On the Computational Power of Probabilistic and

Quantum Branching Programs
(Revised Version)

Farid Ablayev* Aida Gainutdinova' Marek Karpinskit
Cristopher Moore® Christopher Pollett?

Abstract

In this paper we show that one-qubit polynomial time computations
are as powerful as NC! circuits. More generally, we define syntactic
models for quantum and stochastic branching programs of bounded
width and prove upper and lower bounds on their power. We show
that any NC! language can be accepted exactly by a width-2 quantum
branching program of polynomial length, in contrast to the classical
case where width 5 is necessary unless NC! = ACC. This separates
width-2 quantum programs from width-2 doubly stochastic programs
as we show the latter cannot compute the middle bit of multiplication.
Finally, we show that bounded-width quantum and stochastic pro-
grams can be simulated by classical programs of larger but bounded
width, and thus are in NC*.

For read-once quantum branching programs (QBPs), we give a sym-
metric Boolean function which is computable by a read-once QBP with
O(logn) width, but not by a deterministic read-once BP with o(n)
width, or by a classical randomized read-once BP with o(n) width
which is “stable” in the sense that its transitions depend on the value
of the queried variable but do not vary from step to step. Finally,
we present a general lower bound on the width of read-once QBPs,
showing that our O(logn) upper bound for this symmetric function is
almost tight.

*Dept. of Theoretical Cybernetics, Kazan State University. ablayev@ksu.ru ; work
done in part while visiting Institute of Advanced Study and Max-Planck Institute for
Mathematics, supported in part by Russia Fund for Basic Research grant 03-01-00769

"Dept. of Theoretical Cybernetics, Kazan State University. aida@ksu.ru; supported
in part by Russia Fund for Basic Research grant 03-01-00769

tDept. of Computer Science, University of Bonn. marek@cs.uni-bonn.de; supported
in part by DFG grants, and IST grant 14036 (RAND-APX)

$Computer Science Department, University of New Mexico, Albuquerque and the Santa
Fe Institute moore@cs.unm. edu; supported by NSF grants PHY-0200909, CCR-0220070,
and ETA-0218563

TDept. of Computer Science San Jose State University. pollett@cs.sjsu.edu

1 Preliminaries

Interest in quantum computation has steadily increased since Shor’s discov-
ery of a polynomial time quantum algorithm for factoring [19]. A number of
models of quantum computation have been considered, including quantum
versions of Turing machines, simple automata, circuits, and decision trees.
The goal of much of this research has been to understand in what ways
quantum algorithms do and do not offer a speed-up over the classical case,
and to understand what classical techniques for proving upper and lower
complexity bounds transfer to the quantum setting.

Branching programs have proven useful in a variety of domains, such as
hardware verification, model checking, and other CAD applications; see for
example the book by Wegener [23]. In addition, branching programs are
a convenient model for nonuniform computation with varying restrictions.
Even oblivious branching programs of constant width — the non-uniform
equivalent of finite-state automata — are surprisingly powerful. Indeed,
Barrington [6] showed that branching programs of width 5 are already as
powerful as circuits of logarithmic depth.

Moreover, branching programs are a very natural model for comparing
the power of quantum computation with classical computation, both deter-
ministic and randomized. Randomized branching programs (with restric-
tions on variables testing) have been intensively investigated since 1996 [3].
In [3] the first example of a function is presented which is exponentially
cheaper for a randomized OBDD than for a deterministic OBDD; see [23]
for more information. Recently, several models of quantum branching pro-
grams have been proposed [1, 2, 5, 14, 22].

In this paper we define and consider models of stochastic and quan-
tum branching programs. For this syntactic model we present several re-
sults for quantum branching programs of bounded width [1]. We show that
width-2 syntactic quantum programs are more powerful than width-2 doubly
stochastic programs, and are as strong as deterministic branching programs
of width 5. Specifically, we show that polynomial-length, width-2 syntactic
quantum branching programs can recognize any language in NC! exactly.
Note that such programs are equivalent to a nonuniform automata whose
only storage device is a single qubit!

On the other hand, we show that polynomial-length, width-2 doubly
stochastic programs cannot compute the middle bit of the multiplication
function MULT. This is a consequence of the more general fact (proved
in [4]) that MULT is exponentially hard for randomized OBDDs and that
2 x 2 doubly stochastic matrixes commute. Note that Yao [24] showed that
width-2 deterministic programs require superpolynomial length to compute
the majority function.

Next, we show that bounded-error syntactic quantum and stochastic
programs can be simulated by deterministic programs of the same length and

larger, but still bounded, width. Therefore the class of languages recognized
by these programs coincides with (nonuniform) NC!. This also implies that,
for bounded-width quantum programs, exact acceptance is just as strong as
acceptance with bounded error.

To give some flavour of what our syntactic model is, consider the usual
computation of a branching program. When we query a variable we do one of
two actions depending on its values. If we query the variable again we expect
to see the same value. An inconsistent state is one that is reached by query-
ing a variable more than once and seeing different values at different times.
In analogy with syntactic read-k-times classical branching programs [8], our
syntactic quantum and stochastic programs have a bounded-error promise
for their acceptance probabilities that holds even for inconsistent final states.
This restriction is admittedly somewhat artificial, but it allows us to put up-
per bounds on the classical complexity of the languages recognized by such
branching programs using simple metric arguments. Proving similar upper
bounds without this syntactic restriction is an interesting open question.

We use the techniques of our result to show that (syntactic) polynomial-
length width-2 stochastic programs that accept with probability 1/2 + €
cannot compute the majority function if € > 1/4. In addition, we show that
polynomial-length stochastic programs with width 2 and e > 1/8, width 3
and € > 1/3, or width 4 and € > 3/8 can only recognize languages in ACC.

Finally, we investigate the properties of read-once quantum branching
programs, which were defined in [2]. We show that, just as in the classi-
cal deterministic case, ordered read-once permutation branching programs
of exponential width (and hence QBPs) can recognize arbitrary languages.
Next we exhibit a symmetric Boolean function which is computable by a
read-once QBP with O(logn) width, but which requires Q(n) width for de-
terministic BPs, and for randomized classical BPs with a certain restriction
on their transitions. Finally, we present a general lower bound on the width
of read-once QBPs, and show that our O(logn) upper bound for this sym-
metric function is almost tight.

2 Branching Programs

We begin by discussing the classical model of branching programs and then
generalize it to the quantum setting. A good source of information on
branching programs is Wegener’s book [23]; for an introduction to quan-
tum computation see Nielsen and Chuang [15].

Definition 1 A branching program is a finite directed acyclic graph which
will be used to recognize some subset of {0,1}"™. Each node (except for a
sink node) is labeled with an integer 1 <i < n and has two outgoing arrows
labeled O and 1. This pair of edges corresponds to querying the i’th bit x;
of the input, and making a transition along one outgoing edge or the other

depending on the value of x;. There is a single source node, called the start
node, and a subset Accept of the sink nodes corresponding to accepting nodes.
An input x is accepted if and only if it induces a chain of transitions leading
to a node in Accept, and the set of such inputs is the language accepted by
the program. A branching program is oblivious if the nodes can be partitioned
into levels Vi,...,Vy and a level Vyy1 such that the nodes in Vy11 are the
sink nodes, nodes in each level V; with j < £ have outgoing edges only to
nodes in the next level Vi1, and all nodes in a given level V; query the same
bit x;; of the input. Such a program is said to have length ¢, and width k if
each level has at most k nodes.

Note that V41 may include inconsistent final nodes, i.e., those reached by
paths where a variable takes different values in multiple queries.

Oblivious branching programs have an elegant algebraic definition. Re-
call that a monoid is a set with an associative binary operation - and an
identity 1 such that 1-a=a-1=a for all a.

Definition 2 Let M be a monoid and S C M an accepting set. Let x;
for 1 < i < n be a set of Boolean variables. A branching program over
M of length ¢ is a string of £ instructions; the j’th instruction is a triple
(ij,a5,b;) € {1,...,n} x M x M, which we interpret as a;, if v;; = 0; and
as bj, if x;; = 1. Given an input x, the yield Y (x) of the program is the
product in M of all its instructions. We say that the input x is accepted
if Y(z) € S, and the set of such inputs is the language recognized by the
program.

Such programs are often called non-uniform deterministic finite au-
tomata (NUDFAs). A computation in a deterministic finite automaton can
be thought of as taking a product in its syntactic monoid; in a NUDFA we
generalize this by allowing the same variable to be queried many times, and
allowing “true” and “false” to be mapped into a different pair of monoid
elements in each query.

A common monoid is T}, the set of functions from a set of k objects
into itself. Then the program makes transitions among &k nodes, and we can
equivalently define oblivious, width-k branching programs by choosing an
initial node and a set of accepting final nodes, with £ nodes in each level V.

Definition 3 An oblivious width-k branching program is a branching pro-
gram over Ty, where the accepting set S C T}, consists of those elements of
Ty that map an initial node s € {1,...,k} to a final node t € Accept for
some subset Accept C {1,...,k}.

3 Bounded Width Branching Programs

We define language classes recognized by (non-uniform) families of bounded-
width branching programs whose length increases polynomially with n:

Definition 4 k-BWBP is the class of languages recognized by polynomial-
length branching programs of width k, and BWBP = Uy k-BWBP.

Recall that a group is a monoid where every element has an inverse, and
a group is Abelian if ab = ba for all a,b. A subgroup H C G is normal if the
left and right cosets coincide, aH = Ha for all a € G. A group is simple if
it has no normal subgroups other than itself and {1}.

Barrington [6] studied branching programs over the permutation group
on k objects S C Tj; such programs are called permutation programs. He
showed that polynomial-length programs over S;, and therefore width-5
branching programs, can recognize any language in NC!, the class of lan-
guages recognizable by Boolean circuits of polynomial width and logarithmic
depth [16]. Indeed, this follows from an earlier algebraic result by Maurer
and Rhodes [11]. The version of Barrington’s result that we will use is:

Theorem 1 ([6, 13]) Let G be a non-Abelian simple group, and let a # 1
be any non-identity element. Then any language L in NC! can be recognized
by a family of polynomial-length branching programs over G such that their
yield is Y(x) = a if x € L and 1 otherwise.

Since the smallest non-Abelian simple group is As C S5, the group of even
permutations of 5 objects, and since we can choose a permutation a that
maps some initial node s to some other final node ¢, width 5 suffices. Con-
versely, we can model a width-k branching program as a Boolean product
of £ transition matrices of dimension k, and a simple divide-and-conquer
algorithm allows us to calculate this product in O(log¢) depth. Thus,
BWBP ¢ NC!, so we have

5-BWBP = BWBP = NC! .

The definition of a linear branching program is based on the oblivious
model. This is a generalization of the definition of quantum branching pro-
gram presented in [2]. Deterministic, stochastic, and quantum oblivious
branching programs are particular cases of linear branching programs. Let
V* be a k-dimensional vector space; here k is the width of the program, and
the vectors p we will consider will be probability distributions or quantum
superpositions over the k states. We use |u) and (u| to denote column vec-
tors and row vectors respectively from V¥ and (i1 | p2) denotes the complex
inner product. This “bra-ket” notation was invented by Dirac, and is now
widely used in quantum mechanics. We write p when it is not important
whether it is in column or row form.

Definition 5 (Linear branching program) A Linear Branching Program
P of width k and length ¢ (a (k,¢) — LBP) over V¥ is defined as

P = (T, |po), Accept)

where T is a sequence (of length £) of k-dimensional linear transformations
of the vector space V*:
, ¢
T= (Zja Mj(0)7 Mj(l))jzl
Vectors |u) € V¥ are called states (state vectors) of P, |ug) € VF is the
initial state of P, and Accept C {1,...,k} is the accepting set.

We define a computation on P with an input © = x1,...,x, € {0,1}"
as follows:

1. A computation of P starts from the initial state |ug);

2. The j'th step of P queries a variable x;;, and applies the transition
matriz My = Mj(x;;) to the current state p to obtain the state p' =

Mj(xlj)u’
3. The final state (i.e., the state after step £+ 1) is

1

(@) =] Mj(wi,) o) -

j=t

Recall that in a read-once program, each variable is queried at most once
during the computation. For such a program, at each step j, an arbitrary
transformation M;(x;;) € {M;(0), M;(1)} might be applied since the i; are
all distinct. However, if a variable x; is queried more than once during the
computation, we must see it take the same value in every query, and this
constrains the transformations M; to be consistent across the set of j such
that i; = 4. This observation motivates the following definition:

Definition 6 We call a state u of a branching program consistent if there
erists an input x that induces a chain of transitions leading to the u from
the initial state pg. Otherwise, we call p an inconsistent state.

For each j € {1...,£+ 1} we let V; denote the set of states p (both
consistent and inconsistent) of the branching program. For stochastic and
quantum programs defined below, states in V; will be vectors (probability
distributions or vectors of £a-norm 1, respectively) over the basis set V.

Now oblivious deterministic, stochastic, and quantum branching pro-
grams can be presented as follows:

Deterministic branching programs. A deterministic branching pro-
gram is a linear branching program over a vector space RF. A state u of
such a program is a Boolean vector with exactly one 1. The matrices M,
correspond to elements of Tj, and so have exactly one 1 in each column. For
branching programs over groups this is true of the rows as well; in which
case, the M, are permutation matrices.

Stochastic branching programs. The concept of deterministic branch-
ing programs naturally generalizes to stochastic branching programs, by
letting 4+ be a probability distribution, and by letting the M; be stochastic
matrices, i.e., matrices with non-negative entries where each column sums
to 1. If the M, also have rows that sum to 1, then one has doubly stochastic
matrices, and the corresponding doubly stochastic branching programs. Re-
call that, by Birkhoff’s Theorem [21], doubly stochastic matrices are convex
combinations of permutation matrices.

In the deterministic and stochastic cases, for a final state vector (consis-
tent or inconsistent) pu € Vyy1, we define

Pr(p)= Y (ip) = |Hacepiell; s (1)

1€ Accept

and we define the probability of acceptance as Pr(x) = Pr(u(x)). Here |7)
is the basis vector with support on the node 7, and IIaccept is @ projection
operator on the accepting subspace span{|i) : i € Accept}.

Quantum branching programs. We define a quantum branching pro-
gram as a linear branching program over a Hilbert space C*. The p for such
a program are complex state vectors with ||u||2 = 1, and the M; are complex-
valued unitary matrices. For a final state vector (consistent or inconsistent)
€ Voiq, we define Pr(u) as

Pr(p)= Y (i | @ = |Hacepesells (2)

1€ Accept

and the probability of acceptance as Pr(z) = Pr(u(z)); that is, the proba-
bility that if we measure p(z), we will observe it in the accepting subspace.
Note that this is a “measure-once” model analogous to the model of quan-
tum finite automata in [12], in which the system envolves unitarily except
for a single measurement at the end. We could also allow multiple measure-
ments during the computation, by representing the state as a density matrix
p, and by making the M; superoperators, but we do not consider this here.

We can define recognition in several ways for the quantum case. We
say that a language L is accepted with unbounded error if Pr(z) > 1/2 if
x € L and Pr(z) <1/2if x ¢ L. We say that a language L is accepted with
bounded error if there is some € > 0 such that Pr(z) > 1/2+ ¢ if z € L and

Pr(z) <1/2 —e€if x ¢ L. For the case € = 1/2, we have that Pr(z) = 1, if
x € Ly and Pr(z) =0, if x ¢ L. So as we did in the deterministic case, we
say that L is accepted exactly.

4 Syntactic Stochastic and Quantum Programs

For unbounded and bounded error stochastic and quantum branching pro-
grams we define two subsets A and R of the set V1 of final state vectors
(consistent and inconsistent) as follows: For unbounded error programs, we

define

A={pu€Vyy1:Pr(pn) >1/2} and R ={p € V1 :Pr(u) <1/2};
and for bounded error programs, we define
A= {1 € Veyy i Pr(p) = 1/24¢} and R = {u € Veyy : Pr(p) < 1/2—¢}.

We call A and R the accepting and rejecting sets respectively.
Recall that Vy 11 includes the final states reachable by all possible paths,
both consistent and inconsistent. Then:

Definition 7 We call a stochastic or a quantum branching program syntac-
tic if its accepting and rejecting set of state vectors form a partition of the
set of final states, i.e., if Vo1 = AUR.

Note that without the syntactic restriction, it might happen that V,.q #
A UR, and that some inconsistent final state vector u € Vyi; has the
property that 1/2 —e < Pr(u) < 1/2 +e.

We denote by B- the language classes recognized by standard (nonsyn-
tactic) programs with bounded error and denote by E- those recognized
exactly. The notations SBP and QBP stand for stochastic and quantum
branching programs, respectively. We denote the classes of languages rec-
ognized by width-k stochastic and quantum programs of polynomial length
as k-BSBP, k-BQBP, and k-EQBP. Note that we remove “BW” to avoid
acronym overload. We write BSBP for Uipk-BSBP and define BQBP and
EQBP similarly. Clearly we have

BWBP C EQBP C BQBP

and

BWBP C BSBP
but in principle £-BSBP could be incomparable with k-EQBP or k-BQBP.

5 Width-2 Stochastic and Quantum Programs

In this section we show that width-2 syntactic quantum programs with exact
acceptance contain NC!, and also that this class of programs is stronger than
width-2 syntactic doubly stochastic programs.

Lemma 1 Any width-2 doubly stochastic program on n variables is equiva-
lent to one which queries each variable once and in the order xi,xs,...,Ty,.

Proof. Any 2 x 2 stochastic matrix can be written as < . gp 1 ;p > for
some p € [0,1]. It is easy to verify that matrices of this form commute.
Hence, if we have a product of such matrices Hjl:n M;(w;;) we can rewrite
it so that we first take the product of all the matrices that depend on x1,
then those that depend on x9, and so on. To finish the proof we note that
products of doubly stochastic matrices are again doubly stochastic, so we
can use a single doubly stochastic matrix for the product of all the matrices
that depend on a given x;. O

The above lemma shows we can convert any width-2 doubly stochastic
program into one which is read-once and with a fixed variable ordering. i.e.,
a randomized ordered binary decision diagram (OBDD). Hence for width-2
programs, the syntactic and nonsyntactic models are equivalent.

Next we note that stochastic programs are stronger than permutation
programs for width 2. It is easy to see that any program over Zs simply
yields the parity of some subset of the x;. The AND,, function, which accepts
only the input with z; = 1 for all 4, is not of this form, and so this function
cannot be recognized by a width-2 permutation program. However, it can
easily be recognized by a stochastic program P with bounded error which
queries each variable once as follows: for ¢ < n it maps x; = 1 and 0 to

the identity < L0 > and the matrix < /2 1/2

0 1 12 1/2 > respectively, and for x,

. 3/4 0 3/8 3/8 . .
it maps 1 and 0 to < /4 1) and < 5/3 5/8 > respectively. Taking the

first node to be both the initial and final node, P accepts with probability
3/4 if z; = 1 for all 7 and 3/8 otherwise. Note that except for one matrix
this is in fact a doubly stochastic program; if we had treated the variable x,
in the same fashion as the other variables we would have gotten a syntactic
doubly stochastic program accepting AND,, with one-sided error.

Despite being stronger than their permutation counterparts, the next
result shows width-2 doubly stochastic branching programs are not that
strong. Let MULT} be the Boolean function which computes the k’th bit
of the product of two n-bit integers. Define MULT™ to be MULT? 4, i.e.,

n—1>

the middle bit of the product. We will argue that any width-2 stochastic

program that calculates this function (i.e., that recognizes the set of inputs
for which MULT™ = 1) requires exponential width.

In [4] Ablayev and Karpinski investigated randomized OBDDs, i.e., those
which accept with bounded error.

Theorem 2 ([4]) Any randomized OBDD that bounded error computes MULT™
has width at least 22(/108™).

So by Lemma 1 we have immediately:

Corollary 1 MULT™ can not be computed by a width-2 doubly stochastic
program.

While width-2 doubly stochastic programs are quite weak, the next result
shows that width-2 quantum programs are surprisingly strong. Note that
a width-2 quantum program has a state space equivalent to a single qubit,
such as a single spin-1/2 particle.

Theorem 3 NC! is contained in syntactic 2-EQBP.

Proof. We show that Barrington’s simulation of NC! can be carried out in
U(2), the group of 2 x 2 unitary matrices. Recall that SU(2), the group of
2 X 2 unitary matrices with determinant 1, is an algebraic double cover of
SO(3), the group of three-dimensional rotations, and SO(3) has a subgroup
isomorphic to As, namely the group of rotations of the icosahedron.

To make this explicit, we recall a well-known 2-to-1 mapping from SU (2)
to SO(3). Consider a qubit a|0) + b|1) with |a|?> + [b]?> = 1; we can make
a real by multiplying by an overall phase. The Bloch sphere representation
(see e.g. [15]) views this state as the point on the unit sphere with latitude
0 and longitude ¢ , i.e., (cos ¢ cos 6, sin ¢ cos 0, sin), where a = cos /2 and
b=e?sinf/2.

Given this representation, an element of SU(2) is equivalent to some
rotation of the unit sphere. Recall the Pauli matrices

0 1 0 i 1 0
2=\10) YT \=io0) 27 \o0 41

Then we can rotate an angle a around the z, y or z axes with the following
operators:

_ ila)2)os _ cosa/2 —isina/2
Bo(a) = e N < —isina/2 cosa/2

_ i(a/2)oy _ cosa/2 —sina/2
fy(a) = e ’ < sina/2 cosa/2)’ and

. —ia/2 0
i(a/2)o, €
R.(a) =€@/27= = < 0 eiv/2 >

10

This makes SU(2) a double cover of SO(3), where each element of SO(3)
corresponds to two elements +U in SU(2). (Note that angles get halved by
this mapping.) Therefore, SU(2) has a subgroup which is a double cover
of As. One way to generate this subgroup is with 27 /5 rotations a and b
around two adjacent vertices of an icosahedron. Since two such vertices are
an angle tan~—! 2 apart, if one lies on the z axis and the other lies in the z—2
plane, we have

etm/5 0
a = Rz(27r/5):< 0 e-m/s,)

b = Ry(tan '2)-a-Ry(—tan"'2)
L e /5 4 e=im/5 =1 —2isinn/5
\/g —2¢sin 7'('/5 e*i”/57— + el'7r/57_71

where 7 = (1 ++/5)/2 is the golden ratio. Now consider the group element
¢ = a-b-a; this rotates the icosahedron by 7 around the midpoint of the edge
connecting these two vertices. In SU(2), this maps each of the eigenvectors
of o, to the other times an overall phase. These eigenvectors are

iy oy
* v2ool V2

so we have
el £ cle_)? =1

while, since they are orthogonal,
es]1le-)2 =0 .

Now, Theorem 1 tells us that for any language L in NC! we can construct
a polynomial-length program over As that yields the element equivalent to
¢ if the input is in the language and 1 otherwise. Using the embedding of
As in SO(3), and then lifting to SU(2), gives a program which yields +c or
1. If we take the initial state to be ug = e_ and the accepting subspace to
be that spanned by ey, this program accepts L exactly. O

6 Deterministic Simulations of Syntactic Stochas-
tic and Quantum Branching Programs

In this section we give general results on simulating syntactic stochastic and
quantum programs with deterministic ones. Specifically, Theorem 4 shows
that syntactic stochastic and quantum programs that accept with bounded
error can be simulated by deterministic programs of the same length and
larger (but still bounded) width. Below we use this to place upper bounds

11

on the computational power of stochastic programs with various widths and
error thresholds.

Theorem 4 Let P be a syntactic stochastic or quantum branching program
of width k and length ¢ that recognizes a language L with probability 1/2+ €.
Then, there exists a deterministic branching program P’ of width k' and
length £ that recognizes L, where

()
()

Proof. Our proof is based on arguments of Rabin [17] and Kondacs and
Watrous [10]. For each step of the program, we define an equivalence relation
on state vectors, where two state vectors are equivalent if they lead to the
same outcome (acceptance or rejection). Since P recognizes L with bounded
error, inequivalent states must be bounded away from each other, and since
the state space is compact the number of equivalence classes is finite. These
equivalence classes then become the states of our deterministic program P’.

First, we construct an ¢-length, 2¢-width oblivious deterministic branch-
ing program P” in a form of complete binary tree. Nodes of levels V{',..., V|
of P" are labeled by state vectors p (consistent and nonconsistent) of P as
follows: V{” contains unique node labeled by the initial state ug. For all
1 < j < £ each node in V}" labeled by p € VI has two outgoing edges to
nodes in Vj’;l labeled by M;(0)u, M;(1)p. The syntactic property allows us
to partition nodes in VZ’_'H into accepting and rejecting subsets Acc and Rej
according to equations (1) and (2). Clearly that such deterministic program
P” recognizes L deterministically.

if P is stochastic, and

if P is quantum.

Now we inductively define an equivalence relation =; on each level V; of
program P. First, we let A and R be the equivalence classes of =;;1. Then,
for each 1 < j </, define

p=ip & Mj0)p =41 M0 and M;(1)p =541 ML)’ .
The equivalence relation =; has the following properties:
1. Vi1 = A U R since P is syntactical program;

2. equivalence classes have transitive closure property under transforma-
tion;

12

3. since stochastic and unitary transformations do not increase the dis-
tance between states, the distance between two arbitrary different =;
classes are bounded away from each other by constant.

The equivalence relation =; on V; of program P determines the equiva-
lence relation on V}" of program P”. We keep the same notation =; for such
this equivalence relation on V.

We now define P’ as the deterministic branching program whose nodes
Vj’ , for each level j, are the equivalence classes of =; of program P”, and
whose accepting subset is the singleton {A}. By properties (1-3) above
program P’ is well-defined and recognizes L deterministically; it just remains
to show that the number of equivalence classes for each j is bounded.

First we show that two inequivalent state vectors in V; must be far apart,
using the following standard argument [17, 10].

Lemma 2 Suppose p, i/ € Vj and p #; (/. Then

=1l > 4e

if P is stochastic, and
= p'll2 > 2e

if P is quantum.

Proof. Since stochastic and unitary matrices both preserve or decrease the
appropriate norm, it suffices to show this for the last step. Therefore, sup-
pose that j = £+ 1, p € A and i/ € R. We can decompose both vectors,
i, 1, into their components inside the accepting subspace and into their
components inside the subspace transverse to the accepting subspace. That
is, we can write = pua+pugr where gy = IIAccept;u and pp = (1 - HAccept)M,
and similarly write ¢/ = p/y + p/p. In the stochastic case, ||palli > 1/2+€
and ||p/4][1 < 1/2 — €, and so

e =w'll = llpa = walls + lnr = wlh
> 2[(1/24+¢€) — (1/2 —¢)]
= 4e .
In the quantum case, [|pall2 > \/1/2 + € and [|py]]2 < 1/1/2 — ¢, s0
=15 = e = pall3 + lr — wll3
2
> 2[\/1/2+e—\/1/2—e}
= 2(1-Vi-42)
> 4¢?
so [lu— [z > 2e. O

13

It follows that the width &’ of P’ is at most the largest number of balls
of radius 2¢ or € (in the stochastic and quantum case respectively) one can
fit inside the state space. In the stochastic case, the state space is a (k — 1)-
dimensional simplex. Its Li-diameter is 2, so each ball of radius 2¢ covers
a fraction at least (1/€)¥~! of its volume, yielding (3). This bound is crude
in that it assumes that the center of each ball is at a corner of the simplex;
balls whose center are in the interior of the simplex cover up to 2¢~! times
as much volume. In particular, if k¥ = 2 then k¥’ <1+ 1/(2e).

In the quantum case, the state space is isomorphic to the surface of
the 2k-dimensional sphere of radius 1. The crude bound of (4) comes from
noticing that this sphere, and the balls of radius ¢ whose centers lie on its
surface, are all contained in a 2k-dimensional ball of radius 2. a

Theorem 4 shows that bounded-error syntactic stochastic and quantum
programs of constant width can be simulated by deterministic programs of
constant (though, exponentially larger) width, and are therefore contained
in NC!. Conversely, we showed in Theorem 3 that NC! is contained in
width-2 syntactic quantum programs. Therefore, the following classes all
coincide with NC*:

Corollary 2 For syntactic programs,
2-EQBP = 2-BQBP = EQBP = BQBP = BSBP = BWBP = NC! .

Of all the program classes discussed in this paper, the only ones not included
in this collapse are stochastic programs of width less than 5. Theorem 4
allows us to place upper bounds on their computational abilities if their
error margins are sufficiently large. For instance, since Yao [24] showed that
width-2 deterministic programs require superpolynomial length to compute
the majority function, we have

Corollary 3 For the syntactic case, width-2 stochastic branching programs
of polynomial length cannot recognize the majority function with probability
1/2+¢€ife>1/4.

Similarly, recall that ACC = U,ACC|p] where ACC|p] is the class of lan-
guages recognizable by constant-depth circuits with AND, OR, and mod-p
counting gates of arbitrary fan-in. It is known that ACC[p] C NC! for prime
p [18, 20], and strongly believed, but not known, that ACC C NC!. Since
its is known [7] that deterministic programs of width less than 5 recognize
languages in ACCI6], we have

Corollary 4 Suppose L is recognized with probability 1/2 + ¢ by a width-k
stochastic syntactic branching program of polynomial length. If k = 2 and
e>1/8, ork=3and e >1/3, or k=4 and ¢ > 3/8, then L € ACC.

14

Proof. For each k we consider the problem of how small € has to be to fit 5
points into the (k — 1)-dimensional simplex with an L; distance 4¢ between
them. While these values of € are smaller that those given by (3), they follow
easily from assuming without loss of generality that k£ of the points lie on
the simplex’s corners. O

However, we conjecture that stochasticity does not greatly increase the
power of bounded-width branching programs, in the following sense:

Conjecture 1 If L is recognized with bounded error by a stochastic branch-
ing program of width less than 5, then L € ACC.

7 Read-once Branching Programs (OBDDs)

In this section we investigate the computational power of read-once branch-
ing programs, i.e., those in which each variable z; is queried only once during
a computation. In particular, a read-once branching program on n variables
has length n. Read-once programs have been well-studied and are more
commonly called Ordered Binary Decision Diagrams (OBDDs) [23]. We
define quantum and stochastic OBDDs using the definitions of acceptance
given above.

First, we note that quantum OBDDs of exponential width can compute
arbitrary Boolean functions. This is simply because quantum branching
programs include permutation programs, and it is easy to see that a per-
mutation program with width 2" can simply read the input and devote a
different final state to every possible input.

To show that quantum OBDDs are more powerful than classical ones,
we consider the symmetric Boolean function MOD,, defined as follows: For
an input z = z; ...z, € {0,1}", the function MOD,(x) = 1 if and only if
the number of ones in x is divisible by p.

Theorem 5 Let p < n/2. Then MOD, can be computed by a read-once
quantum branching program of width O(logp) with one-sided error e > 0.

The proof of this theorem will be presented in the subsection below. In
contrast to this result, we have that any deterministic OBDD for MOD,, has
Q(p) width. This follows from the fact that any deterministic OBDD for
MOD,, must keep for each input sequence the number of ones (by mod p)
in each level of computation.

7.1 Proof of Theorem 5

We will start by giving a quantum branching program P of width O(log p)
that accepts inputs © € MOD,, 1(1) with probability 1 and rejects inputs

15

x € MOD, ' (0) with probability at least 1/8. We will then apply standard
techniques to reduce the error to an arbitrarily small e. The program P is
defined using width-2 programs P*, for k € {1,...,p—1}. We will construct
P by selecting a good set (of cardinality t = [16Inp]) of these P*’s and
running them in superposition.

. . 1
For a given k, P* has as its start vector [¢f) = (

0) and has transition

matrices T* = ((i, U*(0),U*(1)))"_; where

1 0 cos(2nk/p) —sin(2rk/p)
Uk(0) = < 01),U’“(l) = < Sin(zwk/ﬁ) cos(QWk/p])g >

The accepting set of P* is {1}.
Let I(z) the number of 1’s in the sequence z, i.e., [(z) = Y " | z;. Then:

Lemma 3 After reading an input x = x1 ...z, the state vector of P* is

) = (cos B)[1) + (sin 6;)|2)
where O, = 27 k(l(x) mod p)/p.

Proof. This follows from the definition of P¥. O

If the I(z) is a multiple of p, then 6 is a multiple of 27 for all k£ and
cos 0y, = 1, Therefore, all P*¥ accept inputs x € M OD, 1(1) with probability
1.

Call P* “good” for an input x € MODgl(O) if P* rejects « with proba-
bility at least 1/2.

Lemma 4 For any x € MOD;l(O), at least (p—1)/2 of all P* are “good”.

Proof. According to Lemma 3 after reading an input z = x; ...z, the state
vector of P* is |¢) = (cos@)|1) + (sin 6;)[2).

Therefore, the probability of accepting an input x € MOD, L0) is
cos? 0, which is less than or equal to 1/2 if and only if 6, € [r/4,37/4]
or 0 € [bm/47,7Tn/4]. As p is prime and [(z) is relatively prime with p, it
must be that {(z) mod p, 2[(x) mod p,..., (p — 1)l(xz) mod p are some per-
mutation of 1,2,...,p — 1. Consequently, it is enough to find the size of
the set I = {i1,...,4} C {1,...,p — 1} such that 2mi; /p € [n/4,37/4]
or 2mi; /p € [bw/4,7m/4]. Since the p points 27/p,...,2nx(p — 1)/p, 2w
are regularly distributed on the circumference of the circle and the sectors
[7/4,3m/4] and [5m/4, 7w /4] are exactly half of the circumference, we have

1| = [p/2] = (p—1)/2. =

We call a set of quantum programs S = {P% ..., P} “good” for x €
MOD;l(O) if at least 1/4 of all its elements are “good” for this z.

16

Lemma 5 There is a set S of width-2 quantum branching programs with
|S| =t =[161np]| which is “good” for all inputs x € MOD;I(O).

Proof. The following procedure A is used to construct the set S:

For a fixed input = with I(z) < p — 1, A selects a quantum
branching program uniformly at random from {P!,... PP~1}.

The probability of selecting a “good” QBP at each step is at least 1/2.
Using Chernoff bounds, we get the probability that less than 1/4 of all QBPs
from the set S are “good” for any fixed x with I[(z) < p —1 is at most

exp((~161np)/2(1/2)° /2 = 1/p.

Hence, the probability of constructing a set that is not “good” for at least
one input z with I(z) < p — 1 is at most (p — 1)/p > 0. Therefore, there
exists a set which is “good” for all inputs = with [(z) < p — 1. This set is
“good” for inputs x with I(z) > p as well, since any QBP, P*, returns the
current state vector to the start state vector after reading every p ones, and
hence, works the same way on any inputs x, 2’ with [(z) = (') mod p. O

A program P accepting inputs z € MOD,, L(1) with probability 1 and
rejecting inputs = € MOD;I(O) with probability at least 1/8 can now be
described: P’s start and accepting states are the same as for the P*’s. Its
transitions consist of a superposition of the transitions of QBP’s from a
“good” set S = {P", ... P}, weighted with equal amplitudes.

Notice the inputs z € MOD,, 1(1) are always accepted by P with prob-
ability 1 because all P*’s accept them. On the other hand, for any input
z € MOD,'(0) at least 1/4 of all P* € S reject it with probability at least
1/2 and the total probability of rejecting any = € MOD;I(O) is at least 1/8.

The error can now be made as small as needed using standard techniques
for reducing error in one-sided error computations. That is, d = d(e) copies
of P are taken and run uniformly at random. In this case the width of the
resulting program will be O(log p). O

Definition 8 A branching program P is called stable if its transformations
do not depend on the level of P, i.e., M;(0) and M;(1) do not depend on j.

Observe that the proof of the above theorem constructs a quantum
branching program for MOD,, that is stable.

Corollary 5 The function MOD, can be presented by a stable, read-once,
width-O(log p) quantum branching program with one-sided error e > 0.

Now we show that the MOD,, function is hard for randomized OBDD’s.

17

7.2 Lower Bounds for randomized OBDDs for MOD

We start by listing some basic facts from Markov chain theory we will need
in order to prove a lower bound for implementing the M OD function on
a randomized OBDD (Theorem 6). For more background information the
reader is advised to consult Section 2 of the book [9].

1. According to the classification theorem for Markov chains, the states
of a Markov chain can be divided into ergodic and transient states. An
ergodic set of states is a set which a process cannot leave once it has
entered. A transient set of states is a set which a process can leave,
but cannot return once it has left.

2. An arbitrary Markov chain C' has at least one ergodic set. It is possible
to have a Markov chain C' without any transient set. If a Markov chain
C has more than one ergodic set, then there is absolutely no interaction
between these sets. Hence, we have two or more unrelated Markov
chains lumped together. These chains can be studied separately. If a
Markov chain consists of a single ergodic set, then the chain is called
an ergodic chain. According to the classification theorem for Markov
chains, every ergodic chain is either regular or cyclic.

3. An ergodic chain is regular, if for sufficiently high powers of the state
transition matrix, A has only positive elements. Thus, no matter
where such a process starts, after a sufficiently large number of steps it
can be in any state. Moreover, there is a limiting vector of probabilities
of being in the given states of the chain, and this vector does not
depend on the initial state.

4. An ergodic chain is cyclic, if the chain has a period ¢, and all of its
states are subdivided into t cyclic subsets (¢ > 1). For a given starting
state a process moves through the cyclic subsets in a definite order,
returning to the subset with the starting state every t steps. It is
known that after a sufficient time has elapsed, the process can be in
any state of the cyclic subset appropriate for the moment. Hence,
for each of the t cyclic subsets, the ¢-th power of the state transition
matrix A? describes a regular Markov chain.

Theorem 6 Any stable probabilistic OBDD computing MOD,, has width at
least p.

Proof. Assume that there is a stable probabilistic OBDD P of width ¢ < p
computing MOD,, with probability 1/2 + e for some fixed € € (0,1/2].
Without loss of generality, assume P reads the inputs in the natural or-
der x1,...,x,. We can also suppose without loss of generality that each
level of P has exactly ¢ nodes. During the computation, the macrostate of

18

the program P on a level of nodes of P can be described by a probability
distribution vector p = (1, ..., tq), where p; is the probability of being in
the i-th node of the level. So we can describe a computational process of P
on an input x = x1 ...z, as follows:

e The computation of P starts from an initial probability distribution
vector p(e) (here e denotes empty word).

e On the j-th step, 1 < j < n, P reads z; and transforms the current
vector u to ¢/ = pA, where A is the ¢ x ¢ stochastic matrix, A = A(0)
ifz;=0and A= A(1) if z; = 1.

e Suppose after the last (n-th) step of the computation, the probability
distribution vector is pu(x) = (1, ..., ftq). The program P then accepts
the input = with probability Pyec(z) = Y ;cppi- So if f(z) = 1, then
Puee(x) > 1/2 + € otherwise, Pye.(x) < 1/2 —e.

Let ¥ = {z(™, ..., 2} be a set of input sequences where z(9) = 0»~#17,
Here 0 = 0...0, 1¥ = 1...1. From now on, we consider only input se-
N—— N——
k k

quences to P from .

For each (¥ € ¥, according to our notations, we have that p(0"%) =
(e)A"*(0). On the remaining part 1* of 2()) a computation of P can be
described by a Markov chain C. In this case, (0" ~%) is the initial probability
distribution for the Markov process and A(1) is the transition probability
matrix.

Now we estimate a number of states in the ergodic set of the Markov
chain C'. It is known that if an ergodic chain is a cyclic chain with the
period ¢, then it has at least ¢ states. Let t1,...,¢; be the periods of the
cyclic chains of C' (if an ergodic chain is regular then ¢ = 1).

JFrom the assumption that ¢ < p, we get that ¢; < p for each cyclic
chain. Denote by D the least common multiple of all such ¢. Because p is
prime, ¢ is relatively prime to p, D is relatively prime to p, and so is any
positive degree D™ of D.

For the input sequence z(¥) consider the final vector p(z®)). Without
loss of generality we can assume that there is a single accepting state. Let
uacc(x(k)) be the probability of being in the accepting state after reading
z®). As after every D steps a process can be in any set of states containing
the accepting state, the D-th power of A describes a regular Markov chain
for this set. According to property 3 of Markov chains listed above we have
that there exists an « such that lim,_, uacc(x(rD)) = «. Hence, for any
€ > 0, it holds that

|:Ua00($(Dm)) - Macc{x(Dmp)” < 2e

19

for m large enough. As P is supposed to 1/2 + € compute MOD,,, we have
that pigee(zP"P)) > 1/2+€ and that pgec(z(P™)) < 1/2—e. This contradicts
the inequality above. a

8 General Lower Bound for Quantum OBDDs

A general lower bound on the width of read-once quantum branching pro-
grams is now presented.

Theorem 7 Lete € (0,1/2). Let f(x1,...,xy,) be a Boolean function (1/2+
€)-computed (computed with margin €) by a quantum read-once branching
program Q. Then

width(Q) = Q(log width(P))

where P is a deterministic OBDD of minimal width computing f(x1,...,T,).

The proof of the Theorem 7 uses the same idea used in proving Theorem 4
and directly follows that proof. A deterministic OBDD P that represents
the same function f is constructed such that

9\ 2-width(Q)
width(P) < <—> .

€
The lower bound on width(Q) given by Theorem 7 proves that the quantum
OBDD constructed for the MOD,, function has the optimal width possible.

Acknowledgments. We are grateful to Sasha Razborov for numerous
suggestions on the results and presentations. We thank Denis Thérien for
helpful discussions on ACC and Sasha Shen for productive discussions on
the syntactic model. We also thank Tracy Conrad for helpful conversations.

References

[1] F. Ablayev, C. Moore, and C. Pollett, Quantum and stochastic branch-
ing programs of bounded width. Proc. 29th Intl. Colloquium on Au-

tomata, Languages and Programming Lecture Notes in Computer Sci-
ence, Springer-Verlag, 343-354, 2002.

[2] F. Ablayev, A. Gainutdinova, and M. Karpinski, On the computational
power of quantum branching programs. Proc. FCT 2001, Lecture Notes
in Computer Science 2138: 59-70, 2001.

[3] F. Ablayev and M. Karpinski, On the power of randomized branching
programs, in Proceedings of the ICALP’96, Lecture Notes in Computer
Science, Springer-Verlag, 1099, (1996), 348-356.

20

[4] F. Ablayev and M. Karpinski, A lower bound for integer multiplication
on randomized ordered read-once branching programs. Information and
Computation 186(1), (2003), 78-89.

[5] A. Ambainis, L. Schulman, and U. Vazirani, Computing with highly
mixed states. Proc. 32nd ACM Symp. on Theory of Computing 697704,
2000.

[6] D.A. Barrington, Bounded-width polynomial branching programs recog-
nize exactly those languages in NC'. Journal of Computer and System
Sciences 38(1): 150-164, 1989.

[7] D.A. Barrington and D. Therien, Finite Monoids and the Fine Structure
of NC'. Journal of the ACM 35(4): 941-952, 1988.

[8] A. Borodin, A. Razborov, and R. Smolensky, On lower bounds for read-
k-times branching programs, Computational Complexity, 3, (1993), 1-18.

[9] J.G. Kemeny and J.L. Snell, Finite Markov Chains. Van Nostrand, 1960.

[10] A. Kondacs and J. Watrous, On the power of quantum finite automata.
Proc. 38th IEEE Conf. on Foundations of Computer Science 66-75, 1997.

[11] W. Maurer and J. Rhodes, A Property of Finite Simple Non-abelian
Groups. Proc. AMS 16, 552-554, 1965.

[12] C. Moore and J.P. Crutchfield, Quantum automata and quantum gram-
mars. Theoretical Computer Science 237: 275-306, 2000.

[13] C. Moore, D. Thérien, F. Lemieux, J. Berman, and A. Drisko. Circuits
and Expressions with Non-Associative Gates. Journal of Computer and
System Sciences 60: 368-394, 2000.

[14] M. Nakanishi, K. Hamaguchi, and T. Kashiwabara, Ordered quan-
tum branching programs are more powerful than ordered probabilistic
branching programs under a bounded-width restriction. Proc. 6th Intl.
Conf. on Computing and Combinatorics (COCOON) Lecture Notes in
Computer Science 1858: 467-476, 2000.

[15] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[16] C. Papadimitriou, Computational Complexity. Addison-Wesley, 1994.

[17] M. Rabin, Probabilistic automata. Information and Control 6: 230-245,
1963.

[18] A.A. Razborov, Lower bounds for the size of circuits of bounded depth
with basis {&,®}. Math. Notes Acad. Sci. USSR 41(4) 333-338, 1987.

21

[19] P. Shor, Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Journal on Computing
26(5): 1484-1509, 1997.

[20] R. Smolensky, Algebraic methods in the theory of lower bounds for
Boolean circuit complexity. Proc. 19th ACM Symposium on the Theory
of Computing 77-82, 1987.

[21] J. H. van Lint and R. M. Wilson. A Course in Combinatorics, 2nd ed.
Cambridge. 2001.

[22] M. Sauerhoff and D. Sieling, Quantum branching programs and space-
bounded nonuniform quantum complexity. Theoretical Computer Science
334(1-3), 177-225, 2005.

[23] Ingo Wegener, Branching Programs and Binary Decision Diagrams.
SIAM Monographs on Discrete Mathematics and Applications, 2000.

[24] A.C. Yao, Lower Bounds by Probabilistic Arguments. Proc. 24/th IEEE
Conf. on Foundations of Computer Science 420-428, 1983.

22

