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Abstract

In this paper we design a new static data structure for batched pre-
decessor queries. In particular, our data structure supports O(+/logn)
queries in O(1) time per query and requires O(nam) space for any
g > 0. This is the first o(N) space and O(1) amortized time data
structure for arbitrary N and n where N 1s the size of the universe.
We also present a data structure that answers O(loglog N) predecessor
queries in O(1) time per query and requires O(n® 8196 V) space for any
€ > 0. The method of solution relies on a certain way of searching for
predecessors of all elements of the query in parallel.

In a general case, our approach leads to a data structure that

supports p(n) queries in O(y/logn/p(n)) time per query and requires
O(n?™)) space for any p(n) = O(v/logn), and a data structure that

supports p(N) queries in O(loglog N/p(N)) time per query and re-
quires O(n?(N)) space for any p(N) = O(loglog N).

1 Introduction

Given a set A of integers, the predecessor problem consists in finding for an
arbitrary integer x the biggest a € A, such that @ < z. If & is smaller than
all elements in A, a default value is returned. This fundamental problem
was considered in a number of papers, e.g., [AL62], [EKZ77], [FW94], [A95],
[H98], [AT00], [BF02], [BCKMO1]. In this paper we present a static data
structure that supports predecessor queries in O(1) amortized time.

In the comparison model, if only comparisons between pairs of elements
are allowed, the predecessor problem has time complexity O(logn), where
n is the number of elements. A standard information-theoretic argument
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proves that [logn]| comparisons are necessary. This lower bound had for
a long time been believed to be also the lower bound for the integer pre-
decessor problem. However in [E77], [EKZ77] a data structure supporting
predecessor queries in O(loglog N) time, where N is the size of the universe,
was presented. Fusion trees, presented by Fredman and Willard [FW94],
support predecessor queries in O(y/logn) time, independently of the size of
the universe. This result was further improved in other important papers,

g., [A95], [AT00],[BF02]. In the paper of Beame and Fich [BF02], it was
shown that any data structure using n©(1) words of (log N)O(l) bits, requires

Q(y/logn/loglogn) query time in the worst case. In [BF02] the authors also

presented a matching upper bound, and transformed it into a linear space
and O(y/logn/loglogn) time data structure, using the exponential trees of
Andersson and Thorup [A96],[AT00].

Ajtai, Fredman and Komlos [AFK84] have shown that if word size is
n¥ (1) then predecessor queries have time complexity O(1) in the cell probe
model ([Y81]). Obviously, there exists a O(N) space and O(1) query time
static data structure for the predecessor queries. Brodnik, Carlsson, Karls-
son, and Munro [BCKMO1] presented a constant time and O(N) space dy-
namic data structure. But their data structure uses an unusual notion of
the word of memory: an individual bit may occur in a number of different
words.

While in real-time applications every query must be processed as soon
as it is known to the data base, in many other applications we can collect
a number of queries and process the set of queries simultaneously. In this
scenario, the size of the query set is also of interest. Andersson [A95] pre-
sented a static data structure that uses O(n°'°¢") space and answers log n
queries in time O(lognloglogn). Batched processing is also considered in
e.g., [GLO1], where batched queries to unsorted data are considered.

In this paper we present a static data structure that uses O(np(”)) space
and answers p(n) queries in W ) time, for any p(n) = O(y/logn). In
particular, we present a O (n°V1°8™) space data structure that answers v/log n
queries in O(y/logn) time. The model used is RAM model with word size b,
so that the size of the universe N = 2°. To the best of our knowledge, this is
the first algorithm that uses o(/N) space and words with O(log N) bits, and
achieves O(1) amortized query time.

If the universe is bounded (e.g., loglog N = o(y/logn)), our approach
leads to a O(n?(M) space data structure that answers p(N) queries in time
O(loglog N) , where p(N) = O(loglog N). Thus, there exists a data struc-
ture that answers log log N queries in O(log log V) time and uses O (n* 08108 V)



space. Forinstance, for N = plogt! ", thereis a O(n® loglog”) space and con-
stant amortized time data structure.

The main idea of our method is to search in certain way for predecessors
of all elements of the query set simultaneously. We reduce the key size for
all elements by multiple membership queries in the spirit of [BF02]. When
the key size is sufficiently small, predecessors can be found by multiple com-
parisons.

After some preliminary definitions in Section 2, we give an overview of
our method in Section 3. In Section 3 an O(n?V87+2) space and O(1)
amortized time data structure is also presented. We generalize this result
and describe its improvements in Section 4.

2 Preliminaries and Notation

In this paper we use the RAM model of computation that supports addition,
multiplication, division, bit shifts, and bitwise boolean operations in O(1)
time. Here and further w denotes the word size; b denotes the size of the
keys, we assume without loss of generality that b is a power of 2. Query
set () = {xy,29,...,2,4} is the set of elements whose predecessors should
be found. Left and right bit shift operations are denoted with <« and >
respectively,i.e. # < k=2 -2 and 2 > k = 2 + 2F, where <+ is the integer
division operation. Bitwise logical operations are denoted by AND, OR,
XOR, and NOT. If z is a binary string of length k, where k is even, z*
denotes the prefix of = of length /2, and z' denotes the suffix of x of length
k/2.

In the paper of Beame and Fich [BF02], it is shown how multiple mem-
bership queries, can be answered simultaneously in O(1) time, if the word
size is sufficiently large. The following statement will be extensively used in
our construction.

Lemma 1 Given sets Sy, S, ...,5, such that |S;| = n, S; C [0,2" — 1],
and ¢ < \/%, there is a data structure that uses O(bg]_, QUOg”J‘H) bits,

can be constructed in O(q [, 2Mognd+1) time, and answers q queries p; €
S17,p2 € 597, pg € 5,7 in O(1) time.

This Lemma is a straightforward extension of Lemma 4.1 in [BF02]. For
completeness, we provide its proof in the Appendix.

A predecessor query on a set S of integers in the range [0,2° — 1] can
be reduced in O(1) time to a predecessor query on set S’ with at most | S|
elements in the range [0,2%/2 — 1]. This well known idea and its variants are



used in van Emde Boas data structure [E77], x-fast trie [W83], as well as in
the number of other important papers, e.g.,[]A95],[A96], [AT00].

In this paper the following (slightly modified) construction will be used.
Consider a binary trie T for elements of S. Let Ty = T'. Let H(S) be the set
of non-empty nodes of Ty on level b/2. That is, H(9) is the set of prefixes of
elements in S of length b/2. If |S| < 4, elements of S are stored in a list and
predecessor queries can obviously be answered in constant time. Otherwise,
a data structure that answers membership queries ¢/ € H(S)? in constant
time is stored. Using hash functions, such a data structure can be stored in
O(n) space. A recursively defined data structure (D), contains all elements
of H(S). For every ¢’ € H(S) data structure (D). is stored; (D). contains
all length b/2 suffixes of elements e € S, such that ¢’ is a prefix of e. Both
D, and all D,/ contain keys in the range [0,2%/% — 1]. (S), and (S). denote
the sets of elements in (D), and (D). respectively. For every node v of
the global tree T' that corresponds to an element stored in a data structure
on some level, we store v.min and v.maz, the minimal and maximal leaf
descendants of v in T. All elements of S are also stored in a doubly linked
list, so that the predecessor pred(z) of every element z in S can be found in
constant time.

Suppose we are looking for a predecessor of z € [0,2" —1]. If 2 € H(S),
we look for a predecessor of ! in Dgu. If 2! is smaller than all elements in
Dy, the predecessor of z is pred(z*.min). If * ¢ H(S), the predecessor
of x is m.maz, where m is the node in T corresponding to the predecessor
of " in Dg. Using ¢ levels of the above data structure a predecessor query
with key length b can be reduced to a predecessor query with key length /2
in O(i) time. We will call data structures that contain keys of length /2!
level ¢ data structures, and the corresponding sets of elements will be called
level ¢ sets.

It was shown before that if word size w is bigger then bk, then predecessor
queries can be answered in O(logn/logk) time with help of packed B-trees
of Andersson [A95] (see also [H98]). Using the van Emde Boas construction
described above, we can reduce the key size from w to w/Q\/m in O(+/logn)
time. After this, the predecessor can be found in O(log n//log n) = O(y/logn)
time ([A95]).

3 An O(l) amortized time data structure

We start with global overview of our algorithm. During the first stage of our
algorithm +/Iog n predecessors queries on keys z; € [0,2°—1] are reduced in a



certain way to v/log n predecessor queries in [0, 9b/2V1o8 ™ _ 1]. The first phase
is implemented using the van Emde Boas [E77] construction described in
Section 2. But by performing multiple membership queries in spirit of [BF02]
we can reduce the size of the keys for all elements of the query set in parallel.
During the second stage we find the predecessors of y/logn elements from
[0,2b/2V1°67 _1]. Since 2V1°8" elements can be now packed into one machine
word, we can use the packed B-trees of Andersson and find the predecessor
of an element of the query set in O(logn/log(2V!°8")) = O(y/logn) time.
We follow the same approach, but we find the predecessors of all elements
of the query set in parallel. This allows us to achieve O(y/logn) time for
VIogn elements, or O(1) amortized time.

The main idea of the algorithm presented in this paper is to search
for predecessors of y/logn elements simultancously. By performing multi-
ple membership queries, as described in Lemma 1, the key size of v/logn
elements can be reduced from b to b/2V15" in O(y/logn) time. When the
size of the keys is sufficiently reduced, the predecessors of all elements in
the query set can be quickly found. If key size b < w/Q\/m7 the packed
B-tree of degree 2V1087 can be used to find the predecessor of a single ele-
ment in O(y/logn) time. In our algorithm, we use a similar approach to find
predecessors of all \/log n elements in O(y/logn) time.

In the following lemma we show, how y/log n queries can be answered in
O(y/log n) time, if the word size is sufficiently large, that is w = Q(blogn).
Later in this section we will show that the same time bound can be achieved
in the case w = 0(b)

Lemma 2 [f word size w = Q(blogn), where b is the size of the keys, there
exists a data structure that answers \/log n predecessor queries in O(y/logn)
time, requires space O(n*V1°8"+2) " and can be constructed in O(n?v1°87+2)
time.

Proof:  Suppose we look for predecessors of elements z,9,...,2, with
p = /logn. The algorithm consists of two stages :

Stage 1. Range reduction. During this stage the size of all keys is si-
multaneously reduced by multiple look-ups.

Stage 2. Finding predecessors. When the size of the keys is small
enough, predecessors of all keys can be found by multiple comparisons in
packed B-trees.

Stage 1. We start by giving a high level description; a detailed description
will be given below. Since the word size w is log n times bigger than the key
size b, v/logn membership queries can be performed “in parallel“ in O(1)



time. Therefore, it is possible to reduce the key size by a factor 2 in O(1)
time simultaneously for all elements of the query set.

The range reduction stage consists of y/log n rounds. During round j the
key size is reduced from b/27~! to b/27. By b’ we denote the key size during
the current round; <u> denotes the string of length b with value u.

Let X =<2;> ... <z,> be a word containing all elements of the
current query set. We set X! =<al> ... <$; >, where z} = z;, and
we set S} = S for i = 1,...,¢. During the first round we check whether
prefixes of 1, z, ..., 2, of length b/2 belong to H(9),i.e. we answer multiple
membership query (21)* € H(S1)?, (¢3)* € H(S})?,...,(x))* € H(S))?. If
(z;)* ¢ H(S!), H(S}) is searched for the predecessor of ()", otherwise
S(a;)» must be searched for the predecessor of (z).

Now consider an arbitrary round j. At the beginning of the j-th round,
we check whether some of the sets Sy, .57, ...,5; contain less than five ele-
ments. For every ¢, such that |S7| < 4, <a!> is deleted from the query set.
After this we perform a multiple membership query (36]1)“ € H(S{)?7 (x%)“ €
H(Sg)?7 (@) e H(S])?. We set Xit! :<x{+1> o<altts ) where
x{+1 = (xf)“ if wf ¢ H(Sf)7 otherwise xf“ = (xf)l Sg“ = H(Sf)7 if
ol ¢ H(ST), and $7 = (81) e if 0] € H(ST).

Detailed Description of Stage 1. Words X consist of ¢ words of
size b. Let set tuple S{, %, .. .,Sé be an arbitrary combination of sets of
elements of level ¢ data structures (the same set can occur several times in

a set tuple). For every ¢ € [1,y/logn] and every set tuple 5317532, .. .,S{q,
where Sgk are sets on level j, data structure D(S{l,Sg, .. .,qu) is stored.
D(S], 57, .. .,qu) consists of :

1. mask M(S},S7,.. .,qu) € [0,27—1]. The (g+1—t)-th least significant

bit of M(S?,S7 ..., 87 ) is 1, iff [S7] < 4.
1 2 Zq Tt

2. word MIN(S{l,Si,...,qu) =<m><mg> ... <my>, where my =

min(Si) is the minimal element in S;i

3. if M(Sj 7Sj,...,Sj) = 0, data structure L(Sj ,Sj,...,Sj)7 which
21 72 iq 11 12 tq

allows to answer multiple queries z; € H(Si)?7 xq € H(Sf;)?, co g €
H(qu)?.

4. Array DEL with ¢ elements; DF L[t] contains a pointer to data struc-
ture 4 4 4
D(Sf17 .. .7Sft_1,Sft+l7 .. .,qu).



5. Array NEXT with less than T]]_, 4|ka| elements;

For every I € 0,29 — 1], list LIST[F] is stored; LIST[F] contains all
indices 7, such that the (¢+ 1 — ¢)-th least significant bit of F"is 1. We store
a one-to-one hash function ¢ : C — [0,29 — 1], where C the set of integers
v € [0,29% — 1, such that the 7b-th bit of v is either 1 or 0, and all other
bits of v are 0. List BACKLIST[F] contains all indices ¢, such that the
(g + 1 — 4)b-th least significant bit of ¢=1(F) is 1. 4 4

Consider around j, and suppose that the current set tuple is S , S5y ey Sy
For every element ¢ of LIST[M (S{, Sé, . S])] we do the following:
1$Z is extracted from X7. We set A := (X] > (b(g—i—1)))AND(1") and
find the predecessor of A in SZ] The predecessor of wf in Sg can be found in
constant time, since |SZ]| < 4.

2. We delete 2! from X7 by X7 := (X7 AND 1¢6==D) 4 (X7 >» (¢—i)b) <
(¢ —1i—1)b), and decrement ¢ by 1.

Then we extract all 27 such that xk < MIN(S] ). We perform a multiple
comparison of X7 with ZWIN(SZ]17 52]2, . .,qu) and store the result in word
C', such that the (¢ + 1 — k)b-th bit of C'is 1 if and only if xfg < min(ka).
Details will be given in the full version of this papers. We compute f = ¢(C)
and process every element of BACKLIST[f] in the same way as elements
of LIST[F] were processed. 4 4 4 4

Now, a multiple query (21)* € H(S])?, (a3)"* € H(S3)7,...,(x3)" €
H(S3)?. must be processed. We compute X7/ AND (0°=?17/20"'/2)2 and bit
shift the result 0'/2 bits to the right to get (X7)*. The resulting word (Xj)
consists of the prefixes of length /2 of elements 27, x%, ., ay. Using (X])
and L(S{,Sg, . S3), query (¢1)* € H(S])?, (a)* € H(SJ) L e

H(S7)? can be answered in O(1) time. The result is stored in word R
such that (¢ + 1 — ¢)b-th least significant bit of R is 1, iff (2])* € H(S)),
and all other bits of R are 0. We also construct word (X7)' that consists
of suffixes of xl,wé,. .y of length o'/2. (X7)! is computed by (X7)! =
X7 AND (0°=%'/21%/2)4. We compute the words R = (R > (b— 1)) x 1°
and R" = R' XOR 1?°. Now we can compute X/*! = (X! AND R") +
(X* AND R').

The pointer to the next data structure can be computed in a similar way.
Let hi, hy, ..., hy be hash functions for the sets 57,57, .. S] As shown in
the proof of Lemma 1, word P = hy(a )hz( ) hq(xé) can be computed
in constant time. For every such P, we store in NEXT[P] a pointer to data
structure D(SH'1 St 89T, such that S7TY = [ (SY), if «) ¢ H(S)),
and §71! = (SJ)( s if @ € H(S!). Array NEXT has less than []7_, 4|S{k|

7



elements.

After \/log n rounds, the range of the key values is reduced to [0, 2%/
1].

Stage 2. Finding Predecessors Now we can find the predecessors of
elements using the approach of packed B-trees (cf. [H98],[A95]). Since more
than \/@2\/@ keys fit into a machine word, each of current queried
values can be compared with 2VIogn yalues from the corresponding data
structure. Hence after at most y/log n rounds the search will be completed.
In this paper we consider an extension of the approach of packed B-trees for
a simultaneous search in several data structures, called a multiple B-tree.

Let p = Iogn and ¢ = 279", Consider an arbitrary combination of
level p sets ST, .. .,qu and packed B-trees T;,T,,...,T;, for these sets.

Nodes of T, have degree min(2v'°8™, |SZ|) The root of a multiple B-

2/ET) _

tree contains all elements of the roots of packed B-trees for Sﬁ, .. .,qu.
Every node of the multiple B-tree that contains nodes ny,n9,...n, has
(QW)‘J children, which correspond to all possible combinations of chil-
dren of ny, ng,...n, (only non-leaf nodes among ny, ..., n, are considered).
Thus a node of the multiple B-tree on the level k is an arbitrary combi-
nation of nodes of packed B-trees for sets Sﬁ, .. .,qu on level k. In every
node v, word K, is stored. If node v corresponds to nodes vy, vq, ..., v, of
packed B-trees with values v{, ..., v{,v3,...,v},v;,..., v} respectively, then
K, = 0vfov?...0vl...... 01}301}3 .. .Ové. Values v}, ... v, fori =1,...,¢,

are stored in K, in an ascending order. In every node we also store an array
CHILD with 2n elements. Besides that in every node v an array DEL(v)(]
and mask M (v) € [0,29F! — 1] are stored; they have the same purpose as the
array DEL and mask M in the first stage of the algorithm: the (¢+1—k)-th
least significant bit of M (v) is 1, iff the node of T, stored in v is a leaf node.
The height of the multiple B-tree is O(y/logn).

Now we show how every component of X can be compared with oVlogn
values in constant time. Let X =<z1><x9> ... <z,> be the query word
after /logn rounds of Stage 1. Although the length of <z;> is b, the actual
length of the keys is &', and b’ is less than b/(2V1°8 ™), Let s = 2VIo87 (/4 1),
s < b. We construct the word X' = <2y <29~ ... <z, >, where <a;> =
0 < 2y >>)2m7 and < z; > is a string of length & with value z;. To
achieve this, we copy X, shift the copy o' + 1 bits to the left, and add the
result to X. The result is copied, shifted 20’ + 2 bits to the left, and so on.
We repeat this v/Iogn times to obtain 2V1°8” copies of each key value ;.

To compare values stored in X’ with values stored in node v, we compute

R = (K, — X")AND W, where W is a word every (b’ + 1)-th bit of which



is 1, and all other bits are 0. Let R be the set of possible values of R.
Since values v},...,v! are sorted, |R| = (2\/m)\/m = n. Hence, a hash
function r : R — [1,2n] (one for all nodes ) can be constructed. The search
continues in a node v' = CHILDI[r(R)]. Since the height of multiple B-tree
is O(y/Togn), predecessors are found in O(y/Togn) time.

Space Analysis First we analyze the space used during the Stage 1.
In an arbitrary data structurg D(S], 57, .. .,qu),lL(Sfl,Si), .,qu) and
array NEXT use O([[j_, 4157, |) space, mask M(S;, S, ..., S; ) uses con-
stant space, and array DF L uses O(q) space. Hence, D(Sf1 ) 5527 .

Q(HZ=1 4|Sgk |) space. The total space for all data structures D(Sj 57

117 gt
18

D B (1)

i1 €[1,9], k=1

J
-+, 57,) uses

J
S

ig €11, 4]

where ¢ is the total number of sets SZ] Since S{ + Sg + ... < 027, the
total number of terms in sum (1) does not exceed (n2’)?. Every prod-
uct []f_; 4157 | is less than n922¢. Hence the sum (1) is smaller than
n2a2+2)sa, Summing up by j = 1,...,v/logn and ¢ = 1,...,/logn, we
get Zq“:l(ign Z]Y:l?gn n2a2i+2)a < Zq“:l(ign n2a2(Vlogn+3)a  The last expression
does not exceed p2vIegng(Viogntd)Vlogntl — (p2vilognt2)  Therefore the
total space used by all data structures in stage 1 is O(n?vicen+2),

Now consider a multiple B-tree for a set tuple S, S? ..., qu. Every leaf
in this multiple B-tree corresponds to some combination of elements from
S8, .,qu. Hence, the number of leaves is O(][;_, |5 |), and the total
number of nodes is also O([]}_; |5} |). Using the same arguments as above,
the total number of elements in all multiple B-trees can be estimated as

quzl(ign n212(+2)a = O (p2V1o87+2)  Hence, the total space is O (n2Vo87+2),

A data structure D(Sgl,Sf;, .. .,qu) used in stage 1 can be constructed
in O(T[}_, 4|ka|) time. Hencg, all D(Sgl,Sf;,...,qu) for fixed j and ¢
can be constructed in O(n?120+2)9) and all data structures for the stage 1

can be constructed in O(n?V1°87+2) time. A multiple B-tree for set tuple
St 84, Si can be constructed in O([]j_, |57 |) time. Therefore, all

i1 Sy e e
multiple B-trees can be constructed in O(n?v1°87+2) time. 0
Now we consider the case when a machine word contains only b bits.

Theorem 1 If word size w = O(b), where b is the size of the keys, there is
a data structure that answers \/logn predecessor queries in O(y/logn) time,



requires space O(n*V1°8"+2) " and can be constructed in O(n?V1°87+2) time.

Proof:

Using the van Emde Boas construction described in Section 2, the key
size can be reduced from b to b/logn in loglog ny/logn time. However, we
can speed-up the key reduction by multiple queries.

The search for predecessors of elements z1, zo, ..., z, consists of loglog n
rounds. During the i-th round the length of the keys is reduced from /21
to b/2'. Hence during the i-th round, w/b’ > 2°~', and 20-1)/2 embership
queries can be performed in constant time. Our range reduction procedure
is similar to the range reduction procedure of Stage 1 of Lemma 2, but
we do not decrease ¢ if some data structure becomes small, and parameter
¢ grows monotonously. For ¢ < 2071/2 and every S]17 . SZ] , where 7
are arbitrary sets on level j, data structure D(SJ SZJQ, .. .,qu) described in
Lemma 2 is stored.

The range reduction consists of loglogn+1 rounds. At the beginning of
round j, keys 1, ..., zg are stored in \/Tog n/2 (7=1/2 words. Let ¢t = 20~1)/2,
For simplicity, we assume the all Words X] contain t of keys durlng each

round. Consider an arbitrary word X! = wi where

i—1)t? Zz 1)i41re Zt—lj
i=1,...,4/Togn/20=Y/2 In the same way as in Lemma 2, words (X7)* and
(XZ]) can be computed. Using the corresponding data structure L, query
(z1)" € H(Sfl). (x9)" € H(S]) o (xg)t € H(SJ )7 can be answered in
constant time, and X’*! can also be computed in constant time. At the
end of round j, such that 7 = 0( mod 2), elements are regrouped. That
is, we duplicate the number of keys stored in one word. Since the key size
has decreased by factor 4 during the two previous rounds, word X] is of the

0%z Zz 1)t 036” Tlim1)e41 - 0%e Zt 1 where 0" = 0'/4 and ry €40, l}b//

We construct for each X7 a word X] of the form wi

form

1)t4+1 (2—1)t+2 = ‘th—l'
First XZ»] is multiplied with (0'='1)! to get XZ. Then we perform bitwise
AND of X7 with a word (0%'1”")* and store the result in X7. X7 is of the

! 1 ! 1 1
)t+10tb +3b xfl 1)t+20tb 307 tb'+3b ] . We can obtain X] from

X] details will be provided in the full version of the paper.

form wi

Finally, we duphcate the number of keys in a word by setting X{‘H =
X] K tgb + X22+17 fori=1,...,4/log n/Q(j_l)/z‘H. Therefore after every
second round the number of Words decreases by factor 2. The total number

of operations is limited by 20(y/logn) Z!Lﬁloglogn]/zﬂ s = O(V/log n).
Space requirement and construction time can be estimated in the same
way, as in the proof of Lemma 2. When the key size is reduced to k/logn
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predecessors can be found using Lemma 2.

4 Other Results

In this section we describe several extensions and improvements of Theorem
1.

Theorem 2 For p(n) = O(\/logn), there exists a data structure that an-
swers p(n) predecessor queries in time O(y/logn), uses space O(n?(M+2),
and can be constructed in time O(n**(M12)

Proof Sketch The proof is analogous to the proof of Theorem 1, but query
set () contains p(n) elements.

Corollary 1 For any € > 0, there exists a data structure that answers
Viogn predecessor queries in time O(y/Togn), uses space O(nV18™), and
can be constructed in time O(n*V1o8").

Proof:  Set p(n) = (¢/2)\/logn — 4 and apply Theorem 2. 0

Corollary 2 For any ¢ > 0 and p(n) = O(\/logn), there exists a data
structure that answers p(n) predecessor queries in time O(y/log n), uses space
O(n™), and can be constructed in time O(n("),

If the key size b is such that logb = o(y/logn) (i.e. loglog N = o(y/logn)),

then a more space efficient data structure can be constructed.

Theorem 3 For p(N) = O(loglog N), there exists a data structure that an-
swers p(N) predecessor queries in time O(loglog N), uses space O (n??(N)+2),
and can be constructed in time O(n?(N)+2),

Proof Sketch The proof is analogous to the proof of Theorem 1, but query set
() contains p(n) elements. We apply loglog N rounds of the Stage 1 (range
reduction stage) from the proof of Theorem 1. After this, the current key
size b’ equals to 1 for all elements of the query set, and predecessors can be

found in a constant time.

Corollary 3 For any ¢ > 0, there exists a data structure that answers
loglog N predecessor queries in time O(loglog N), uses space O (n=1°818 V),
and can be constructed in time O(n®1o8loe Ny,

Corollary 4 For any ¢ > 0 and p(N) = O(loglog N), there exists a data
structure that answers p(N) predecessor queries in time O(loglog N), uses
space O(nPWN)) | and can be constructed in time O(n?M)).
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5 Conclusion

In this paper we have presented a data structure for predecessor queries.
This data structures allow us to answer predecessor queries faster than the
lower bound of [BF02] at the cost of higher space requirements.

Suppose that n elements are stored in data structure A in sorted order,
and query set () also contains n elements. Using an integer sorting algorithm
(e.g. [HO2]), we can sort n elements of query set @) in O(nloglogn) time,
then merge them with elements of A, and find predecessors of elements from
@ in O(loglogn) time per query.

An existence of a linear (or polynomial) space data structure, which
can answer p = o(n) queries in time o(y/logn/loglogn) per query is an

interesting open problem.
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Appendix.
Proof of Lemma 1

Lemma 1 Given sets Sy, Sq, ..., S, such that |S;| = n;, S; C [0,2°—1], and
q < \/%, there is a data structure that uses O(bq ] 2M8™141) bits, can be

constructed in O(qHQ“Og”"HI) time, and answers ¢ queries p1 € S17,ps €
S9?, . pg € 9,7 in O(1) time.

Proof:  Let r; = [log n;]. Following the presentation in [BF02], we construct

two-level hash function A, : [0,2%—1] — [0, 2"F! —1] which are one-to-one on

S;. It is possible to find constants a;, a; j;, p;i j;, and r; j,, fori=1,..., ¢ and

Ji=0,...,2"*t —1 and construct functions f;, g; ;, and h, j,, fori=1,...,¢q

and j; = 0,...,27Ft!1 — 1 such that:

fi(z) = a;z mod 2F = 2k—1-r

9i.ji (%) = aijw mod 2% + 2877

hi(@) = Pi f(a) + 91, 1(x) (%)

and functions h; are one-to-one on S;. Furthermore, we can construct four

arrays A, R, P, and M, where:

Alj1y Jas -+ s Jo] =<aq,5,><0> ... <0><ay j, >

R[j1, 72y« 5 Jg] =<7 090> <0> ... <0><27191>

Plj1, Jas -y Jgl = Prjy -+ - Pajg

M{[41, 72, -+, Jq) =<@1> ... <xy>, such that either h;(z;) = j; and z; € 5;,

or hi(x;) # j; and j; & hi(S;).

Arrays A, R, P and M contain HQ“Og”iHl elements. Given a word Z =<

21> ... <zg>, the string H = h(z1) ...h(z,;) can be computed in O(1) time,

as described in Lemma 4.1 in [BF02]. Now we can compare the b-bit compo-

nents of M[H]and Z. Todo this, we compute £/ = (M[H] OR Z) AND (01°~1)7,

subtract £ from (10°~1)7 to get E’. Finally, compute AND of £/ with

(10=19 and £ = NOT(M[H] AND Z). In the resulting string the b(q+1—

i)-th bit is 1 if and only if z; € 5; and all other bits are always 0.
Constants a;, a; ;;, pi j;, and r; ., and functions f;, g;, and h; can be con-

structed in O(3_7_, b2%") time. The arrays can be constructed in time

O(q] 2Mosm 1+, O
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