
Prede
essor Queries in Constant Time?Marek Karpinski � Yakov Nekri
h yAbstra
tIn this paper we design a new stati
 data stru
ture for bat
hed pre-de
essor queries. In parti
ular, our data stru
ture supports O(plogn)queries in O(1) time per query and requires O(n"plogn) spa
e for any" > 0. This is the �rst o(N) spa
e and O(1) amortized time datastru
ture for arbitrary N and n where N is the size of the universe.We also present a data stru
ture that answers O(log logN) prede
essorqueries in O(1) time per query and requires O(n" log logN) spa
e for any" > 0. The method of solution relies on a
ertain way of sear
hing forprede
essors of all elements of the query in parallel.In a general
ase, our approa
h leads to a data stru
ture thatsupports p(n) queries in O(plogn=p(n)) time per query and requiresO(np(n)) spa
e for any p(n) = O(plogn), and a data stru
ture thatsupports p(N) queries in O(log logN=p(N)) time per query and re-quires O(np(N)) spa
e for any p(N) = O(log logN).1 Introdu
tionGiven a set A of integers, the prede
essor problem
onsists in �nding for anarbitrary integer x the biggest a 2 A, su
h that a � x. If x is smaller thanall elements in A, a default value is returned. This fundamental problemwas
onsidered in a number of papers, e.g., [AL62℄, [EKZ77℄, [FW94℄, [A95℄,[H98℄, [AT00℄, [BF02℄, [BCKM01℄. In this paper we present a stati
 datastru
ture that supports prede
essor queries in O(1) amortized time.In the
omparison model, if only
omparisons between pairs of elementsare allowed, the prede
essor problem has time
omplexity O(logn), wheren is the number of elements. A standard information-theoreti
 argument�Dept. of Computer S
ien
e, University of Bonn. E-mail marek�
s.uni-bonn.de. Workpartially supported by a DFG grant, Max-Plan
k Resear
h Prize, and IST grant 14036(RAND-APX).yDept. of Computer S
ien
e, University of Bonn. E-mail yasha�
s.uni-bonn.de. Workpartially supported by IST grant 14036 (RAND-APX).1

proves that dlogne
omparisons are ne
essary. This lower bound had fora long time been believed to be also the lower bound for the integer pre-de
essor problem. However in [E77℄, [EKZ77℄ a data stru
ture supportingprede
essor queries in O(log logN) time, where N is the size of the universe,was presented. Fusion trees, presented by Fredman and Willard [FW94℄,support prede
essor queries in O(plogn) time, independently of the size ofthe universe. This result was further improved in other important papers,e.g., [A95℄, [AT00℄,[BF02℄. In the paper of Beame and Fi
h [BF02℄, it wasshown that any data stru
ture using nO(1) words of (logN)O(1) bits, requires
(plogn= log logn) query time in the worst
ase. In [BF02℄ the authors alsopresented a mat
hing upper bound, and transformed it into a linear spa
eand O(plogn= log logn) time data stru
ture, using the exponential trees ofAndersson and Thorup [A96℄,[AT00℄.Ajtai, Fredman and Koml�os [AFK84℄ have shown that if word size isn
(1), then prede
essor queries have time
omplexity O(1) in the
ell probemodel ([Y81℄). Obviously, there exists a O(N) spa
e and O(1) query timestati
 data stru
ture for the prede
essor queries. Brodnik, Carlsson, Karls-son, and Munro [BCKM01℄ presented a
onstant time and O(N) spa
e dy-nami
 data stru
ture. But their data stru
ture uses an unusual notion ofthe word of memory: an individual bit may o

ur in a number of di�erentwords.While in real-time appli
ations every query must be pro
essed as soonas it is known to the data base, in many other appli
ations we
an
olle
ta number of queries and pro
ess the set of queries simultaneously. In thiss
enario, the size of the query set is also of interest. Andersson [A95℄ pre-sented a stati
 data stru
ture that uses O(n" logn) spa
e and answers log nqueries in time O(logn log log n). Bat
hed pro
essing is also
onsidered ine.g., [GL01℄, where bat
hed queries to unsorted data are
onsidered.In this paper we present a stati
 data stru
ture that uses O(np(n)) spa
eand answers p(n) queries in O(plogn) time, for any p(n) = O(plogn). Inparti
ular, we present a O(n"plogn) spa
e data stru
ture that answersplog nqueries in O(plogn) time. The model used is RAM model with word size b,so that the size of the universe N = 2b. To the best of our knowledge, this isthe �rst algorithm that uses o(N) spa
e and words with O(logN) bits, anda
hieves O(1) amortized query time.If the universe is bounded (e.g., log logN = o(plogn)), our approa
hleads to a O(np(N)) spa
e data stru
ture that answers p(N) queries in timeO(log logN) , where p(N) = O(log logN). Thus, there exists a data stru
-ture that answers log logN queries in O(log logN) time and uses O(n" log logN)2

spa
e. For instan
e, for N = nlogO(1) n, there is a O(n" log logn) spa
e and
on-stant amortized time data stru
ture.The main idea of our method is to sear
h in
ertain way for prede
essorsof all elements of the query set simultaneously. We redu
e the key size forall elements by multiple membership queries in the spirit of [BF02℄. Whenthe key size is suÆ
iently small, prede
essors
an be found by multiple
om-parisons.After some preliminary de�nitions in Se
tion 2, we give an overview ofour method in Se
tion 3. In Se
tion 3 an O(n2plogn+2) spa
e and O(1)amortized time data stru
ture is also presented. We generalize this resultand des
ribe its improvements in Se
tion 4.2 Preliminaries and NotationIn this paper we use the RAM model of
omputation that supports addition,multipli
ation, division, bit shifts, and bitwise boolean operations in O(1)time. Here and further w denotes the word size; b denotes the size of thekeys, we assume without loss of generality that b is a power of 2. Queryset Q = fx1; x2; : : : ; xqg is the set of elements whose prede
essors shouldbe found. Left and right bit shift operations are denoted with � and �respe
tively,i.e. x � k = x � 2k and x� k = x� 2k, where � is the integerdivision operation. Bitwise logi
al operations are denoted by AND, OR,XOR, and NOT. If x is a binary string of length k, where k is even, xudenotes the pre�x of x of length k=2, and xl denotes the suÆx of x of lengthk=2.In the paper of Beame and Fi
h [BF02℄, it is shown how multiple mem-bership queries,
an be answered simultaneously in O(1) time, if the wordsize is suÆ
iently large. The following statement will be extensively used inour
onstru
tion.Lemma 1 Given sets S1; S2; : : : ; Sq su
h that jSij = n, Si � [0; 2b � 1℄,and q � pwb , there is a data stru
ture that uses O(bqQqi=1 2dlognie+1) bits,
an be
onstru
ted in O(qQqi=1 2dlognie+1) time, and answers q queries p1 2S1?; p2 2 S2?; : : : ; pq 2 Sq? in O(1) time.This Lemma is a straightforward extension of Lemma 4.1 in [BF02℄. For
ompleteness, we provide its proof in the Appendix.A prede
essor query on a set S of integers in the range [0; 2b � 1℄
anbe redu
ed in O(1) time to a prede
essor query on set S 0 with at most jSjelements in the range [0; 2b=2� 1℄. This well known idea and its variants are3

used in van Emde Boas data stru
ture [E77℄, x-fast trie [W83℄, as well as inthe number of other important papers, e.g.,[A95℄,[A96℄, [AT00℄.In this paper the following (slightly modi�ed)
onstru
tion will be used.Consider a binary trie T for elements of S. Let T0 = T . Let H(S) be the setof non-empty nodes of T0 on level b=2. That is, H(S) is the set of pre�xes ofelements in S of length b=2. If jSj � 4, elements of S are stored in a list andprede
essor queries
an obviously be answered in
onstant time. Otherwise,a data stru
ture that answers membership queries e0 2 H(S)? in
onstanttime is stored. Using hash fun
tions, su
h a data stru
ture
an be stored inO(n) spa
e. A re
ursively de�ned data stru
ture (D)u
ontains all elementsof H(S). For every e0 2 H(S) data stru
ture (D)e0 is stored; (D)e0
ontainsall length b=2 suÆxes of elements e 2 S, su
h that e0 is a pre�x of e. BothDu and all De0
ontain keys in the range [0; 2b=2� 1℄. (S)u and (S)e0 denotethe sets of elements in (D)u and (D)e0 respe
tively. For every node v ofthe global tree T that
orresponds to an element stored in a data stru
tureon some level, we store v:min and v:max, the minimal and maximal leafdes
endants of v in T . All elements of S are also stored in a doubly linkedlist, so that the prede
essor pred(x) of every element x in S
an be found in
onstant time.Suppose we are looking for a prede
essor of x 2 [0; 2b� 1℄. If xu 2 H(S),we look for a prede
essor of xl in Dxu . If xl is smaller than all elements inDxu , the prede
essor of x is pred(xu:min). If xu 62 H(S), the prede
essorof x is m:max, where m is the node in T
orresponding to the prede
essorof xu in D0. Using i levels of the above data stru
ture a prede
essor querywith key length b
an be redu
ed to a prede
essor query with key length b=2iin O(i) time. We will
all data stru
tures that
ontain keys of length b=2ilevel i data stru
tures, and the
orresponding sets of elements will be
alledlevel i sets.It was shown before that if word size w is bigger then bk, then prede
essorqueries
an be answered in O(logn= log k) time with help of pa
ked B-treesof Andersson [A95℄ (see also [H98℄). Using the van Emde Boas
onstru
tiondes
ribed above, we
an redu
e the key size from w to w=2plogn in O(plogn)time. After this, the prede
essor
an be found in O(logn=plogn) = O(plogn)time ([A95℄).3 An O(1) amortized time data stru
tureWe start with global overview of our algorithm. During the �rst stage of ouralgorithm plogn prede
essors queries on keys xi 2 [0; 2b�1℄ are redu
ed in a4

ertain way to plogn prede
essor queries in [0; 2b=2plog n�1℄. The �rst phaseis implemented using the van Emde Boas [E77℄
onstru
tion des
ribed inSe
tion 2. But by performing multiple membership queries in spirit of [BF02℄we
an redu
e the size of the keys for all elements of the query set in parallel.During the se
ond stage we �nd the prede
essors of plogn elements from[0; 2b=2plogn�1℄. Sin
e 2plogn elements
an be now pa
ked into one ma
hineword, we
an use the pa
ked B-trees of Andersson and �nd the prede
essorof an element of the query set in O(logn= log(2plogn)) = O(plog n) time.We follow the same approa
h, but we �nd the prede
essors of all elementsof the query set in parallel. This allows us to a
hieve O(plog n) time forplogn elements, or O(1) amortized time.The main idea of the algorithm presented in this paper is to sear
hfor prede
essors of plogn elements simultaneously. By performing multi-ple membership queries, as des
ribed in Lemma 1, the key size of plog nelements
an be redu
ed from b to b=2plogn in O(plogn) time. When thesize of the keys is suÆ
iently redu
ed, the prede
essors of all elements inthe query set
an be qui
kly found. If key size b < w=2plogn, the pa
kedB-tree of degree 2plogn
an be used to �nd the prede
essor of a single ele-ment in O(plog n) time. In our algorithm, we use a similar approa
h to �ndprede
essors of all plogn elements in O(plog n) time.In the following lemma we show, how plogn queries
an be answered inO(plog n) time, if the word size is suÆ
iently large, that is w =
(b logn).Later in this se
tion we will show that the same time bound
an be a
hievedin the
ase w = �(b)Lemma 2 If word size w =
(b logn), where b is the size of the keys, thereexists a data stru
ture that answers plog n prede
essor queries in O(plogn)time, requires spa
e O(n2plogn+2), and
an be
onstru
ted in O(n2plogn+2)time.Proof: Suppose we look for prede
essors of elements x1; x2; : : : ; xp withp = plog n. The algorithm
onsists of two stages :Stage 1. Range redu
tion. During this stage the size of all keys is si-multaneously redu
ed by multiple look-ups.Stage 2. Finding prede
essors. When the size of the keys is smallenough, prede
essors of all keys
an be found by multiple
omparisons inpa
ked B-trees.Stage 1. We start by giving a high level des
ription; a detailed des
riptionwill be given below. Sin
e the word size w is log n times bigger than the keysize b, plogn membership queries
an be performed \in parallel\ in O(1)5

time. Therefore, it is possible to redu
e the key size by a fa
tor 2 in O(1)time simultaneously for all elements of the query set.The range redu
tion stage
onsists of plogn rounds. During round j thekey size is redu
ed from b=2j�1 to b=2j. By b0 we denote the key size duringthe
urrent round; <u> denotes the string of length b with value u.Let X =< x1 > : : : < xq > be a word
ontaining all elements of the
urrent query set. We set X1 =<x11> : : : < x1q >, where x1i = xi, andwe set S1i = S for i = 1; : : : ; q. During the �rst round we
he
k whetherpre�xes of x1; x2; : : : ; xq of length b=2 belong toH(S), i.e. we answer multiplemembership query (x11)u 2 H(S11)?; (x12)u 2 H(S12)?; : : : ; (x1q)u 2 H(S1q)?. If(xi)u 62 H(S1i), H(S1i) is sear
hed for the prede
essor of (xi)u, otherwiseS(xi)u must be sear
hed for the prede
essor of (xi)l.Now
onsider an arbitrary round j. At the beginning of the j-th round,we
he
k whether some of the sets Sj1; Sj2; : : : ; Sjq
ontain less than �ve ele-ments. For every i, su
h that jSji j � 4, <xji> is deleted from the query set.After this we perform a multiple membership query (xj1)u 2 H(Sj1)?; (xj2)u 2H(Sj2)?; : : : ; (xjq)u 2 H(Sjq)?. We set Xj+1 =<xj+11 > : : : <xj+1q >, wherexj+1i = (xji)u if xji 62 H(Sji), otherwise xj+1i = (xji)l. Sj+1i = H(Sji), ifxji 62 H(Sji), and Sj+1i = (Sji)(xi)u , if xji 2 H(Sji).Detailed Des
ription of Stage 1. Words Xj
onsist of q words ofsize b. Let set tuple Si1; Si2; : : : ; Siq be an arbitrary
ombination of sets ofelements of level i data stru
tures (the same set
an o

ur several times ina set tuple). For every q 2 [1;plogn℄ and every set tuple Sji1 ; Sji2; : : : ; Sjiq ,where Sjik are sets on level j, data stru
ture D(Sji1 ; Sji2; : : : ; Sjiq) is stored.D(Sji1 ; Sji2; : : : ; Sjiq)
onsists of :1. maskM(Sji1 ; Sji2; : : : ; Sjiq) 2 [0; 2q�1℄. The (q+1�t)-th least signi�
antbit of M(Sji1 ; Sji2 ; : : : ; Sjiq) is 1, i� jSjit j � 4.2. word MIN(Sji1; Sji2; : : : ; Sjiq) =<m1><m2> : : : <mq>, where mk =min(SJik) is the minimal element in SJik3. if M(Sji1 ; Sji2 ; : : : ; Sjiq) = 0, data stru
ture L(Sji1 ; Sji2; : : : ; Sjiq), whi
hallows to answer multiple queries x1 2 H(Sji1)?; x2 2 H(Sji2)?; : : : ; xq 2H(Sjiq)?.4. Array DEL with q elements; DEL[t℄
ontains a pointer to data stru
-tureD(Sji1; : : : ; Sjit�1 ; Sjit+1; : : : ; Sjiq). 6

5. Array NEXT with less than Qqk=1 4jSjik j elements;For every F 2 [0; 2q � 1℄, list LIST [F ℄ is stored; LIST [F ℄
ontains allindi
es i, su
h that the (q+1� i)-th least signi�
ant bit of F is 1. We storea one-to-one hash fun
tion
 : C ! [0; 2q � 1℄, where C the set of integersv 2 [0; 2qb � 1, su
h that the ib-th bit of v is either 1 or 0, and all otherbits of v are 0. List BACKLIST [F ℄
ontains all indi
es i, su
h that the(q + 1� i)b-th least signi�
ant bit of
�1(F) is 1.Consider a round j, and suppose that the
urrent set tuple is Sj1; Sj2; : : : ; Sjq .For every element i of LIST [M(Sj1; Sj2; : : : ; Sjq)℄ we do the following:1.xji is extra
ted from Xj . We set A := (Xj � (b(q� i� 1)))AND(1b0) and�nd the prede
essor of A in Sji . The prede
essor of xji in Sji
an be found in
onstant time, sin
e jSji j � 4.2. We delete xji fromXj byXj := (Xj AND 1(b(q�i�1)))+((Xj � (q�i)b)�(q � i� 1)b), and de
rement q by 1.Then we extra
t all xji su
h that xjk < MIN(Sjik). We perform a multiple
omparison of Xj with MIN(Sji1; Sji2; : : : ; Sjiq) and store the result in wordC, su
h that the (q + 1 � k)b-th bit of C is 1 if and only if xjk < min(Sjik).Details will be given in the full version of this papers. We
ompute f =
(C)and pro
ess every element of BACKLIST [f ℄ in the same way as elementsof LIST [F ℄ were pro
essed.Now, a multiple query (xj1)u 2 H(Sj1)?; (xj2)u 2 H(Sj2)?; : : : ; (xjq)u 2H(Sjq)?. must be pro
essed. We
ompute Xj AND (0b�b01b0=20b0=2)q and bitshift the result b0=2 bits to the right to get (Xj)u. The resulting word (Xj)u
onsists of the pre�xes of length b0=2 of elements xj1; xj2; : : : ; xjq. Using (Xj)uand L(Sj1; Sj2; : : : ; Sjq), query (xj1)u 2 H(Sj1)?; (xj2)u 2 H(Sj2)?; : : : ; (xjq)u 2H(Sjq)?
an be answered in O(1) time. The result is stored in word Rsu
h that (q + 1 � i)b-th least signi�
ant bit of R is 1, i� (xji)u 2 H(Sji),and all other bits of R are 0. We also
onstru
t word (Xj)l that
onsistsof suÆxes of xj1; xj2; : : :xjq of length b0=2. (Xj)l is
omputed by (Xj)l =Xj AND (0b�b0=21b0=2)q. We
ompute the words R0 = (R � (b � 1)) � 1band R00 = R0 XOR 1qb. Now we
an
ompute Xj+1 = (X l AND R00) +(Xu AND R0).The pointer to the next data stru
ture
an be
omputed in a similar way.Let h1; h2; : : : ; hq be hash fun
tions for the sets Sj1; Sj2; : : : ; Sjq . As shown inthe proof of Lemma 1, word P = h1(xj1)h2(xj2) : : :hq(xjq)
an be
omputedin
onstant time. For every su
h P , we store in NEXT [P ℄ a pointer to datastru
ture D(Sj+11 ; Sj+12 ; : : : ; Sj+1q)), su
h that Sj+1i = H(Sji), if xji 62 H(Sji),and Sj+1i = (Sji)(xi)u , if xji 2 H(Sji). ArrayNEXT has less thanQqk=1 4jSjik j7

elements.Afterplog n rounds, the range of the key values is redu
ed to [0; 2b=(2plog n)�1℄. Stage 2. Finding Prede
essors Now we
an �nd the prede
essors ofelements using the approa
h of pa
ked B-trees (
f. [H98℄,[A95℄). Sin
e morethan plog n2plogn keys �t into a ma
hine word, ea
h of
urrent queriedvalues
an be
ompared with 2plogn values from the
orresponding datastru
ture. Hen
e after at most plogn rounds the sear
h will be
ompleted.In this paper we
onsider an extension of the approa
h of pa
ked B-trees fora simultaneous sear
h in several data stru
tures,
alled a multiple B-tree.Let p = plogn and t = 2plogn. Consider an arbitrary
ombination oflevel p sets Spi1 ; : : : ; Spiq and pa
ked B-trees Ti1 ; Ti2; : : : ; Tiq for these sets.Nodes of Tij have degree min(2plogn; jSpij j). The root of a multiple B-tree
ontains all elements of the roots of pa
ked B-trees for Spi1 ; : : : ; Spiq .Every node of the multiple B-tree that
ontains nodes n1; n2; : : :nq has(2plogn)q
hildren, whi
h
orrespond to all possible
ombinations of
hil-dren of n1; n2; : : :nq (only non-leaf nodes among n1; : : : ; nq are
onsidered).Thus a node of the multiple B-tree on the level k is an arbitrary
ombi-nation of nodes of pa
ked B-trees for sets Spi1 ; : : : ; Spiq on level k. In everynode v, word Kv is stored. If node v
orresponds to nodes v1; v2; : : : ; vq ofpa
ked B-trees with values v11; : : : ; vt1; v12; : : : ; vt2; v1q ; : : : ; vtq respe
tively, thenKv = 0v110v21 : : :0vt1 : : : : : :0v1q0v2q : : :0vtq. Values v1i ; : : : ; vti , for i = 1; : : : ; q,are stored in Kv in an as
ending order. In every node we also store an arrayCHILD with 2n elements. Besides that in every node v an array DEL(v)[℄and maskM(v) 2 [0; 2q+1�1℄ are stored; they have the same purpose as thearrayDEL and maskM in the �rst stage of the algorithm: the (q+1�k)-thleast signi�
ant bit ofM(v) is 1, i� the node of Tik stored in v is a leaf node.The height of the multiple B-tree is O(plogn).Now we show how every
omponent of X
an be
ompared with 2plognvalues in
onstant time. Let X =<x1><x2> : : : <xq> be the query wordafter plogn rounds of Stage 1. Although the length of <xi> is b, the a
tuallength of the keys is b0, and b0 is less than b=(2plogn). Let s = 2plogn(b0+1),s < b. We
onstru
t the word X 0 = �x1��x2� : : :�xq�, where �xi� =(0 � xi �)2plog n , and � xi � is a string of length b0 with value xi. Toa
hieve this, we
opy X , shift the
opy b0 + 1 bits to the left, and add theresult to X . The result is
opied, shifted 2b0 + 2 bits to the left, and so on.We repeat this plogn times to obtain 2plogn
opies of ea
h key value xi.To
ompare values stored in X 0 with values stored in node v, we
omputeR = (Kv � X 0)AND W , where W is a word every (b0 + 1)-th bit of whi
h8

is 1, and all other bits are 0. Let R be the set of possible values of R.Sin
e values v1i ; : : : ; vti are sorted, jRj = (2plogn)plogn = n. Hen
e, a hashfun
tion r : R! [1; 2n℄ (one for all nodes)
an be
onstru
ted. The sear
h
ontinues in a node v0 = CHILD[r(R)℄. Sin
e the height of multiple B-treeis O(plogn), prede
essors are found in O(plogn) time.Spa
e Analysis First we analyze the spa
e used during the Stage 1.In an arbitrary data stru
ture D(Sji1 ; Sji2; : : : ; Sjiq), L(Sji1 ; Sji2; : : : ; Sjiq) andarray NEXT use O(Qqk=1 4jSjik j) spa
e, mask M(Sji1; Sji2 ; : : : ; Sjiq) uses
on-stant spa
e, and arrayDEL uses O(q) spa
e. Hen
e, D(Sji1 ; Sji2; : : : ; Sjiq) usesO(Qqk=1 4jSjik j) spa
e. The total spa
e for all data stru
turesD(Sji1 ; Sji2; : : : ; Sjiq)is Xi1 2 [1; g℄;: : : ;iq 2 [1; g℄ qYk=1 4jSjik j (1)where g is the total number of sets Sji . Sin
e Sj1 + Sj2 + : : : � n2j , thetotal number of terms in sum (1) does not ex
eed (n2j)q. Every prod-u
t Qqk=1 4jSjik j is less than nq22q. Hen
e the sum (1) is smaller thann2q2(j+2)q. Summing up by j = 1; : : : ;plogn and q = 1; : : : ;plog n, wegetPplognq=1 Pplognj=1 n2q2(j+2)q �Pplognq=1 n2q2(plogn+3)q. The last expressiondoes not ex
eed n2plogn2(plogn+3)plogn+1 = O(n2plogn+2). Therefore thetotal spa
e used by all data stru
tures in stage 1 is O(n2plogn+2).Now
onsider a multiple B-tree for a set tuple Spi1 ; Spi2 ; : : : ; Spiq . Every leafin this multiple B-tree
orresponds to some
ombination of elements fromSpi1 ; Spi2 ; : : : ; Spiq . Hen
e, the number of leaves is O(Qqk=1 jSpik j), and the totalnumber of nodes is also O(Qqk=1 jSpik j). Using the same arguments as above,the total number of elements in all multiple B-trees
an be estimated asPplognq=1 n2q2(p+2)q = O(n2plogn+2). Hen
e, the total spa
e is O(n2plogn+2).A data stru
ture D(Sji1 ; Sji2 ; : : : ; Sjiq) used in stage 1
an be
onstru
tedin O(Qqk=1 4jSjik j) time. Hen
e, all D(Sji1; Sji2 ; : : : ; Sjiq) for �xed j and q
an be
onstru
ted in O(n2q2(j+2)q), and all data stru
tures for the stage 1
an be
onstru
ted in O(n2plogn+2) time. A multiple B-tree for set tupleSpi1 ; Spi2 ; : : : ; Spiq
an be
onstru
ted in O(Qqk=1 jSpik j) time. Therefore, allmultiple B-trees
an be
onstru
ted in O(n2plogn+2) time.Now we
onsider the
ase when a ma
hine word
ontains only b bits.Theorem 1 If word size w = �(b), where b is the size of the keys, there isa data stru
ture that answers plogn prede
essor queries in O(plogn) time,9

requires spa
e O(n2plogn+2), and
an be
onstru
ted in O(n2plogn+2) time.Proof:Using the van Emde Boas
onstru
tion des
ribed in Se
tion 2, the keysize
an be redu
ed from b to b= logn in log lognplogn time. However, we
an speed-up the key redu
tion by multiple queries.The sear
h for prede
essors of elements x1; x2; : : : ; xq
onsists of log log nrounds. During the i-th round the length of the keys is redu
ed from b=2i�1to b=2i. Hen
e during the i-th round, w=b0 > 2i�1, and 2(i�1)=2 membershipqueries
an be performed in
onstant time. Our range redu
tion pro
edureis similar to the range redu
tion pro
edure of Stage 1 of Lemma 2, butwe do not de
rease q if some data stru
ture be
omes small, and parameterq grows monotonously. For q � 2(j�1)=2 and every Sji1 ; : : : ; Sjiq , where Sjikare arbitrary sets on level j, data stru
ture D(Sji1 ; Sji2; : : : ; Sjiq) des
ribed inLemma 2 is stored.The range redu
tion
onsists of log logn+1 rounds. At the beginning ofround j, keys xj1; : : : ; xjq are stored in plogn=2(j�1)=2 words. Let t = 2(j�1)=2.For simpli
ity, we assume the all words Xji
ontain t of keys during ea
hround. Consider an arbitrary word Xji = xj(i�1)t; xj(i�1)t+1; : : : ; xjit�1, wherei = 1; : : : ;plogn=2(j�1)=2. In the same way as in Lemma 2, words (Xji)u and(Xji)l
an be
omputed. Using the
orresponding data stru
ture L, query(x1)u 2 H(Sji1)?; (x2)u 2 H(Sji2)?; : : : ; (xq)u 2 H(Sjiq)?
an be answered in
onstant time, and Xj+1
an also be
omputed in
onstant time. At theend of round j, su
h that j = 0(mod 2), elements are regrouped. Thatis, we dupli
ate the number of keys stored in one word. Sin
e the key sizehas de
reased by fa
tor 4 during the two previous rounds, word Xji is of theform 03b00xj(i�1)t03b00xj(i�1)t+1 : : :03b00xjit�1, where b00 = b0=4 and xjk 2 f0; 1gb00.We
onstru
t for ea
h Xji a word ~Xji of the form xj(i�1)t+1xj(i�1)t+2 : : :xjit�1.First Xji is multiplied with (0tb0�11)t to get Xji . Then we perform bitwiseAND of Xji with a word (0tb01b0)t and store the result in X̂ji . X̂ji is of theform xj(i�1)t+10tb0+3b00xj(i�1)t+20tb0+3b00 : : :0tb0+3b00xjit. We
an obtain ~Xji fromX̂ji ; details will be provided in the full version of the paper.Finally, we dupli
ate the number of keys in a word by setting Xj+1i =~Xj2i � t2ib0 + ~Xj2i+1, for i = 1; : : : ;plogn=2(j�1)=2+1. Therefore after everyse
ond round the number of words de
reases by fa
tor 2. The total numberof operations is limited by 2O(plogn)Pd(dlog logne=2)ei=1 12i�1 = O(plogn).Spa
e requirement and
onstru
tion time
an be estimated in the sameway, as in the proof of Lemma 2. When the key size is redu
ed to k= logn10

prede
essors
an be found using Lemma 2.4 Other ResultsIn this se
tion we des
ribe several extensions and improvements of Theorem1.Theorem 2 For p(n) = O(plogn), there exists a data stru
ture that an-swers p(n) prede
essor queries in time O(plogn), uses spa
e O(n2p(n)+2),and
an be
onstru
ted in time O(n2p(n)+2)Proof Sket
h The proof is analogous to the proof of Theorem 1, but queryset Q
ontains p(n) elements.Corollary 1 For any " > 0, there exists a data stru
ture that answersplogn prede
essor queries in time O(plog n), uses spa
e O(n"plogn), and
an be
onstru
ted in time O(n"plogn).Proof: Set p(n) = ("=2)plogn � 4 and apply Theorem 2.Corollary 2 For any " > 0 and p(n) = O(plogn), there exists a datastru
ture that answers p(n) prede
essor queries in time O(plog n), uses spa
eO(n"p(n)), and
an be
onstru
ted in time O(n"p(n)).If the key size b is su
h that log b = o(plog n) (i.e. log logN = o(plog n)),then a more spa
e eÆ
ient data stru
ture
an be
onstru
ted.Theorem 3 For p(N) = O(log logN), there exists a data stru
ture that an-swers p(N) prede
essor queries in time O(log logN), uses spa
e O(n2p(N)+2),and
an be
onstru
ted in time O(n2p(N)+2).Proof Sket
h The proof is analogous to the proof of Theorem 1, but query setQ
ontains p(n) elements. We apply log logN rounds of the Stage 1 (rangeredu
tion stage) from the proof of Theorem 1. After this, the
urrent keysize b0 equals to 1 for all elements of the query set, and prede
essors
an befound in a
onstant time.Corollary 3 For any " > 0, there exists a data stru
ture that answerslog logN prede
essor queries in time O(log logN), uses spa
e O(n" log logN),and
an be
onstru
ted in time O(n" log logN).Corollary 4 For any " > 0 and p(N) = O(log logN), there exists a datastru
ture that answers p(N) prede
essor queries in time O(log logN), usesspa
e O(n"p(N)), and
an be
onstru
ted in time O(n"p(N)).11

5 Con
lusionIn this paper we have presented a data stru
ture for prede
essor queries.This data stru
tures allow us to answer prede
essor queries faster than thelower bound of [BF02℄ at the
ost of higher spa
e requirements.Suppose that n elements are stored in data stru
ture A in sorted order,and query set Q also
ontains n elements. Using an integer sorting algorithm(e.g. [H02℄), we
an sort n elements of query set Q in O(n log logn) time,then merge them with elements of A, and �nd prede
essors of elements fromQ in O(log logn) time per query.An existen
e of a linear (or polynomial) spa
e data stru
ture, whi
h
an answer p = o(n) queries in time o(plog n= log log n) per query is aninteresting open problem.Referen
es[AL62℄ G. M. Adelson-Velskii, E.M. Landis, An algorithm for the organi-zation of information, Dokladi Akademii Nauk SSSR, 146(2):1259-1262, 1962.[AFK84℄ M. Ajtai, M. L. Fredman, J. Koml�os, Hash Fun
tions for PriorityQueues, Information and Control 63(3): 217-225 (1984).[ABR01℄ S. Alstrup, G. S. Brodal, T. Rauhe, Optimal stati
 range reportingin one dimension, STOC 2001, pp. 476-482.[A95℄ A. Andersson, Sublogarithmi
 Sear
hing without Multipli
ations,FOCS 1995, pp. 655-663.[A96℄ A. Andersson, Faster Deterministi
 Sorting and Sear
hing in Lin-ear Spa
e, FOCS 1996, pp. 135-141[AHNR95℄ A. Andersson, T. Hagerup, S. Nilsson, R. Raman, Sorting inlinear time? STOC 1995, pp. 427-436.[AT00℄ A. Andersson, M. Thorup, Tight(er) worst-
ase bounds on dy-nami
 sear
hing and priority queues, STOC 2000, pp. 335-342.[AT02℄ A. Andersson, M. Thorup, Dynami
 Ordered Sets withExponential Sear
h Trees, The Computing Resear
hRepository (CoRR),
s.DS/0210006: (2002). Available athttp://arxiv.org/abs/
s.DS/0210006.12

[BF02℄ P. Beame, F. E. Fi
h, Optimal Bounds for the Prede
essor Problemand Related Problems, J. Comput. Syst. S
i. 65(1): 38-72 (2002).[BCKM01℄ A. Brodnik, S. Carlsson, J. Karlsson, J. I. Munro, Worst
ase
onstant time priority queue, SODA 2001, pp. 523-528.[CW79℄ L. Carter, M. N. Wegman, Universal Classes of Hash Fun
tions.J. Comput. Syst. S
i. 18(2): 143-154 (1979).[E77℄ P. van Emde Boas, Preserving Order in a Forest in Less ThanLogarithmi
 Time and Linear Spa
e, Inf. Pro
ess. Lett. 6(3): 80-82 (1977)[EKZ77℄ P. van Emde Boas, R. Kaas, E. Zijlstra, Design and Implementa-tion of an EÆ
ient Priority Queue, Mathemati
al Systems Theory10: 99-127 (1977)[FW94℄ M. L. Fredman, D. E. Willard, Trans-Di
hotomous Algorithms forMinimum Spanning Trees and Shortest Paths, J. Comput. Syst.S
i. 48(3): 533-551 (1994).[H98℄ T. Hagerup, Sorting and Sear
hing on the Word RAM, STACS1998, pp. 366-398.[H02℄ Y. Han, Deterministi
 sorting in O(n log log n) time and linearspa
e, STOC 2002,pp. 602-608[GL01℄ B. Gum, R. Lipton, Cheaper by the Dozen: Bat
hed Algorithms.1st SIAM International Conferen
e on Data Mining, 2001Available at http://www.math.grin.edu/ gum/papers/bat
hed/[M84℄ K. Mehlhorn, Data Stru
tures and Algorithms 1: Sorting andSear
hing, Springer 1984.[PS80℄ W. J. Paul, S. Simon, De
ision Trees and Random A

essMa
hines, International Symposium on Logik and Algorithmi
,Z�uri
h, pp 331-340, 1980.[W83℄ D. E. Willard, Log-Logarithmi
 Worst-Case Range Queries arePossible in Spa
e Theta(N), Inf. Pro
ess. Lett. 17(2): 81-84 (1983)[W84℄ D. E. Willard, New Trie Data Stru
tures Whi
h Support Very FastSear
h Operations, J. Comput. Syst. S
i. 28(3): 379-394 (1984).13

[Y81℄ A. C.-C. Yao Should Tables Be Sorted?, J. ACM 28(3): 615-628(1981).

14

Appendix.Proof of Lemma 1Lemma 1 Given sets S1; S2; : : : ; Sq su
h that jSij = ni, Si � [0; 2b�1℄, andq � pwb , there is a data stru
ture that uses O(bqQ 2dlognie+1) bits,
an be
onstru
ted in O(qQ 2dlognie+1) time, and answers q queries p1 2 S1?; p2 2S2?; : : : ; pq 2 Sq? in O(1) time.Proof: Let ri = dlog nie. Following the presentation in [BF02℄, we
onstru
ttwo-level hash fun
tion hi : [0; 2k�1℄! [0; 2ri+1�1℄ whi
h are one-to-one onSi. It is possible to �nd
onstants ai; ai;ji; pi;ji, and ri;ji, for i = 1; : : : ; q andji = 0; : : : ; 2ri+1�1, and
onstru
t fun
tions fi; gi;ji and hi;ji , for i = 1; : : : ; qand ji = 0; : : : ; 2ri+1 � 1, su
h that:fi(x) = aix mod 2k � 2k�1�rgi;ji(x) = ai;jix mod 2k � 2k�ri;jihi(x) = pi;f(x) + gi;f(x)(x)and fun
tions hi are one-to-one on Si. Furthermore, we
an
onstru
t fourarrays A;R; P , and M , where:A[j1; j2; : : : ; jq℄ =<aq;jq><0> : : : <0><a1;j1>R[j1; j2; : : : ; jq℄ =<2rq ;jq><0> : : : <0><2r1 ;j1>P [j1; j2; : : : ; jq℄ = p1;j1 : : :pq;jqM [[j1; j2; : : : ; jq℄ =<x1> : : : <xq>, su
h that either hi(xi) = ji and xi 2 Si,or hi(xi) 6= ji and ji 62 hi(Si).Arrays A;R; P and M
ontain Q 2dlognie+1 elements. Given a word Z =<z1> : : : <zq>, the string H = h(z1) : : :h(zq)
an be
omputed in O(1) time,as des
ribed in Lemma 4.1 in [BF02℄. Now we
an
ompare the b-bit
ompo-nents ofM [H ℄ and Z. To do this, we
omputeE = (M [H ℄ OR Z) AND (01b�1)q,subtra
t E from (10b�1)q to get E 0. Finally,
ompute AND ofE 0 with(10b�1)q and ~E = NOT(M [H ℄ AND Z). In the resulting string the b(q+1�i)-th bit is 1 if and only if zi 2 Si and all other bits are always 0.Constants ai; ai;ji ; pi;ji, and ri;ji , and fun
tions fi; gi, and hi
an be
on-stru
ted in O(Pqi=1 b22ri) time. The arrays
an be
onstru
ted in timeO(qQ 2dlognie+1).
15

