of equations by A. We add also to I’ the following set of equations, called
B, yi®y; ®z =0 for every i,j € {1,...,n —k},£ € {1,...,k}, i # j. It is easy to see
that in order that an assignment satisfies B the variables y must have the same value and
the variables z must have the same value. Thus, an assignment that satisfies B has z; = 0,
1=1,..., k. Supposethat y; =0,i=1,...,n—k then since the assignment must be balanced



we have x; = 1,4 =1,...,n but in this case the equations in A are not satisfied. So, y; = 1,
it =1,...,n — k and due to the balanced condition, the restriction of this assignment to
variables x satisfies I and contains exactly k variables 1 and n — k variables 0. In the similar
way kONES(E3-1H-LiN2) is reducible to BALANCED E3-1H-LIN2. O

Proposition 3 For every odd k > 3, b € {0,1}, BALANCED Ek-bH-LIN2 is NP-complete.

Proof: For every odd k > 3, we construct in the following a reduction between BALANCED
Ek-OH-LiN2 and BALANCED E(k + 2)-1H-LIN2 and using Propositions 1 and 2 we conclude
the NP-completeness of BALANCED Ek-bH-LIN2, b € {0,1}, for every odd k > 3. Given an
instance I of BALANCED Ek-OH-LIN2 on n variables x4, ..., z, we construct an instance I’ on
3n variables x1,...,Tpn, Y1,- .., Yn, 21, -, 2, as follows. For each equation x;; ©...Dx; =0
from I, we associate in I’ the following set of equations, called A, z;, & ... ®x;, By; B 2 =
1, for every 5,/ = 1,...,n. We add also to I’ the following set of equations, called B,
Yj, B ... DY, = 1 for every subset of k + 2 variables among y1,. .., y,. It is easy to see that
in order for an assignment to satisfy A, the variables y must have the same value and the
variables z must have the same value. Since the equations of B are satisfied y; = 1,7 =1,...,n
and since the assignment must be balanced we have z; = 0,7 = 1,...,n and thus [ is satisfied
by the restriction of this assignment to variables x (that is also balanced). In the similar way
BALANCED Ek-1H-LIN2 is reducible to BALANCED E(k + 2)-0H-LIN2. O

Proposition 4 For every even k >4, b € {0,1}, BALANCED Ek-bH-LIN2 is NP-complete.

Proof: For every odd k > 3, we construct a reduction between BALANCED Ek-1H-LIN2
and BALANCED E(k + 1)-1H-LIN2, and a reduction between BALANCED Ek-OH-LIN2 and
BALANCED E(k + 1)-0H-LIN2 and using Proposition 3 we conclude the NP-completeness of
BALANCED Ek-H-LIN2 for every even k > 4.

Given an instance I of BALANCED Ek-1H-LIN2 on n variables x1, ..., x, we construct an
instance I’ of BALANCED E(k + 1)-1H-LIN2 on 3n variables 1, ..., %y, Y1,--,Yn, 21, -- -5 2n
as follows. For each equation z;, @ ... ® x;, = 1 from I, we associate in [ " the following
set of equations, called A, x;; ® ... ® x5, ® 2 = 1, for every £ = 1,...,n. We add also
to I’ the following set of equations, called B, z;, ® ... ® zj, ® yp = 1 for every subset of
size k among variables z1,...,z, and £ = 1,...,n. It is easy to see that in order for an
assignment to satisfy A, the variables z must have the same value. Since the equations of
B are satisfied, the variables y must have the same value. Since the assignment must be
balanced we have either y; = 1,7 =1,...,nand 2, =0, =1,...,nory; =0,i =1,...,n
and z; = 1,7 = 1,...,n. If the first case appears then the restriction of this assignment to
variables x satisfies I, otherwise the complement assignment satisfies I.

Given an instance I of BALANCED Ek-OH-LIN2 on n variables z1,...,x, we construct an
instance I’ of BALANCED E(k 4 1)-0H-LIN2 on 3n variables x1,...,Zn, Y1, -« Yn, 21, -+ 2n
as follows. For each equation x;, & ... @ x;, = 0 from I, we associate to I’ the following set
of equations, called A, z;, @ ... ® xz;, ® 2z =0, for every £ =1,...,n. We add also to I’ the
following set of equations, called B, zj, ©...®zj,_, ®y; ®ye = 1 for every subset of size k —1
among variables z1, ..., z,, and every subset of size 2 among variables y1, ..., y,. It is easy to
see that in order that an assignment satisfies A, all the variables z must have the same value.



Since the equations of B are satisfied, the variables y must have the same value. Since the

assignment must be balanced we have either y; = 1,7 =1,...,nand z; =0,i = 1,...,n or
y;=0,i=1,...,nand z; = 1,79 =1,...,n. If the first case, the restriction of this assignment
to variables x satisfies I, otherwise the complementary assignment satisfies I. O

Theorem 4 For any k > 3, b € {0,1}, BALANCED Ek-bH-LIN2 is NP-complete.

Proof: This is a consequence of Propositions 3 and 4. O

MONOTONE-2SAT is a trivial problem. In contrast to this, we show that a-BALANCED
MONOTONE-E2SAT is, in fact, NP-hard.

Theorem 5 «-BALANCED MONOTONE-E2SAT is NP-complete, for any o > 0.

Proof: We reduce a-CLIQUE (cf. [GJ76]) to a-BALANCED MONOTONE-E2SAT. An instance
of a-CLIQUE has an input a graph on n vertices and we have to decide if it contains a clique
of size at least an. The reduction is as follows: given a graph G = (V, E) on n vertices, we
construct an instance I on n boolean variables x1,...,x,, one for each vertex of GG. For any
i,j € V such that (i,7) ¢ E, we add the clause Z; V Z;. It is clear that if C' is a clique in G
of size an, then the assignment x; = 1if i € C' and x; = 0 if i ¢ C satisfies each clause of I
since for each (i,j) ¢ E, x; or x; is false. Conversely, if an a-balanced assignment satisfies
I, then the set C' = {i : z; = 1} is a clique of size an. Since a-CLIQUE is NP-hard [GJ76],
a-BALANCED MONOTONE-E2SAT is NP-hard as well. O

Theorem 6 BALANCED MONOTONE-EESAT is NP-complete, for any k > 3.

Proof: We reduce EASAT to BALANCED MONOTONE-EESAT. From an instance I on n
variables x1, ..., x,, instance of EKSAT, we construct an instance I’ on 2n variables x1, ..., Ty,
Y1, - - -, Yn, instance of BALANCED MONOTONE-EESAT as follows: we preserve in I’ the clauses
of I in which we replace every negative literal z; by y;, for i = 1,...,n. We add to I’ for
1 =1,...,n, the clauses z; Vy; V 21 V...V zp_o where variables z1,...,2;_o are any subset
of k — 2 variables among variables x;, v, j, € = 1,...,n, j,£ # i. It is easy to see that if [
is satisfiable then I” is satisfiable by a balanced assignment where z; and y; have different
values, for j = 1,...,n. If I’ is satisfiable by a balanced assignment then z; and y; have
different values, for j = 1,...,n, since, otherwise if there exits a pair of variables such that
x; = y; = 0 then there is a clause x; Vy; V21 V...V 239 where z; =0, for j =1,...,k — 2,
that is not satisfied. O

Since BALANCED AND is trivial we can formulate the following

Theorem 7 (Characterization Theorem for BALANCED CSP(F)) Given an F-set of con-
straints, the problem a-BALANCED CSP(F) is polynomial time solvable (if every function in
F is affine with width 2 or if every function in F is a conjunction of literals), otherwise it is
NP-complete.



4 Summary of Balanced Decision Problems

We summarize the above results concerning balanced decision problem for a given F-set in
the following table:

Polynomial Time NP-complete

Every function in F is affine with width 2 Every function in F is O-valid
Every function in F is a conjunction of literals | Every function in F is 1-valid
Every function in F is weakly positive

Every function in F is weakly negative

Every function in F is bijunctive

5 Approximation of Global Maximum Constraint Satisfaction

We state first the following known classification theorem of Max CSP(F) (cf. [Cre95, KS96]).

Theorem 8 (Characterization Theorem for Max CSP(F) [Cre95, KS96]) Max CSP(F)
is either polynomial time computable or is APX-complete. Moreover, it is in P if and only if
F is either 0-valid or 1-valid or 2-monotone.

Some upper bounds have been established for these balanced versions of MAX CSP(F).
Theorem 9 ([Svi01]) a-BALANCED MAX SAT is 1/(1 — 1)-approzimable.

Theorem 10 ([BMO02]) a-BALANCED MAX 2SAT is 1.514-approzimable.
Theorem 11 ([Hof03]) BALANCED MAX 2SAT is 4/3-approzimable.

We state first the following direct lemma:
Lemma 2 Max CSP(F) is E-reducible to BALANCED MAX CSP(F).

Proof: We consider the reduction given in Lemma 1. Given an instance I of MAX CSP(F)

on n variables x1,...,z, and with m constraints we construct an instance I’ of BALANCED
Max CSP(F) on 2n variables z1,...,2z, and n new variables yi,...,y,. For each con-
straint f;(z,, ... ,ﬂ:jrj) of I we add in I’ the following two constraints: fj(z;,,... ,xjrj) and

Ty ,gjrj). It is easy to see that opt(I') > 20pt(I). Given a balanced assignment of
I’ we can transform it into a balanced assignment v’ that satisfies the same number of con-
straints in I as in the constraints of I’ that are on variables y. The restriction of v’ to
variables z, called v, satisfies in I, val(I,v) = M constraints. Thus, opt(I') = 20pt(I)
and ¢(I,v) = e(I',v"). O

The following lemma shows that the three polynomial cases for MAX CSP(F) became
difficult for the balanced version.
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Lemma 3 BALANCED MAX MONOTONE-E2SAT s APX-hard.

Proof: We E-reduce MaxX E2SAT(B, B) (see for definition Section 2) to BALANCED
Max MONOTONE-E2SAT. From an instance I on n variables z1,...,z,, instance of MAX
E2SAT(B, B) we construct an instance I’ on 2n variables x1,...,Zn, Y1, - -, Yn, instance of
BALANCED MAX MONOTONE-E2SAT as follows : we preserve in I’ the clauses of I where
the negations of variables Z; are replaced by y;. We add in I’, B times each of the following
clauses x; Vy;, i = 1,...,n. It is easy to see that from an optimal assignment of I satisfying
opt(I) clauses, we can define a balanced assignment for I’ where z; and y; have opposed
values that satisfy opt(I) +n x B clauses. Given a balanced assignment of I’, if there exists
a pair z;,y; with the same value 1 then there is another one x;,y; with the same value 0,
and so changing the value of y; and y; will not decrease the number of clauses satisfied in I”.
Thus each balanced assignment of I’ can be transformed in a balanced assignment of I’ that
satisfies at least as many clauses and where in each pair of variables x; and y; have opposed
values. If a balanced assignment of I’ where x; and y; have opposed values satisfies val+ B xn
clauses then this assignment satisfies val clauses in I. O

We can also generalize the previous lemma.
Theorem 12 BALANCED MAX MONOTONE-EKSAT is APX-hard, for k > 3.

Proof: We can E-reduce MAX ELSAT(B, B) to BALANCED MAX MONOTONE-EASAT. From
an instance I of MAX EkSAT(B, B) on n variables z1, ..., r,, we construct an instance I’ of
BALANCED MAX MONOTONE-EESAT on 2n variables x1,...,%y, y1,...,Yn, as follows : we
preserve in I’ the clauses of I in which we replace each negative literal z; by y;, fori =1,...,n.
We add to I’, for : = 1,...,n, the clauses z; Vy; V 21 V...V 2,_o where variables z1,..., zx_2
form any subset of k — 2 variables among variables x;, vy, j, ¢ = 1,...,n; j,£ # i. This last
subset is called A. It is easy to see that from an optimum assignment that satisfies opt(I)
clauses in I, we can construct a balanced assignment in I’ where x; and y; have different
values for j = 1,...,n that satisfies opt(I') = opt(I) + |A|. From a balanced assignment of
I’ where there exits a pair of variables such that x; = y; = 0 and another pair such that
xj = y; = 1, we can construct a balanced assignment that satisfies at least as many clauses
and where z;, y; and x;, y; have different values. This is possible since there are 0(n*2)
clauses in A of type z; Vy; V 21 V ...V 2o where z; = 0, for j = 1,...,k — 2, that are
not satisfied when z; = y; = 0 and become satisfied when we flip the value of one of these 2
variables and the number of clauses that could become non satisfied after the flip is at most
4B. O

A particular case of the following problem is equivalent to a BALANCED Max CSP(F)
problem for some particular F as it will be proved later.

We introduce now a new problem.
DENSEST k£ SUBGRAPH

Input: A graph G = (V, E) on n vertices where n is even.
Output: A subset S C V of size k that maximize the number of edges with both extremities
in S.

The hardness of the approximation of DENSEST k£ SUBGRAPH remained open for long
time. Recently, Khot was able to establish a such result using a special PCP technique.
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Theorem 13 ([Kho04]) DENSEST k£ SUBGRAPH has no polynomial time approzimation
scheme if NP ¢ Ns=o BTIME(2" ).

More precisely, Khot proved the previous result for DENSEST k& SUBGRAPH when k = ¢n
and ¢ < .
2

Proposition 5 DENSEST k SUBGRAPH is E-reducible to DENSEST 5 SUBGRAPH.

Proof: Given a graph G on n vertices, an instance of DENSEST & SUBGRAPH, where k = ¢n
and ¢ < %, we construct a graph G’, instance of DENSEST § SUBGRAPH, from G by adding
a complete graph on n — 2k vertices. We have opt(G') = opt(G)+ the number of edges of
the complete graph. Given a solution of G’ we can transform it in another one, with a better
value, that contains the complete graph and a subset of vertices from G. It is easy to verify
that this is an E-reduction. O

Proposition 6 BALANCED MAX MONOTONE-E2AND is E-equivalent to DENSEST 5 SUB-
GRAPH.

Proof: Given an instance I of BALANCED MaX MONOTONE-E2AND on n variables
r1,...,Z, and m clauses, we construct an instance G of DENSEST 5 SUBGRAPH on n vertices
and m edges as follows : we associate a vertex i for each variable z; and an edge (i, j) for each
conjunction z; A xj. Given an optimal balanced solution for I, consider S the set of variables
set to 1 in this assignment. We have opt(G) > opt(I). Given a set S of size § in G of value
val(I',S), the following assignment (called v) x; = 1 if i € S and x; = 0 otherwise, satisfies
val(I',S) conjunctions in I. Thus opt(G) = opt(I) and £(I,v) = &(I’,S). The reduction in
the other direction is similar. O

Proposition 7 BALANCED MAX MONOTONE-EEXAND is E-reducible to BALANCED MAX
MoNOTONE-E(k + 1)AND, for k > 2.

Proof: Given an instance I of BALANCED MaX MONOTONE-EAAND on n variables
x1,...,7T, and m conjunctions, we construct an instance I’ of BALANCED MAX MONOTONE-
E(k 4+ 1)AND on the same set of variables at which we add two variables y and z as follows.
For each clause z;, A ... Ax;, from I we add in I’ the clause x;; A ... Az, Ay. It is easy to
see that from an optimal balanced assignment that satisfies opt(I) conjunctions in I we can
construct a balanced assignment in I’ (considering the same assignment for variables z and
considering z = 0 and y = 1) that satisfies also opt(I) conjunctions. Thus opt(I") < opt(I).
Given a balanced assignment of I’, if y and z have different values then we can assume that
z =0 and y = 1. Otherwise if y and z have the same value 1 then we can swap the value
of z and swap also the value of a variable x that is set to 0 obtaining a balanced assignment
with a better value. The restriction of this assignment to variables x is a balanced assignment
satisfying the same number of conjunctions. O

Theorem 14 BALANCED MAX MONOTONE-EEAND, k > 2, has no polynomial time ap-
prozimation scheme if NP Z Ngsg BTIME(Q"(;).
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Proof: The result is a consequence of Propositions 5, 6 and 7 and Theorem 13 (Khot’s
result [KhoO4]). O

We consider in the following the balanced version of affine constraints.

Max E2-1H-LiN2, that is MAax CurT, is known to be APX-hard [PY91] and BALANCED
Max E2-1H-LIN2 that is MAX BISECTION is known to be APX-hard [PY91, Has97]. Each
instance of MAX E2-0OH-LIN2 is satisfied by the trivial assignment 0. We show a relation
between the complexity of BALANCED MAX MONOTONE-E2AND and BALANCED MAX E2-
OH-LIN2 (or BALANCED MAX UNCUT).

Proposition 8 BALANCED MAX MONOTONE-E2AND is E-reducible to BALANCED MAX
E2-0H-LiIN2.

Proof: Given an instance I of BALANCED MaX MONOTONE-E2AND on n variables
x1,...,%, and m conjunctions, we construct an instance I’ of BALANCED MAX E2-0H-LIN2
on n + 2 variables x1,...,z, and two new variables y and z and 3m equations as follows: for
each conjunction z; A z9 we add 3 equations 1 G xo = 0,21 Dy = 0,20 Dy = 0. We have
opt(I') > 20pt(I) + m since the assignment satisfying opt(I) conjunctions in I and z = 0 and
y = 1 satisfies 20pt(I)+m equations in I’. Given a balanced assignment v for I’ satisfying val’
equations, we can consider y = 1. If z = 0 then, the restriction of v on x variables is balanced
and satisfies WZIT_’” conjunctions. If z = 1 then the restriction of v on x variables satisfies

WT_W conjunctions in I but is not balanced. Observe that the balanced assignment obtained

m

by changing the value of an x variable from 0 to 1 satisfies at least % conjunctions. O

Thus we establish the first inapproximability result for BALANCED MAX UNCUT.

Theorem 15 BALANCED MAxX UNCUT has no polynomial time approximation scheme if NP
Z Ny=o BTIME(2™ ).

Proof: The result is a consequence of Propositions 6, 8 and Theorem 13 (Khot’s result
[KhoO4]). O

When £ is odd, MAX Ek-bH-LIN2 is trivial since the assignment b for all variables satisfies
all equations. When k is even, MAX Ek-OH-LIN2 is also trivial since the assignment 0 for all
variables satisfies all equations. For k£ > 4 even, MAX Ek-1H-LIN2 is not know to be hard
to approximate.

Theorem 16 BALANCED MAX Ek-bH-LIN2 is APX-hard, for k >3, b € {0,1}.

Proof: We construct an E-reduction between BALANCED MaX E2-1H-LIN2 and BAL-
ANCED MAX E3-1H-LIN2. Given an instance I of BALANCED MaAX E2-1H-LIN2 on n

variables 1, ..., x, and m equations, we construct an instance I’ on 3n variables x1, ..., Ty,
Yly -y Yny 21,- - -, 2 as follows. For each equation z;, & x;, = 1 from I, we associate in I’ the
equations x;, ®x;, Bze = 1, for £ = 1,...,n and let us call in the following this set of equations

A. We add also to I’ the following equations z; & z; ® yp = 1 for ¢ # j, 4,5, € {1,...,n}.
This last set of equations is called B. It is easy to see that opt(I') > n x opt(I) + | B| since
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the same assignment for variables x, z; =0,i=1,...,nand y; =1, ¢ = 1,...,n satisfies in
A, n x opt(I) equations. Since there are ©(n?) equations of the type z; & z; &y, = 1 and
2 ® zj @ yp = 1 for some fixed i and j and ¢,t € {1,...,n} then y, = y and so all variables
y have the same values and this value is 1. We can prove similarly that all variables z have
the same values. Since the assignment is balanced, then variables z have values 0 and thus
the variables z form a balanced solution.

Propositions 1, 3 and 4 can be adapted in order to prove the same results for maximization
versions. O

BALANCED MAX Ek-bH-LIN2 was studied for particular cases of k and b = 0. More pre-
cisely, Holmerin [Hol02] proved that BALANCED MAX E4-OH-LIN2 cannot be approximated
within 1.0957 in polynomial time, unless P=NP. Also Holmerin and Khot showed in [HK03]
that BALANCED MAX E3-0H-LIN2 is hard to approximate within % — ¢ and in [HKO04] they
improved their result showing that BALANCED MAX E3-0OH-LIN2 is hard to approximate
within 2 — ¢ if NP € Ng~g DTIME (2"6)7 thus obtaining the best possible inapproximability
bound result for this problem (under this assumption).

Theorem 17 (Characterization Theorem for BALANCED MAX CSP(F)) BALANCED MAX
CSP(F) is APX-hard.
6 Approximation of Global Minimum Constraint Satisfaction

A classification theorem for MIN CSP(F) was formulated in [KST97].

We can show directly, like for the decision and maximization constraint satisfaction prob-
lems, that the balanced version of a minimization problem is at least as hard as an underlying
problem.

Lemma 4 MIN CSP(F) is E-reducible to BALANCED MIN CSP(F).

Proof: The reduction given in the proof of Theorem 2 is also an E-reduction between MIN
CSP(F) and BALANCED MIN CSP(F). O

MIN MONOTONE-EESAT for £ > 2 are trivial problems since the assignment 0 for all
variables satisfies no clause. For the balanced situation we formulate

Proposition 9 BALANCED MAX MONOTONE-E2AND is E-reducible to BALANCED MIN
MONOTONE-E2SAT.

Proof: Given an instance I of BALANCED MAX MONOTONE-E2AND on n variables

Z1,...,x, and m conjunctions, we construct an instance I’ on the same set of variables
as follows. For each conjunction Z;, A Z;, from I we add in I’ the clause z;, V z;,. We can
check easily that this is an E-reduction. O
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Theorem 18 BALANCED MIN MONOTONE-E2SAT has no polynomial time approrimation
scheme if NP ¢ Ngso BTIME(2"" ).

Proof: The result is a consequence of Propositions 6, 9 and Theorem 13 (Khot’s result
[KhoO4]). O

For sparse instances, we show that BALANCED MIN MONOTONE-E2SAT and DENSEST 5
SUBGRAPH are F-equivalent.

Proposition 10 SPARSE BALANCED MIN MONOTONE-E2SAT is E-reducible to SPARSE
DENSEST 5 SUBGRAPH.

Proof: Given an instance I of BALANCED MIN MONOTONE-E2SAT on n variables 1, ..., x,
and m clauses, we construct an instance G of DENSEST § SUBGRAPH on n vertices and m
edges as follows : we associate a vertex i for each variable x; and an edge (i,j) for each
clause z; V x;. Given an optimum balanced solution for I, consider S the set of variables
set to 0 in this assignment. Thus opt(G) > m — opt(I). Given a set S of size § in G of
value val(I',S), the following assignment (called v) z; = 0 if ¢ € S and x; = 1 otherwise,
satisfies m — val(I’,S) clauses in I. Thus opt(G) = m — opt(I) < dopt(I) for a constant ¢
since m = cn and opt(I) > 4. Also e(I,v) = ngl)g;)}) -1< 5([',5)% < d"e(I',S) since
n

val(I',S) < m,opt(I) < %4 and I is a sparse instance. |

We first show that a hardness approximation result for BALANCED MIN MONOTONE-
E2SAT implies a hardness approximation result for MIN BISECTION.

Proposition 11 BALANCED MIN MONOTONE-E2SAT is E-reducible to MIN BISECTION.

Proof: Given an instance I of BALANCED MIN MONOTONE-E2SAT on n variables z1,...,z,
and m clauses, we construct an instance I’ of MIN BISECTION on n + 2 variables x1,...,x,
and two new variables y and z and 3m equations as follows : for each clause 1 V xo we add 3
equations x1 ®xe = 1,21 D2z = 1,29® 2z = 1. We have opt(I’) < 20pt(I) since the assignment
satisfying opt(I) clauses in I and z = 0 and y = 1 satisfies 20pt(I) equations in I'. Given a
balanced assignment v for I’ satisfying val’ equations, we can consider z = 0. If y = 1 then,

the restriction of v on x variables is balanced and satisfies %l/ clauses. If y = 0 then the

restriction of v on z variables satisfies %l/ clauses in I but is not balanced. Observe that the
balanced assignment obtained by changing the value of an x variable from 1 to 0 satisfies at

most %l/ clauses. O
We establish now an F-reduction between BALANCED MAX UNCUT and MIN BISECTION.

Proposition 12 BALANCED MaX E2-0OH-LIN2 ¢s E-reducible to BALANCED MIN E2-1H-
Lin2.

Proof: Given an instance I of BALANCED MAX E2-0H-LIN2 on n variables z1,...,z, and
m equations, we construct an instance I’ on the same set of variables as follows. For each
equation x;, @ x;, = 0 from I we add in I’ the equation x;; ® x;, = 1. We can check easily
that this is an E-reduction. O
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Proposition 13 BALANCED MIN MONOTONE-EKSAT is E-reducible to BALANCED MIN
MONOTONE-E(k + 1)SAT, for k > 2.

Proof: Given an instance I of BALANCED MIN MONOTONE-EESAT on n variables 1, ..., x,
and m clauses, we construct an instance I’ of BALANCED MIN MONOTONE-E(k + 1)SAT on
the same set of variables at which we add two variables y and z as follows. For each clause
zi, V... Va; from I we add in I’ the clause z;, V...V x; V z. It is easy to see that from
an optimal balanced assignment that satisfies opt(I) clauses in I we can construct a balanced
assignment in I’ (considering the same assignment for variables = and considering z = 0 and
y = 1) that satisfies also opt(I) clauses. Thus opt(I") < opt(I). Given a balanced assignment
of I, if y and z have different values then we can suppose that z = 0 and y = 1. Otherwise
if y and z have the same value 0 then we can swap the value of y and swap also the value
of a variable = that is set to 1 obtaining a balanced assignment with a better value. The
restriction of this assignment to variables x is a balanced assignment satisfying the same
number of clauses. O

Theorem 19 BALANCED MIN MONOTONE-EESAT, k > 2, has no polynomial time approx-
imation scheme if NP Z Ns>o BTIME(Q"‘S).

Proof: This is a consequence of Theorem 18 and Proposition 13. O

Min E2-0H-LIN2 is MIN UNCuUT that is known to be APX-hard by [GVY93] and thus
BALANCED MIN E2-0H-LIN2 is BALANCED MIN UNCUT is also APX-hard. MIN E2-1H-
LiN2 that is MIN CUT is polynomial solvable. BALANCED MIN E2-1H-LIN2 is MIN BISEC-
TION for which the hardness of approximation was proved very recently [Kho04]. For k > 3,
MIN Ek-1H-LIN2 is trivial since the assignment 0 for all variables satisfies no equation. When
k is odd, MIN Ek-OH-LIN2 is also trivial since the assignment 1 for all variables satisfies no
equation and when k > 4 is even, it is not known if MIN Ek-OH-LIN2 is hard to approximate.

Theorem 20 ([HKO03]) BALANCED MIN E3-bH-LIN2, b € {0,1}, is NP-hard to approzi-
mate within any constant factor.

The proof of the above result uses a PCP technique. We can prove now without using
directly a PCP method a somewhat weaker result:

Theorem 21 BALANCED MIN Ek-bH-LIN2, b € {0,1}, is APX-hard for every k > 3.

Proof: We construct an E-reduction from BALANCED MAX E3-0H-LIN2 to BALANCED
MiIN E3-1H-LIN2 and in a similar way an E-reduction from BALANCED MAX E3-1H-LIN2
to BALANCED MIN E3-0H-LIN2. Given an instance I of BALANCED MAX E3-0H-LIN2 on n
variables z1, ..., x, and m equations, we construct an instance I’ of BALANCED MIN E3-1H-
LIN2 on the same set of variables as follows. For each equation z;, @ x;, ® x;;, = 0 from I we
add in I’ the equation x;, ® x;, ® x;; = 1. We can check easily that this is an E-reduction. O
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7 Summary of the Chains of Reductions

We summarise our inapproximability results by the following chains of reductions (Figure 1).

DENSEST k SUBGRAPH

DENSEST § SUBGRAPH

BALANCED MAX MONOTONE-E2AND

BALANCED MIN MONOTONE-E2SAT BALANCED MAX UNCuUT

MIN BISECTION

Figure 1: Chains of E-reductions (bold line denotes an E-equivalence)

8 Dense Instances

In the previous chains of E-reductions the everywhere density is preserved except for the
first reduction. Thus, since MIN BISECTION has a polynomial time approximation scheme on
everywhere instances [AKK95], all the above problems have a polynomial time approximation
scheme on everywhere dense instances. Observe that the maximization problems DENSEST k
SUBGRAPH with k£ = ©(n), BALANCED MAX MONOTONE-E2AND and BALANCED MAX
UNcUT have a polynomial time approximation scheme even for average dense instances,
while BALANCED MIN MONOTONE-E2SAT and MIN BISECTION have no polynomial time
approximation scheme for average dense instances [AKK95, BFK03|.

9 Further Research

The results of our paper shed some light on the global classes of optimization problems
connected to the constraint satisfaction problems. There are still several problems which are
open. Can some of our inapproximability bounds be dramatically improved ?
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Another important question is to find an alternative (to Khot’s technique [Kho04]) method
of proving hardness results on some level of our chains in Section 7. Perhaps some ”pure”
and explicit reduction methods can be developed for that. Another intriguing question is to
construct approximation algorithms for global optimization problems studied in our paper

with more

satisfactory approximation factors than the best known up to now.
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