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whih means that we have little hope of omputing exat solutions in polynomialtime. Christo�des [1℄ has onstruted an elegant algorithm approximating themetri TSP within 3/2, i.e., an algorithm that always produes a tour whoseweight is at most a fator 3/2 from the weight of the optimal tour. For thease when the distane funtion may be asymmetri, the best known algorithmapproximates the solution within O(logn), where n is the number of ities [6℄.As for lower bounds, a reent result of Engebretsen and Karpinski [4℄ showsthat it is NP-hard to approximate TSP where the distanes are onstrained tobe either one or two�note that suh a distane funtion always satis�es thetriangle inequality�within 321/320− ε and that it is NP-hard to approximatethe symmetri TSP with distanes one and two within 741/740 − ε for everyonstant ε > 0. Papadimitriou and Vempala [8℄ reently announed strongerapproximation hardness results for the asymmetri and symmetri versions ofthe TSP with graph metri, but left the ase of TSP with bounded metri open.(Their original proof ontained an error in�uening the expliit onstants. Anew proof with the new onstants 117/116−ε and 220/219−ε, respetively, wasannouned by Papadimitriou and Vempala in May 2002; the latest version ofthe paper is available from URL http://www-math.mit.edu/~vempala/papers/tspinapprox.ps). Apart from being an interesting question on its own, it isoneivable that the speial ases with bounded metri are easier to approximatethan the ases when the distane between two points an grow with the numberof ities in the instane. Indeed, the asymmetri TSP with distanes boundedby B an be approximated within B by just piking any tour as the solution.De�nition 1. The Asymmetri Travelling Salesman Problem (ATSP) is thefollowing minimisation problem: Given a olletion of ities and a matrix whoseentries are interpreted as the distane from a ity to another, �nd the shortesttour starting and ending in the same ity and visiting every ity exatly one.De�nition 2. (1,B)-ATSP is the speial ase of ATSP where the entries in thedistane matrix obey the triangle inequality and the o�-diagonal entries in thedistane matrix are integers between 1 and B. (1,B)-TSP is the speial ase of(1,B)-ATSP where the distane matrix is symmetri.In this paper, we prove that a slight modi�ation to the reent onstrutionof Papadimitriou and Vempala shows that it is, for any onstant ε > 0, NP-hard to approximate (1,8)-ATSP within 135/134−ε (Theorem 2) and that it is,for any onstant ε > 0, NP-hard to approximate (1,8)-TSP with 389/388− ε(Theorem 3). In a preliminary version of this paper [3℄, we erroneously laimedslightly better bounds.2 Overview of the �unbounded� onstrutionPapadimitriou and Vempala [9℄ prove their hardness result by redution fromHåstad's approximation hardness result for systems of linear equations [5℄.2



Theorem 1 ([5℄). For any onstant δ ∈ (0, 1/2), there exists systems of linearequations mod 2 with 2m equations and exatly three unknowns in eah equationsuh that: 1) Eah variable in the instane ours a onstant number of times,half of them negated and half of them unnegated. This onstant grows as Ω(21/δ).2) Either there is an assignment satisfying all but at most δm equations, or everyassignment leaves at least (1 − δ)m equations unsatis�ed. 3) It is NP-hard todistinguish between these two ases.From a system of linear equations with the properties desribed in Theorem 1,Papadimitriou and Vempala onstrut an instane of ATSP by hooking severalgadgets together. Eah equation is represented by an equation gadget of theform shown in Fig. 1. The tiked edges in that �gure in fat orrespond togadgets themselves; these gadgets are shown in Fig. 2. The onstrution is pa-rameterised; Papadimitriou and Vempala set a = 4, b = 2 and d = 6 in theurrent version of their paper [9℄. The main idea in the onstrution is that theway a TSP tour traverses the latter gadgets mentioned above, the so alled edgegadgets, gives an assignment to the variables in the underlying system of linearequations (see Figs. 3 and 4). The main tehnial hallenge is to prove thatthere is a orrespondene between the length of TSP tours in the onstrutedgraph and the number of equations satis�ed by the orresponding assignment.To this end, Papadimitriou and Vempala devised a way to onnet the edgegadgets orresponding to the same variable in a net with ertain expander-typeproperties. Informally, the struture of this net is suh that any attempt to on-strut a TSP-tour that represents the value of a ertain variable inonsistentlyin the gadgets orresponding to the equations where that variable ours givesa tour of high ost. Intuitively, it is therefore always suboptimal to onstrutsuh �heating� TSP-tours.More formally, Papadimitriou and Vempala introdues the notion of a b-pusher [9, De�nition 1℄ to preisely desribe the struture that is needed tothwart �heating� TSP-tours: A d-regular bipartite graph with vertex set V1∪· V2is alled a b-pusher if, for any partition of V1 into subsets U1, S1, T1 and anypartition of V2 into subsets U2, S2, T2 suh that there are no edges from vertiesin U1 to verties in U2, the number (T1, T2) of edges between verties in T1 and
T2 satis�es
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).Papadimitriou and Vempala establish the existene of 6-regular 2-pushers [9,Theorem 5.1℄ and use suh graphs to onstrut the preise oupling betweendi�erent edge gadgets.2.1 Modi�ations for bounded metrisAn inspetion of the details of the Papadimitriou-Vempala onstrution showsthat it, essentially, uses a metri whih is bounded, in our sense of the word,by some onstant that depends on ε. Qualitatively, their result is therefore3



A BFigure 1: The gadget for equations of the form x + y + z = 0. There is aHamiltonian path from A to B only if zero or two of the tiked edges, whih areatually gadgets themselves (Fig. 2), are traversed. The non-tiked edges haveweight 1.Figure 2: The edge gadget onsists of d bridges. Eah of the bridges are sharedbetween two di�erent edge gadgets. Eah bridge onsist of aL undireted edgesof weight 1/L eah. In the onstrution of Papadimitriou and Vempala [9℄, L isa (very) large integer onstant�in our onstrution for bounded metris, L = 1.The edges between bridges have weight b, the �rst horizontal edge has weight
⌊ b+1

2
⌋, and the last horizontal edge has weight ⌈ b+1

2
⌉.Figure 3: An untraversed edge gadget represents the value 0.Figure 4: A traversed edge gadget represents the value 1.4



of the form �there exists a onstant c suh that for every ε > 0 it is hard toapproximate TSP within c−ε in instanes with metris bounded by B(ε)�. Ourresult in this paper is, again qualitatively, that the order of the quanti�ers maybe reversed, i.e., our result is of the form �there exists onstants B and c suhthat for every ε > 0 it is hard to approximate TSP within c − ε in instaneswith metris bounded by B�. Quantitatively, Papadimitriou and Vempala [9℄have c = 117/116 for the asymmetri TSP and c = 220/219 for the symmetriTSP. For our ase, the result is a trade-o� between B and c. We settle for
B = 8 whih gives c = 135/134 for the asymmetri TSP and c = 389/388 forthe symmetri TSP.As mentioned in the aption of Fig. 2, the edge gadgets devised by Papadim-itriou and Vempala [9℄ ontain edges with very small weight. Spei�ally, theweight of the lightest edge in the instane is negligible ompared to the on-stant ε in the main hardness result. In our model for bounded metris, we onlyallow distanes that are integers between one and some bound B. Consequently,we must modify the bridges in the edge gadgets so that they ontain a edgesof weight one instead of aL edges of weight 1/L. This modi�ation impliesthat the analysis must be modi�ed. In partiular, the so alled �doubly tra-versed bridges�, that inur an extra ost of a + b in the Papadimitriou-Vempalaonstrution, only inur a ost of a + b − 2 in our ase. We believe that it ismore natural to view those bridges as a kind of �semitraversed edge gadget� inour ase. This hange implies that a ertain trik used by Papadimitriou andVempala to assoiate a larger ost with the semitraversed edge gadgets does notwork.To onlude, we obtain weaker bounds on the ost inurred by �heatingTSP tours� in our ase. This means that we annot use the 6-regular 2-pushersused by Papadimitriou and Vempala�to use the straightforward redution, wewould instead need 2.5-pushers. It is easy to prove that 8-regular 2.5-pushersexist. However, using 8-regular graphs instead of 6-regular ones gives weakerapproximation hardness results. To improve our results somewhat, we use aslightly more elaborate redution, that does not need pushers but bipartitegraphs with slightly weaker properties. As the �nal link in the proof of ourhardness results, we show that there exist 7-regular graphs with the propertieswe need for our analysis to go through.3 The hardness of (1,B)-ATSPThe purpose of this setion is to show that the Papadimitriou-Vempala on-strution an be analysed also in the setting of bounded metris with only smallmodi�ations. Spei�ally, we prove the following result:Theorem 2. For any su�iently small onstant ε > 0, there exists for any largeenough integer m instanes of (1,8)-ATSP with 113m ities suh that: 1) Eitherthere is a TSP tour with length at most (134 + ε)m or else every TSP tour haslength at least (135− ε)m. 2) It is NP-hard to distinguish these two ases.5



The proof of this theorem follows from Lemmas 1 and 2 desribed below.We desribe our instane of (1,B)-ATSP by onstruting a weighted diretedgraph and then let the (1,B)-ATSP instane have the nodes of this graph asities. In this paper we denote by ℓ(u, v) the distane from u to v in thisweighted graph and de�ne the distane between two ities u and v is the (1,B)-ATSP instane, denoted by c(u, v), as c(u, v) = min{ℓ(u, v), B}.3.1 The gadgetsThe gadgets are parameterised by the parameters a, b and d; they will bespei�ed later. The equation gadget for equations of the form x + y + z = 0 isshown in Fig. 1. The following property of the equation gadget was establishedby Papadimitriou and Vempala [9℄:Proposition 1. There is a Hamiltonian path of length four through the gadgetonly if zero or two of the tiked edges are traversed. All other traversals haveost at least �ve.The equation gadgets are onneted in a irle by identifying vertex B inone gadget with vertex A in the next gadget in the irle.The tiked edges in Fig. 1 are gadgets themselves. This gadget is shown inFig. 2. Eah of the bridges is shared between two di�erent edge gadgets, oneorresponding to a positive ourrene of the literal and one orresponding toa negative ourrene. The preise oupling is provided by a ertain d-regularbipartite multigraph. Spei�ally, proeed as follows for eah literal x: Let kbe the number of ourrenes of x (and therefore also of x̄); Take a bipartite
d-regular multigraph with vertex set V1∪· V2 (|V1| = |V2| = k); Label the vertiesin V1 with the ourrenes of x and the verties in V2 with the ourrenes of x̄;Let a positive and a negative ourrene orrespond to the same edge gadgetif there is an edge between the orresponding verties in the bipartite graph�the order of the ourrenes inside the edge gadget is not important. Later,we desribe some additional required properties of the bipartite multigraph, fornow it only remains to mention that they an be onstruted in onstant timesine they are of onstant size.3.2 Construting a tour from an assignmentConsider a system of linear equations with the properties desribed in Theorem 1and an instane of (1,B)-ATSP onstruted from it as desribed in � 3.1. Let
π be an assignment to the variables in the system of linear equations and onsiderthe tour that 1) For eah variable x traverses the edge gadget orrespondingto x as shown in Fig. 3 if π(x) = 0 and as shown in Fig. 4 if π(x) = 1. 2) Foreah equation gadget enters eah equation gadget at node A, takes the shortestpossible way to B under the ondition that the tiked edges are traversed aspresribed by the traversals of the edge gadgets, and then exits the equationgadget at node B. 6



Sine there are 2m equations in the system of linear equations, the numberof ities ontained in the equation gadgets is 4 · 2m = 8m. Similarly, sine everyedge gadget is shared between two equation gadgets, there are 2m · 3

2
d(a+ 1) =

3md(a + 1) ities inside the equation gadget.The length of the tour desribed above �inside� the edge gadgets is d(a + b).The �extra� ost of one that omes from the two �outermost� horizontal edgesin Fig. 2 is attributed to the equation gadget; in this way we an assign a ostof one to all edges in Fig. 1. Sine there are 2m equations, three edge gadgetsper equation gadget, and every edge gadget is shared between two equationgadgets, it follows that the total ost of the tour inside the edge gadgets is
3md(a + b). Considering an arbitrary equation gadget, the path from A to Bin a tour onstruted as desribed above has length four if the orrespondingequation in the system of linear equations is satis�ed by the assignment π andlength �ve otherwise. (Stritly speaking, it is impossible to have three traversededge gadgets in an equation gadget, sine this does not result in a TSP tour.However, we an regard the ase when the tour of the third edge gadget leavesthe edge gadget by jumping diretly to the exit node of the equation gadget asa tour with three traversals; suh a tour gives a ost of �ve, in addition to theost attributed to the edge gadgets.) Hene, the total ost aounted to theequation gadgets is 8m+u, where u is the number of unsatis�ed equations. Wesummarise the above disussion:Lemma 1. Consider a system of linear equations with the properties desribedin Theorem 1 and an instane of (1,B)-ATSP onstruted from it as desribedin � 3.1. This instane ontains 3md(a+1)+8m ities. Given an assignment tothe variables in the system of linear equations that satis�es all but u equations,the tour produed from this assignment as desribed above has length 3md(a +
b) + 8m + u.3.3 Construting an assignment from a tourThe main hallenge now is to prove that the above orrespondene betweenthe length of the optimum tour and the number of unsatis�ed equation holdsalso when we drop the assumption that the tour is shaped in the intended way.Spei�ally, the aim is to show the following:Lemma 2. Consider a system of linear equations with the properties desribedin Theorem 1 with δ su�iently small and an instane of (1,B)-ATSP on-struted from it as desribed in � 3.1 with a = 4, b = 2, d = 7, and B = 8. AnyTSP tour of length 3md(a+b)+8m+u in this instane an be used to onstrutin polynomial time an assignment satisfying all but at most u equations.Our proof uses three tehnial lemmas. The �rst one shows that any tour an betransformed into a tour with a ertain behaviour inside the bridges. The seondlemma lower bounds the additional ost aused by non-standard traversals ofan edge gadget and the last lemma establishes that the bipartite graph used hasa ertain expansion-related property. 7



Lemma 3. Consider a system of linear equations with the properties desribedin Theorem 1 and an instane of (1,B)-ATSP onstruted from it as desribedin � 3.1. If B ≥ a, any TSP tour in suh an instane an be transformed inpolynomial time into a tour with smaller, or equal, length with the followingproperties:1) Let (u, v) be an edge of the tour and suppose that u and v both belongto the same bridge. Then u and v are neighbours in the graph de�ning the(1,B)-ATSP instane.2) Let u and v be neighbours on the same bridge and assume that there is noedge between u and v in the tour. Let (u, u′) and (v, v′) be edges of the tour andassume that c(u, u′) = ℓ(u, u′) and that c(v, v′) = ℓ(v, v′). Then the shortestpath from u to u′ does not interset the shortest path from v to v′.De�nition 3. A bridge has a de�ned traversal if the tour restrited to thebridge is a path of length a; otherwise the bridge has an unde�ned traversal.De�nition 4. An edge gadget is traversed if all bridges have de�ned traversalsand the onnetion edges (horizontal in Fig. 2) are traversed by the tour; it isuntraversed if all bridges have de�ned traversals and none of the the onnetionedges are traversed by the tour. All other edge gadgets are semitraversed.Lemma 4. Consider a system of linear equations with the properties desribedin Theorem 1 and an instane of (1,B)-ATSP onstruted from it as desribedin � 3.1. From a tour with the properties guaranteed by Lemma 3, it is possibleto assoiate a ost of at least min{a/2, b, a/2+b/2−1} with every semitraversededge gadget given that B ≥ max{3b, a + b, 2a + b − 2}.Lemma 5. For every large enough onstant k, there exists a 7-regular bipartitemultigraph with vertex set V1∪· V2 (|V1| = |V2| = k) suh that for every partitionof V1 into sets T1, U1 and S1 and every partition of V2 into sets T2, U2 and
S2 suh that there are no edges from T1 to T2, and there are no edges from U1to U2,

2
(

|S1|+ |S2|
)

≥ min
{

k, |U1| + |T2| + |S1| + |S2|, |U2|+ |T1| + |S1| + |S2|
}.Before proving these lemmas, we show that they give�by appropriate hoieof parameters�the desired onnetion between the length of an arbitrary TSPtour and the number of satis�ed equations in the orresponding system of linearequations.Proof of Lemma 2. Set a = 4, b = 2, d = 7, and B = 8. Then it follows fromLemma 4 that every semitraversed edge gadget inurs a ost of at least two.For every variable x, let the bipartite multigraph used to onstrut the edgegadget have the property stated in Lemma 5 with k equal to the number ofourrenes of x (and hene also of x̄). Lemma 5 asserts that suh graphs existfor su�iently large k; hene we must assume that δ in Theorem 1 is smallenough. 8



The assignment to an arbitrary variable x is onstruted as follows: Supposethat x ours k times positively and k times negatively. Let T1 be the set of tra-versed positive ourrenes and T2 be the set of traversed negative ourrenes.De�ne U1, U2, S1, and S2 similarly. If |S1| + |S2| ≥ k/2, set π(x) = 0 withprobability 1/2 and π(x) = 1 with probability 1/2. Otherwise de�ne π(x) de-terministially as follows: If |T1|+ |U2| ≥ |T2|+ |U1|, let π(x) = 1, otherwise let
π(x) = 0. The resulting probabilisti assignment is then derandomised, usingthe method of onditional probabilities, to produe an assignment satisfying atleast as many equations as the expeted number of equations satis�ed by π.We need to prove that there is at most one unsatis�ed equation per unit ofthe �extra� ost u, i.e., per unit of the ost in addition to the �normal� ost of
3md(a + b) for the edge gadgets and 8m for the equation gadgets. To this end,we show that it is possible to assoiate a ost of at least 1/2 with every equationontaining a variable that has been set at random and a ost of at least 1 withevery other equation that ould be unsatis�ed by π.Let x be an arbitrary variable and suppose that x ours 2k times. De�ne
T1, T2, U1, U2, S1, and S2 as above. Sine variables are given probabilistiassignments only when |S1| + |S2| ≥ k/2 and every semitraversed edge gadgetsinurs an extra ost of 2, there is an extra ost of at least 1/2 assoiated withevery equation ontaining a variable that has been assigned a random value.Sine every suh eqation is satis�ed with probability 1/2, no matter the numberof variables in the equation that were given random assignments, the extraost attributed to variables with a random assignment is equal to the expetednumber of unsatis�ed equations from this assignment.Consider next the ase when |S1| + |S2| ≤ k/2. Sine Lemma 5 guaranteesthat the extra ost inurred by the semitraversed ourrenes of x and x̄ is noless than

min
{

|U1| + |T2|+ |S1| + |S2|, |U2| + |T1| + |S1| + |S2|
}in this ase, the extra ost inurred by the semitraversed ourrenes pays for thepotential unsatisfation of every equation that ontains a variable that has beenassigned a value ontraditing the traversal of the orresponding edge gadget.The only remaining possibility for equations that are unsatis�ed under π omesfrom equations where all variables have been assigned values aording to thetraversal of the orresponding edge gadgets and that assignment does not satisfythe equation. However, for suh equations, there is an extra ost of one in theequation gadget aording to Proposition 1.3.4 Proof of Lemma 3To ensure property 1, repeat the following for all edges (u, v) of the tour suhthat u and v belong to the same bridge but are not neighbours in the graph:Rede�ne the tour, so that instead of jumping from u diretly to v, the tourfollows the shortest path from u to v in the graph de�ning the instane. Sine

B ≥ a this does not inrease the length of the tour. This hange will make the9



tour pass through some ities�the ities that are on the shortest path from uto v in the graph�twie. For all suh ities w, do the following: Let w′ bethe ity visited immediately before w and w′′ be the ity visited immediatelyafter w. Then replae the edges (w′, w) and (w, w′′) by the single edge (w′, w′′)in the tour. By triangle inequality this proedure does not inrease the lengthof the tour.To ensure property 2, repeat the following for all verties u and v that belongto the same bridge but for whih there is no edge between u and v in the tour:Let u′ and v′ be de�ned as in the formulation of the lemma. If the shortest pathfrom u to u′ does not interset the shortest path from v to v′, no transformationof the tour is needed. Otherwise, the fat that u and v are on the same bridgeimplies that we an assume without loss of generality that the shortest pathfrom u to u′ passes v (otherwise we just exhange u and v in the argument). Wethen rede�ne the tour, so that instead of jumping from u diretly to u′, the tourfollows the shortest path from u to u′ in the graph de�ning the instane. Asabove, for every node w on the shortest path from u to u′ (inluding v), let w′ bethe ity visited immediately before w and w′′ be the ity visited immediatelyafter w and replae the edges (w′, w) and (w, w′′) by the single edge (w′, w′′) inthe tour. By triangle inequality this proedure does not inrease the length ofthe tour.3.5 Proof of Lemma 4Consider a semitraversed edge gadget. We now argue by ase analysis that itintrodues an extra ost in addition to the �standard� ost of a + b per bridge.For aounting purposes, we use the onvention that this standard ost orre-sponds to a ost of b/2 for the inoming edge of the tour plus a ost of b/2 forthe outgoing edge of the tour plus a ost of a for the traversal of the bridgeitself. When analysing the extra ost due to semitraversals, it is important toattribute this extra ost to both edge gadgets that take part in the semitraver-sal. Sometimes this means two di�erent edge gadgets that represent the sameliteral x (or x̄); sometimes this means the two edge gadgets that ross at a er-tain bridge. For �long� jumps, i.e., ases when the tour traverses an edge (u, v)with ost c(u, v) 6= ℓ(u, v), a ost of B/2 is attributed to both of the involvedbridges.Lemma 6. Given that B ≥ 2a + b − 2, it is possible to assoiate a ost of atleast of at least a/2+ b/2− 1 with every edge gadget that beomes semitraversedbeause of a bridge having an unde�ned traversal.Proof. We �rst onsider the ase when the metri is not bounded; we will showlater how to extend the argument to over also bounded metris. In the un-bounded ase, the distane between two verties u and v is exatly the lengthof the shortest path from u to v in the graph de�ning the instane.Sine the bridge has an unde�ned traversal, there must be two adjaentities u and v that are not neighbours in the tour. Consider the edges (u, u′)10



Figure 5: We an assume that traversals shown in the left �gure above neverour sine they an be transformed into the traversal shown in the right �gurewithout inreasing the length of the tour. A bridge with a traversal of that formgives an extra ost of at least min{a + b − 2, a + b/2− 1} if B ≥ 2a + b − 2.and (v, v′) in the tour�thanks to Lemma 3 we an assume that neither u′ nor
v′ belong to the bridge.The tour must visit all ities on the bridge. Therefore the total ost of thetour on the bridge is, aording to our onvention, at least 2a + 2b − 2, whihgives an extra ost of a + b − 2.When the metri is bounded by some bound B, a ase analysis shows, thatif B/2 ≥ a + b/2 − 1 it follows that the ost of the tour on a bridge with anunde�ned traversal is still at least 2a + 2b − 2. Intuitively, this states that thease shown to the right in Fig. 5 with the dotted line replaed by a �jump�following some edge with ost B is the worst ase, i.e., the ase with lowestextra ost.Sine a bridge ontaining an unde�ned traversal makes both edge gadgetspassing through it semitraversed, the proof of the lemma is omplete.Lemma 7. Given that B ≥ max{a + b, 3b} it is possible to assoiate a ost ofat least min{a/2, b} with every edge gadget that beomes semitraversed beauseof a bridge with a de�ned traversal.Proof. We �rst onsider the ase when the metri is not bounded and show laterhow to extend the argument to over also bounded metris. In the unboundedase, the distane between two verties u and v is exatly the length of theshortest path from u to v in the graph de�ning the instane.Consider �rst a bridge traversed from left to right but where the onnetingedge leaving the bridge is not traversed by the tour. Hene, the tour makes ajump leaving the bridge. There are three sub-ases:The tour goes down (Fig. 6). The earliest available free ity is a distaneof 2b away; that bloks the tour leaving the right bridge, foring it to also makea jump of at least 2b. The next available free ity is a distane of 3b away. Boththese ases give a total extra ost of 2b.The tour goes forwards (Fig. 7). The earliest available free ity is adistane of a + b away, giving a total extra ost of a.The tour goes bakwards (Fig. 8). The earliest available free ity is adistane of a + b away, giving a total extra ost of a.11



Figure 6: Swithing from traversing an edge gadget representing an ourreneof x to traversing another edge gadget representing an ourrene of x gives anextra ost of at least b. The dotted edge above has length 3b; that gives anextra ost of 2b whih is then shared evenly among the two semitraversed edgegadgets. 12



Figure 7: Swithing from traversing an edge gadget representing an ourreneof x to traversing an edge gadget representing an ourrene of x̄ gives an extraost of at least a/2. The dashed edges above has length a + b; that gives anextra ost of a whih is then shared evenly among the two semitraversed edgegadgets.
Figure 8: Swithing from traversing an edge gadget representing an ourreneof x to traversing an edge gadget representing an ourrene of x̄ gives an extraost of at least a/2. The dashed edges above has length a + b; that gives anextra ost of a whih is then shared evenly among the two semitraversed edgegadgets. 13



Next, onsider a bridge traversed from left to right where the onnetingedge entering the bridge is not traversed by the tour. Again, there are threesub-ases.The tour omes from above (Fig. 6). The earliest available free ity isa distane of 2b away, but that bloks the tour entering the right bridge, foringit to also make a jump of at least 2b. The next available free ity is a distaneof 3b away. Both these ases give a total extra ost of 2b.The tour omes from the front (Fig. 7). The earliest available free ityis a distane of a + b away, giving a total extra ost of a.The tour omes from behind (Fig. 8). The earliest available free ityis a distane of a + b away, giving a total extra ost of a.So far, the analysis only onsidered unbounded metris. Note �rst, however,that if B ≥ max{3b, a + b}, the above argument is valid. If the tour makes alarger jump than the shortest possible jumps stated above, the additional ostan never derease, thanks to the triangle inequality. Next, note that if the tourleaves a bridge with a de�ned traversal with a �long jump�, i.e., following an edge
(u, v) where c(u, v) 6= ℓ(u, v), that partiular bridge an only ause one of theedge gadgets passing through it to be semitraversed and hene we an alloatethe entire net ost of B/2 − b/2 to that edge gadget. If B ≥ max{3b, a + b},then B/2 − b/2 ≥ max{a/2, b}, hene the lemma holds also in this ase.Note, �nally, that the above analysis is valid also for tours suh that a �longjump� may start in a semitraversed gadget with no unde�ned traversal and endin an unde�ned traversal, and vie versa.3.6 Proof of Lemma 5The proof uses the same main idea as the proof that establishes existene of6-regular 2-pushers: It uses the fat that it is possible to lower bound the sizeof neighbours to any given set of verties in d-regular bipartite graphs. For aset W , let N(W ) denote the neighbours ofW in the graph. With this notation, areent study of Engebretsen [2℄ implies that there exist, for every large enough k,a 7-regular bipartite multigraph with vertex set V1∪· V2 (|V1| = |V2| = k) suhthat for every W ⊆ V1 and every W ⊆ V1, the following holds:

|W | ≤ 0.15k =⇒ |N(W )| > 8|W |/3,
0.15k ≤ |W | ≤ 0.60k =⇒ |N(W )| > 0.25k + |W |,
|W | ≥ 0.60k =⇒ |N(W )| > 5k/8 + 3|W |/8,
|W | ≤ 0.31k =⇒ |N(W )| > 2|W |,
0.31k ≤ |W | ≤ 0.35k =⇒ |N(W )| > 0.31k + |W |,
|W | ≥ 0.35k =⇒ |N(W )| > 31k/65 + 34|W |/65.Our task is to prove that for every partition of the left verties into sets T1, U1and S1 and every partition of the right verties into sets T2, U2 and S2 suh14



that there are no edges from T1 to T2, and there are no edges from U1 to U2,
2
(

|S1| + |S2|
)

≥ min
{

k, |U1| + |T2| + |S1| + |S2|, |U2| + |T1| + |S1| + |S2|
}.Sine there are no edges between T1 and T2 and there are no edges between U1and U2, it follows that |S1| ≥ |N(T2)| − |U1|. Similarly, |S2| ≥ |N(U1)| − |T2|.Also, it is easy to see that |T1| ≤ k−|N(T2)| and that |U2| ≤ k−|N(U1)|. Theseobservations are used repeatedly in the ase analysis below.From now on, we use the shorthands |T1| = kt1, |U1| = ku1, |S1| = ks1,

|T2| = kt2, |U2| = ku2, and |S2| = ks2. We an also assume without loss ofgenerality that u1 + t2 ≤ t1 + u2. Hene, we must show that
2s1 + 2s2 ≥ min{1, u1 + t2 + s1 + s2}. (1)We let n(x) denote the size of the neighbours of some set with size x. Thefollowing, somewhat overlapping, ases over all possible values of u1 and t2.Hene, they are enough to omplete the proof of the lemma.Case I: u1 ≤ 0.31 and t2 ≤ 0.31. In this ase s1+s2 ≥ n(t2)−u1+n(u1)−t2 ≥

u1 + t2, whih implies (1).Case II: 0.15 ≤ u1 ≤ 0.60 and 0.15 ≤ t2 ≤ 0.60. Sine s1 ≥ n(t2) − u1 ≥
t2 + 1

4
− u1 and s2 ≥ n(u1) − t2 ≥ u1 + 1

4
− t2 in this ase, it follows that

s1 + s2 ≥ 1

2
, whih implies (1).Case III: u1 ≥ 0.35 and t2 ≥ 0.35. Using the fat that u1 + t2 ≤ t1 + u2 ≤

2− n(t2)−n(u1) ≤
68

65
− 34

65
u1 −

34

35
t2, or, equivalently, that u1 + t2 ≤ 68

99
< 0.70,we reah a ontradition sine u1 + t2 must be at least 0.70 in this ase. Henethis ase annot our.Case IV a: u1 ≤ 0.35 and t2 ≥ 0.60. In this ase s1 ≥ n(t2) − u1 ≥ 3

8
t2 +

5

8
− u1 ≥ 3

8
· 3

5
+ 5

8
− 7

20
= 1

2
, whih implies (1).Case IVb: u1 ≥ 0.60 and t2 ≤ 0.35. In this ase s2 ≥ n(u1) − t2 ≥ 3

8
u1 +

5

8
− t2 ≥ 3

8
· 3

5
+ 5

8
− 7

20
= 1

2
, whih implies (1).Case V a: u1 ≤ 0.15 and t2 ≥ 0.35. In this ase s1 ≥ n(t2) − u1 ≥ 31

65
+
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65
t2 − u1 ≥ 31

65
+ 34

65
· 35

100
− 15

100
= 51

100
> 1

2
, whih implies (1).Case Vb: u1 ≥ 0.35 and t2 ≤ 0.15. In this ase s2 ≥ n(u1) − t2 ≥ 31

65
+

34

65
u1 − t2 ≥ 31

65
+ 34

65
· 35

100
− 15

100
= 51

100
> 1

2
, whih implies (1).Case VI a: u1 ≤ 0.15 and 0.31 ≤ t2 ≤ 0.35. In this ase s1 ≥ n(t2) − u1 ≥

t2 + 0.31− u1 and s2 > max{n(u1) − t2, 0} > max{ 8

3
u1 − t2, 0}. This gives twosub-ases that together imply (1).
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3
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A BFigure 9: The symmetri gadget for equations of the form x + y + z = 1. Thereis a Hamiltonian path from A to B only if an odd number of the tiked edgesare traversed.Case VI b: 0.31 ≤ u1 ≤ 0.35 and t2 ≤ 0.15. In this ase s1 > max{n(t2) −
u1, 0} > max{ 8

3
t2 − u1, 0} and s2 ≥ n(u1) − t2 ≥ u1 + 0.31− t2. This gives twosub-ases that together imply (1).
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3
t2: s1 + s2 ≥ s2 ≥ 5

8
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8
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800
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2
.

u1 ≤ 8

3
t2: s1 + s2 ≥ 5

3
t2 + 0.31 ≥ 5

8
u1 + 0.31 > 1

2
.4 The hardness of (1,B)-TSPTo adapt the onstrution from the � 3 to the symmetri ase we hange thegadgets; on a high level both the onstrution and the proof of orretness areas in the asymmetri ase. The equation gadget is replaed with the gadget inFig. 9; this gadget tests odd instead of even parity.Proposition 2. The only way to traverse the equation gadget in Fig. 9 with atour of length �ve�if the edge gadgets ount as length one�is to traverse anodd number of edge gadgets. All other traversals have length at least six.To onstrut a symmetri edge gadget, note that already the asymmetri edgegadget is in fat almost symmetri sine the bridge in the asymmetri edgegadget is an undireted path of length a. Consider the following attempt tomake an undireted edge gadget: Let the edges onneting the bridge withother bridges in the asymmetri edge gadget be undireted and onnet the edgegadgets as in the asymmetri ase. The resulting gadget penalises many, butnot all, unwanted tours. In partiular, the weakness with the above onstrutionis that a path may, without any additional penalty, enter a bridge through anedge that is direted towards the bridge in the asymmetri version of the gadgetand leave the same bridge along the other edge that is direted towards thebridge. To overome this problem, we onstrut a symmetri version of theasymmetri bridge by hooking up three opies of the �symmetrised asymmetribridge� desribed above in parallel and then rotating the resulting pakage 90◦(see Fig. 10). We all the resulting struture a symmetri bridge.Similar to the asymmetri ase, we say that a symmetri bridge has a de�nedtraversal if the tour restrited to the bridge traverses all three bridges andexatly two of the horizontal edges in Fig. 10. With a = 4, b = 2 and B = 8,the tehnial lemmas from � 3.5 an be used to show that any unde�ned traversal16



Figure 10: To transform the edge gadget from Fig. 2 into a gadget that an beused in the symmetri ase, all ourrenes of the struture to the left above arereplaed with the struture to the right above. All vertial edges in the right�gure have weight 1 and there are a edges in eah of the three vertial paths;the other edges in the right �gure have weight b.of the edge gadget gives an additional loal ost of four, i.e., an additional loalost of two an be attributed to eah of the two edge gadgets that meet atthe symmetri bridge. De�ning traversed, untraversed and semitraversed edgegadgets as in the asymmetri ase, a ase analysis similar to that in the proofof Lemma 7 then shows that a ost of at least two an be assoiated with eahsemitraversed symmetri edge gadget. As in the asymmetri ase, the individualedge gadgets orresponding to the same variable are stithed together aordingto the edges in a d-regular bipartite multigraph with vertex set V1∪· V2 (where
|V1| = |V2| = k and 2k is the number of ourrenes of the variable) that hasthe property that for every partition of V1 into sets T1, U1 and S1 and everypartition of V2 into sets T2, U2 and S2 suh that there are no edges from T1to T2, and there are no edges from U1 to U2, it holds that

2
(

|S1| + |S2|
)

≥ min
{

k, |U1| + |T2| + |S1| + |S2|, |U2| + |T1| + |S1| + |S2|
}.To summarise, the following lemma follows in the same way as in the asymmetriase:Lemma 8. Consider a system of linear equations with the properties desribedin Theorem 1 with δ su�iently small and an instane of (1,B)-TSP onstrutedfrom it as outlined above with a = 4, b = 2, d = 7, and B = 8. A TSP tourof length 9md(a + b) + 10m + u in this instane an be used to onstrut inpolynomial time an assignment satisfying all but at most u equations.For the symmetri analogue of Lemma 1, note that a �jump� past an edge gadgetatually requires following an edge of length 9md(a + b) +1 as the onstrutionis desribed above. However, by adding for every edge gadget an edge of lengthtwo that is parallel with the edge gadget in the graph de�ning the TSP instane,it is easy to see that the following lemma holds:Lemma 9. Consider a system of linear equations with the properties desribedin Theorem 1 and an instane of (1,B)-TSP onstruted from it as outlined17



above. Given an assignment to the variables in the system of linear equationsthat satis�es all but u equations, it is possible to onstrut a TSP tour withlength 9md(a + b) + 10m + u.Given the above lemmas, our seond main theorem follows in exatly the sameway as in the asymmetri ase.Theorem 3. For any onstant ε > 0, it is NP-hard to approximate (1,8)-TSPwithin 389/388− ε.5 Conluding remarksThere are two main onlusions from the work presented in this paper. First,the fat that it is relatively straightforward to adapt the onstrution devised byPapadimitriou and Vempala [9℄ to the ase of bounded metris shows that thislatter onstrution is essentially loal, in spite of the fat that it uses as a ritialomponent edges with unbounded�but onstant�length. This indiates thatnew ideas are needed to obtain hardness within fators that are ω(1), or evenhardness within an arbitrarily large onstant fator.The seond main onlusion is that simpler onstrutions and simpler proofsof orretness are needed in order to obtain hardness results that are substan-tially better than the urrently best known ones. Current tehniques have beenpushed more or less to their limits. Also, earlier versions of this paper as well asearlier versions of [9℄ ontained errors in the aounting of penalties due to non-standard traversals. In order to ahieve stronger hardness results, some kindof more strutured approah is probably neessary�more ompliated gadgetredutions and aounting proedures are bound to be even more sensitive to er-rors in the analysis than the onstrution of Papadimitriou and Vempala [9℄. Webelieve that a diret PCP onstrution is the natural next step for onstrutingstronger approximation hardness results for TSP with triangle inequality.AknowledgementsWe thank Santosh Vempala for many larifying disussions on the subjet of thispaper. Also, the anonymous referees ontributed with many valuable ommentsthat helped improving the presentation of our results.
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