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tThe general asymmetri
 TSP with triangle inequality is known to be ap-proximable only within logarithmi
 fa
tors. In this paper we study theasymmetri
 and symmetri
 TSP problems with bounded metri
s, i.e., met-ri
s where the distan
es are integers between one and some 
onstant upperbound. Re
ently, Papadimitriou and Vempala announ
ed improved ap-proximation hardness results for both symmetri
 and asymmetri
 TSPwith graph metri
. In this note, we show that a similar 
onstru
tion 
anbe used to obtain only slightly weaker approximation hardness results forTSP with triangle inequality and distan
es that are integers between oneand eight. This shows that the Papadimitriou-Vempala 
onstru
tion is�lo
al� in nature and, intuitively, indi
ates that it 
annot be used to ob-tain hardness fa
tors that grow with the size of the instan
e.Key words. Approximation Hardness; Metri
 TSP; Bounded Metri
.1 Introdu
tionA 
ommon spe
ial 
ase of the Travelling Salesman Problem (TSP) is the metri
TSP, where the distan
es between the 
ities satisfy the triangle inequality. Thede
ision version of this spe
ial 
ase was shown to be NP-
omplete by Karp [7℄,
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whi
h means that we have little hope of 
omputing exa
t solutions in polynomialtime. Christo�des [1℄ has 
onstru
ted an elegant algorithm approximating themetri
 TSP within 3/2, i.e., an algorithm that always produ
es a tour whoseweight is at most a fa
tor 3/2 from the weight of the optimal tour. For the
ase when the distan
e fun
tion may be asymmetri
, the best known algorithmapproximates the solution within O(logn), where n is the number of 
ities [6℄.As for lower bounds, a re
ent result of Engebretsen and Karpinski [4℄ showsthat it is NP-hard to approximate TSP where the distan
es are 
onstrained tobe either one or two�note that su
h a distan
e fun
tion always satis�es thetriangle inequality�within 321/320− ε and that it is NP-hard to approximatethe symmetri
 TSP with distan
es one and two within 741/740 − ε for every
onstant ε > 0. Papadimitriou and Vempala [8℄ re
ently announ
ed strongerapproximation hardness results for the asymmetri
 and symmetri
 versions ofthe TSP with graph metri
, but left the 
ase of TSP with bounded metri
 open.(Their original proof 
ontained an error in�uen
ing the expli
it 
onstants. Anew proof with the new 
onstants 117/116−ε and 220/219−ε, respe
tively, wasannoun
ed by Papadimitriou and Vempala in May 2002; the latest version ofthe paper is available from URL http://www-math.mit.edu/~vempala/papers/tspinapprox.ps). Apart from being an interesting question on its own, it is
on
eivable that the spe
ial 
ases with bounded metri
 are easier to approximatethan the 
ases when the distan
e between two points 
an grow with the numberof 
ities in the instan
e. Indeed, the asymmetri
 TSP with distan
es boundedby B 
an be approximated within B by just pi
king any tour as the solution.De�nition 1. The Asymmetri
 Travelling Salesman Problem (ATSP) is thefollowing minimisation problem: Given a 
olle
tion of 
ities and a matrix whoseentries are interpreted as the distan
e from a 
ity to another, �nd the shortesttour starting and ending in the same 
ity and visiting every 
ity exa
tly on
e.De�nition 2. (1,B)-ATSP is the spe
ial 
ase of ATSP where the entries in thedistan
e matrix obey the triangle inequality and the o�-diagonal entries in thedistan
e matrix are integers between 1 and B. (1,B)-TSP is the spe
ial 
ase of(1,B)-ATSP where the distan
e matrix is symmetri
.In this paper, we prove that a slight modi�
ation to the re
ent 
onstru
tionof Papadimitriou and Vempala shows that it is, for any 
onstant ε > 0, NP-hard to approximate (1,8)-ATSP within 135/134−ε (Theorem 2) and that it is,for any 
onstant ε > 0, NP-hard to approximate (1,8)-TSP with 389/388− ε(Theorem 3). In a preliminary version of this paper [3℄, we erroneously 
laimedslightly better bounds.2 Overview of the �unbounded� 
onstru
tionPapadimitriou and Vempala [9℄ prove their hardness result by redu
tion fromHåstad's approximation hardness result for systems of linear equations [5℄.2



Theorem 1 ([5℄). For any 
onstant δ ∈ (0, 1/2), there exists systems of linearequations mod 2 with 2m equations and exa
tly three unknowns in ea
h equationsu
h that: 1) Ea
h variable in the instan
e o

urs a 
onstant number of times,half of them negated and half of them unnegated. This 
onstant grows as Ω(21/δ).2) Either there is an assignment satisfying all but at most δm equations, or everyassignment leaves at least (1 − δ)m equations unsatis�ed. 3) It is NP-hard todistinguish between these two 
ases.From a system of linear equations with the properties des
ribed in Theorem 1,Papadimitriou and Vempala 
onstru
t an instan
e of ATSP by hooking severalgadgets together. Ea
h equation is represented by an equation gadget of theform shown in Fig. 1. The ti
ked edges in that �gure in fa
t 
orrespond togadgets themselves; these gadgets are shown in Fig. 2. The 
onstru
tion is pa-rameterised; Papadimitriou and Vempala set a = 4, b = 2 and d = 6 in the
urrent version of their paper [9℄. The main idea in the 
onstru
tion is that theway a TSP tour traverses the latter gadgets mentioned above, the so 
alled edgegadgets, gives an assignment to the variables in the underlying system of linearequations (see Figs. 3 and 4). The main te
hni
al 
hallenge is to prove thatthere is a 
orresponden
e between the length of TSP tours in the 
onstru
tedgraph and the number of equations satis�ed by the 
orresponding assignment.To this end, Papadimitriou and Vempala devised a way to 
onne
t the edgegadgets 
orresponding to the same variable in a net with 
ertain expander-typeproperties. Informally, the stru
ture of this net is su
h that any attempt to 
on-stru
t a TSP-tour that represents the value of a 
ertain variable in
onsistentlyin the gadgets 
orresponding to the equations where that variable o

urs givesa tour of high 
ost. Intuitively, it is therefore always suboptimal to 
onstru
tsu
h �
heating� TSP-tours.More formally, Papadimitriou and Vempala introdu
es the notion of a b-pusher [9, De�nition 1℄ to pre
isely des
ribe the stru
ture that is needed tothwart �
heating� TSP-tours: A d-regular bipartite graph with vertex set V1∪· V2is 
alled a b-pusher if, for any partition of V1 into subsets U1, S1, T1 and anypartition of V2 into subsets U2, S2, T2 su
h that there are no edges from verti
esin U1 to verti
es in U2, the number (T1, T2) of edges between verti
es in T1 and
T2 satis�es

(

b +
1

2

)

(T1, T2) ≥ min
{

|U1| + |T2|, |T1| + |U2|
}

−
(

b −
1

2

)

(

|S1|+ |S2|
).Papadimitriou and Vempala establish the existen
e of 6-regular 2-pushers [9,Theorem 5.1℄ and use su
h graphs to 
onstru
t the pre
ise 
oupling betweendi�erent edge gadgets.2.1 Modi�
ations for bounded metri
sAn inspe
tion of the details of the Papadimitriou-Vempala 
onstru
tion showsthat it, essentially, uses a metri
 whi
h is bounded, in our sense of the word,by some 
onstant that depends on ε. Qualitatively, their result is therefore3



A BFigure 1: The gadget for equations of the form x + y + z = 0. There is aHamiltonian path from A to B only if zero or two of the ti
ked edges, whi
h area
tually gadgets themselves (Fig. 2), are traversed. The non-ti
ked edges haveweight 1.Figure 2: The edge gadget 
onsists of d bridges. Ea
h of the bridges are sharedbetween two di�erent edge gadgets. Ea
h bridge 
onsist of aL undire
ted edgesof weight 1/L ea
h. In the 
onstru
tion of Papadimitriou and Vempala [9℄, L isa (very) large integer 
onstant�in our 
onstru
tion for bounded metri
s, L = 1.The edges between bridges have weight b, the �rst horizontal edge has weight
⌊ b+1

2
⌋, and the last horizontal edge has weight ⌈ b+1

2
⌉.Figure 3: An untraversed edge gadget represents the value 0.Figure 4: A traversed edge gadget represents the value 1.4



of the form �there exists a 
onstant c su
h that for every ε > 0 it is hard toapproximate TSP within c−ε in instan
es with metri
s bounded by B(ε)�. Ourresult in this paper is, again qualitatively, that the order of the quanti�ers maybe reversed, i.e., our result is of the form �there exists 
onstants B and c su
hthat for every ε > 0 it is hard to approximate TSP within c − ε in instan
eswith metri
s bounded by B�. Quantitatively, Papadimitriou and Vempala [9℄have c = 117/116 for the asymmetri
 TSP and c = 220/219 for the symmetri
TSP. For our 
ase, the result is a trade-o� between B and c. We settle for
B = 8 whi
h gives c = 135/134 for the asymmetri
 TSP and c = 389/388 forthe symmetri
 TSP.As mentioned in the 
aption of Fig. 2, the edge gadgets devised by Papadim-itriou and Vempala [9℄ 
ontain edges with very small weight. Spe
i�
ally, theweight of the lightest edge in the instan
e is negligible 
ompared to the 
on-stant ε in the main hardness result. In our model for bounded metri
s, we onlyallow distan
es that are integers between one and some bound B. Consequently,we must modify the bridges in the edge gadgets so that they 
ontain a edgesof weight one instead of aL edges of weight 1/L. This modi�
ation impliesthat the analysis must be modi�ed. In parti
ular, the so 
alled �doubly tra-versed bridges�, that in
ur an extra 
ost of a + b in the Papadimitriou-Vempala
onstru
tion, only in
ur a 
ost of a + b − 2 in our 
ase. We believe that it ismore natural to view those bridges as a kind of �semitraversed edge gadget� inour 
ase. This 
hange implies that a 
ertain tri
k used by Papadimitriou andVempala to asso
iate a larger 
ost with the semitraversed edge gadgets does notwork.To 
on
lude, we obtain weaker bounds on the 
ost in
urred by �
heatingTSP tours� in our 
ase. This means that we 
annot use the 6-regular 2-pushersused by Papadimitriou and Vempala�to use the straightforward redu
tion, wewould instead need 2.5-pushers. It is easy to prove that 8-regular 2.5-pushersexist. However, using 8-regular graphs instead of 6-regular ones gives weakerapproximation hardness results. To improve our results somewhat, we use aslightly more elaborate redu
tion, that does not need pushers but bipartitegraphs with slightly weaker properties. As the �nal link in the proof of ourhardness results, we show that there exist 7-regular graphs with the propertieswe need for our analysis to go through.3 The hardness of (1,B)-ATSPThe purpose of this se
tion is to show that the Papadimitriou-Vempala 
on-stru
tion 
an be analysed also in the setting of bounded metri
s with only smallmodi�
ations. Spe
i�
ally, we prove the following result:Theorem 2. For any su�
iently small 
onstant ε > 0, there exists for any largeenough integer m instan
es of (1,8)-ATSP with 113m 
ities su
h that: 1) Eitherthere is a TSP tour with length at most (134 + ε)m or else every TSP tour haslength at least (135− ε)m. 2) It is NP-hard to distinguish these two 
ases.5



The proof of this theorem follows from Lemmas 1 and 2 des
ribed below.We des
ribe our instan
e of (1,B)-ATSP by 
onstru
ting a weighted dire
tedgraph and then let the (1,B)-ATSP instan
e have the nodes of this graph as
ities. In this paper we denote by ℓ(u, v) the distan
e from u to v in thisweighted graph and de�ne the distan
e between two 
ities u and v is the (1,B)-ATSP instan
e, denoted by c(u, v), as c(u, v) = min{ℓ(u, v), B}.3.1 The gadgetsThe gadgets are parameterised by the parameters a, b and d; they will bespe
i�ed later. The equation gadget for equations of the form x + y + z = 0 isshown in Fig. 1. The following property of the equation gadget was establishedby Papadimitriou and Vempala [9℄:Proposition 1. There is a Hamiltonian path of length four through the gadgetonly if zero or two of the ti
ked edges are traversed. All other traversals have
ost at least �ve.The equation gadgets are 
onne
ted in a 
ir
le by identifying vertex B inone gadget with vertex A in the next gadget in the 
ir
le.The ti
ked edges in Fig. 1 are gadgets themselves. This gadget is shown inFig. 2. Ea
h of the bridges is shared between two di�erent edge gadgets, one
orresponding to a positive o

urren
e of the literal and one 
orresponding toa negative o

urren
e. The pre
ise 
oupling is provided by a 
ertain d-regularbipartite multigraph. Spe
i�
ally, pro
eed as follows for ea
h literal x: Let kbe the number of o

urren
es of x (and therefore also of x̄); Take a bipartite
d-regular multigraph with vertex set V1∪· V2 (|V1| = |V2| = k); Label the verti
esin V1 with the o

urren
es of x and the verti
es in V2 with the o

urren
es of x̄;Let a positive and a negative o

urren
e 
orrespond to the same edge gadgetif there is an edge between the 
orresponding verti
es in the bipartite graph�the order of the o

urren
es inside the edge gadget is not important. Later,we des
ribe some additional required properties of the bipartite multigraph, fornow it only remains to mention that they 
an be 
onstru
ted in 
onstant timesin
e they are of 
onstant size.3.2 Constru
ting a tour from an assignmentConsider a system of linear equations with the properties des
ribed in Theorem 1and an instan
e of (1,B)-ATSP 
onstru
ted from it as des
ribed in � 3.1. Let
π be an assignment to the variables in the system of linear equations and 
onsiderthe tour that 1) For ea
h variable x traverses the edge gadget 
orrespondingto x as shown in Fig. 3 if π(x) = 0 and as shown in Fig. 4 if π(x) = 1. 2) Forea
h equation gadget enters ea
h equation gadget at node A, takes the shortestpossible way to B under the 
ondition that the ti
ked edges are traversed aspres
ribed by the traversals of the edge gadgets, and then exits the equationgadget at node B. 6



Sin
e there are 2m equations in the system of linear equations, the numberof 
ities 
ontained in the equation gadgets is 4 · 2m = 8m. Similarly, sin
e everyedge gadget is shared between two equation gadgets, there are 2m · 3

2
d(a+ 1) =

3md(a + 1) 
ities inside the equation gadget.The length of the tour des
ribed above �inside� the edge gadgets is d(a + b).The �extra� 
ost of one that 
omes from the two �outermost� horizontal edgesin Fig. 2 is attributed to the equation gadget; in this way we 
an assign a 
ostof one to all edges in Fig. 1. Sin
e there are 2m equations, three edge gadgetsper equation gadget, and every edge gadget is shared between two equationgadgets, it follows that the total 
ost of the tour inside the edge gadgets is
3md(a + b). Considering an arbitrary equation gadget, the path from A to Bin a tour 
onstru
ted as des
ribed above has length four if the 
orrespondingequation in the system of linear equations is satis�ed by the assignment π andlength �ve otherwise. (Stri
tly speaking, it is impossible to have three traversededge gadgets in an equation gadget, sin
e this does not result in a TSP tour.However, we 
an regard the 
ase when the tour of the third edge gadget leavesthe edge gadget by jumping dire
tly to the exit node of the equation gadget asa tour with three traversals; su
h a tour gives a 
ost of �ve, in addition to the
ost attributed to the edge gadgets.) Hen
e, the total 
ost a

ounted to theequation gadgets is 8m+u, where u is the number of unsatis�ed equations. Wesummarise the above dis
ussion:Lemma 1. Consider a system of linear equations with the properties des
ribedin Theorem 1 and an instan
e of (1,B)-ATSP 
onstru
ted from it as des
ribedin � 3.1. This instan
e 
ontains 3md(a+1)+8m 
ities. Given an assignment tothe variables in the system of linear equations that satis�es all but u equations,the tour produ
ed from this assignment as des
ribed above has length 3md(a +
b) + 8m + u.3.3 Constru
ting an assignment from a tourThe main 
hallenge now is to prove that the above 
orresponden
e betweenthe length of the optimum tour and the number of unsatis�ed equation holdsalso when we drop the assumption that the tour is shaped in the intended way.Spe
i�
ally, the aim is to show the following:Lemma 2. Consider a system of linear equations with the properties des
ribedin Theorem 1 with δ su�
iently small and an instan
e of (1,B)-ATSP 
on-stru
ted from it as des
ribed in � 3.1 with a = 4, b = 2, d = 7, and B = 8. AnyTSP tour of length 3md(a+b)+8m+u in this instan
e 
an be used to 
onstru
tin polynomial time an assignment satisfying all but at most u equations.Our proof uses three te
hni
al lemmas. The �rst one shows that any tour 
an betransformed into a tour with a 
ertain behaviour inside the bridges. The se
ondlemma lower bounds the additional 
ost 
aused by non-standard traversals ofan edge gadget and the last lemma establishes that the bipartite graph used hasa 
ertain expansion-related property. 7



Lemma 3. Consider a system of linear equations with the properties des
ribedin Theorem 1 and an instan
e of (1,B)-ATSP 
onstru
ted from it as des
ribedin � 3.1. If B ≥ a, any TSP tour in su
h an instan
e 
an be transformed inpolynomial time into a tour with smaller, or equal, length with the followingproperties:1) Let (u, v) be an edge of the tour and suppose that u and v both belongto the same bridge. Then u and v are neighbours in the graph de�ning the(1,B)-ATSP instan
e.2) Let u and v be neighbours on the same bridge and assume that there is noedge between u and v in the tour. Let (u, u′) and (v, v′) be edges of the tour andassume that c(u, u′) = ℓ(u, u′) and that c(v, v′) = ℓ(v, v′). Then the shortestpath from u to u′ does not interse
t the shortest path from v to v′.De�nition 3. A bridge has a de�ned traversal if the tour restri
ted to thebridge is a path of length a; otherwise the bridge has an unde�ned traversal.De�nition 4. An edge gadget is traversed if all bridges have de�ned traversalsand the 
onne
tion edges (horizontal in Fig. 2) are traversed by the tour; it isuntraversed if all bridges have de�ned traversals and none of the the 
onne
tionedges are traversed by the tour. All other edge gadgets are semitraversed.Lemma 4. Consider a system of linear equations with the properties des
ribedin Theorem 1 and an instan
e of (1,B)-ATSP 
onstru
ted from it as des
ribedin � 3.1. From a tour with the properties guaranteed by Lemma 3, it is possibleto asso
iate a 
ost of at least min{a/2, b, a/2+b/2−1} with every semitraversededge gadget given that B ≥ max{3b, a + b, 2a + b − 2}.Lemma 5. For every large enough 
onstant k, there exists a 7-regular bipartitemultigraph with vertex set V1∪· V2 (|V1| = |V2| = k) su
h that for every partitionof V1 into sets T1, U1 and S1 and every partition of V2 into sets T2, U2 and
S2 su
h that there are no edges from T1 to T2, and there are no edges from U1to U2,

2
(

|S1|+ |S2|
)

≥ min
{

k, |U1| + |T2| + |S1| + |S2|, |U2|+ |T1| + |S1| + |S2|
}.Before proving these lemmas, we show that they give�by appropriate 
hoi
eof parameters�the desired 
onne
tion between the length of an arbitrary TSPtour and the number of satis�ed equations in the 
orresponding system of linearequations.Proof of Lemma 2. Set a = 4, b = 2, d = 7, and B = 8. Then it follows fromLemma 4 that every semitraversed edge gadget in
urs a 
ost of at least two.For every variable x, let the bipartite multigraph used to 
onstru
t the edgegadget have the property stated in Lemma 5 with k equal to the number ofo

urren
es of x (and hen
e also of x̄). Lemma 5 asserts that su
h graphs existfor su�
iently large k; hen
e we must assume that δ in Theorem 1 is smallenough. 8



The assignment to an arbitrary variable x is 
onstru
ted as follows: Supposethat x o

urs k times positively and k times negatively. Let T1 be the set of tra-versed positive o

urren
es and T2 be the set of traversed negative o

urren
es.De�ne U1, U2, S1, and S2 similarly. If |S1| + |S2| ≥ k/2, set π(x) = 0 withprobability 1/2 and π(x) = 1 with probability 1/2. Otherwise de�ne π(x) de-terministi
ally as follows: If |T1|+ |U2| ≥ |T2|+ |U1|, let π(x) = 1, otherwise let
π(x) = 0. The resulting probabilisti
 assignment is then derandomised, usingthe method of 
onditional probabilities, to produ
e an assignment satisfying atleast as many equations as the expe
ted number of equations satis�ed by π.We need to prove that there is at most one unsatis�ed equation per unit ofthe �extra� 
ost u, i.e., per unit of the 
ost in addition to the �normal� 
ost of
3md(a + b) for the edge gadgets and 8m for the equation gadgets. To this end,we show that it is possible to asso
iate a 
ost of at least 1/2 with every equation
ontaining a variable that has been set at random and a 
ost of at least 1 withevery other equation that 
ould be unsatis�ed by π.Let x be an arbitrary variable and suppose that x o

urs 2k times. De�ne
T1, T2, U1, U2, S1, and S2 as above. Sin
e variables are given probabilisti
assignments only when |S1| + |S2| ≥ k/2 and every semitraversed edge gadgetsin
urs an extra 
ost of 2, there is an extra 
ost of at least 1/2 asso
iated withevery equation 
ontaining a variable that has been assigned a random value.Sin
e every su
h eqation is satis�ed with probability 1/2, no matter the numberof variables in the equation that were given random assignments, the extra
ost attributed to variables with a random assignment is equal to the expe
tednumber of unsatis�ed equations from this assignment.Consider next the 
ase when |S1| + |S2| ≤ k/2. Sin
e Lemma 5 guaranteesthat the extra 
ost in
urred by the semitraversed o

urren
es of x and x̄ is noless than

min
{

|U1| + |T2|+ |S1| + |S2|, |U2| + |T1| + |S1| + |S2|
}in this 
ase, the extra 
ost in
urred by the semitraversed o

urren
es pays for thepotential unsatisfa
tion of every equation that 
ontains a variable that has beenassigned a value 
ontradi
ting the traversal of the 
orresponding edge gadget.The only remaining possibility for equations that are unsatis�ed under π 
omesfrom equations where all variables have been assigned values a

ording to thetraversal of the 
orresponding edge gadgets and that assignment does not satisfythe equation. However, for su
h equations, there is an extra 
ost of one in theequation gadget a

ording to Proposition 1.3.4 Proof of Lemma 3To ensure property 1, repeat the following for all edges (u, v) of the tour su
hthat u and v belong to the same bridge but are not neighbours in the graph:Rede�ne the tour, so that instead of jumping from u dire
tly to v, the tourfollows the shortest path from u to v in the graph de�ning the instan
e. Sin
e

B ≥ a this does not in
rease the length of the tour. This 
hange will make the9



tour pass through some 
ities�the 
ities that are on the shortest path from uto v in the graph�twi
e. For all su
h 
ities w, do the following: Let w′ bethe 
ity visited immediately before w and w′′ be the 
ity visited immediatelyafter w. Then repla
e the edges (w′, w) and (w, w′′) by the single edge (w′, w′′)in the tour. By triangle inequality this pro
edure does not in
rease the lengthof the tour.To ensure property 2, repeat the following for all verti
es u and v that belongto the same bridge but for whi
h there is no edge between u and v in the tour:Let u′ and v′ be de�ned as in the formulation of the lemma. If the shortest pathfrom u to u′ does not interse
t the shortest path from v to v′, no transformationof the tour is needed. Otherwise, the fa
t that u and v are on the same bridgeimplies that we 
an assume without loss of generality that the shortest pathfrom u to u′ passes v (otherwise we just ex
hange u and v in the argument). Wethen rede�ne the tour, so that instead of jumping from u dire
tly to u′, the tourfollows the shortest path from u to u′ in the graph de�ning the instan
e. Asabove, for every node w on the shortest path from u to u′ (in
luding v), let w′ bethe 
ity visited immediately before w and w′′ be the 
ity visited immediatelyafter w and repla
e the edges (w′, w) and (w, w′′) by the single edge (w′, w′′) inthe tour. By triangle inequality this pro
edure does not in
rease the length ofthe tour.3.5 Proof of Lemma 4Consider a semitraversed edge gadget. We now argue by 
ase analysis that itintrodu
es an extra 
ost in addition to the �standard� 
ost of a + b per bridge.For a

ounting purposes, we use the 
onvention that this standard 
ost 
orre-sponds to a 
ost of b/2 for the in
oming edge of the tour plus a 
ost of b/2 forthe outgoing edge of the tour plus a 
ost of a for the traversal of the bridgeitself. When analysing the extra 
ost due to semitraversals, it is important toattribute this extra 
ost to both edge gadgets that take part in the semitraver-sal. Sometimes this means two di�erent edge gadgets that represent the sameliteral x (or x̄); sometimes this means the two edge gadgets that 
ross at a 
er-tain bridge. For �long� jumps, i.e., 
ases when the tour traverses an edge (u, v)with 
ost c(u, v) 6= ℓ(u, v), a 
ost of B/2 is attributed to both of the involvedbridges.Lemma 6. Given that B ≥ 2a + b − 2, it is possible to asso
iate a 
ost of atleast of at least a/2+ b/2− 1 with every edge gadget that be
omes semitraversedbe
ause of a bridge having an unde�ned traversal.Proof. We �rst 
onsider the 
ase when the metri
 is not bounded; we will showlater how to extend the argument to 
over also bounded metri
s. In the un-bounded 
ase, the distan
e between two verti
es u and v is exa
tly the lengthof the shortest path from u to v in the graph de�ning the instan
e.Sin
e the bridge has an unde�ned traversal, there must be two adja
ent
ities u and v that are not neighbours in the tour. Consider the edges (u, u′)10



Figure 5: We 
an assume that traversals shown in the left �gure above nevero

ur sin
e they 
an be transformed into the traversal shown in the right �gurewithout in
reasing the length of the tour. A bridge with a traversal of that formgives an extra 
ost of at least min{a + b − 2, a + b/2− 1} if B ≥ 2a + b − 2.and (v, v′) in the tour�thanks to Lemma 3 we 
an assume that neither u′ nor
v′ belong to the bridge.The tour must visit all 
ities on the bridge. Therefore the total 
ost of thetour on the bridge is, a

ording to our 
onvention, at least 2a + 2b − 2, whi
hgives an extra 
ost of a + b − 2.When the metri
 is bounded by some bound B, a 
ase analysis shows, thatif B/2 ≥ a + b/2 − 1 it follows that the 
ost of the tour on a bridge with anunde�ned traversal is still at least 2a + 2b − 2. Intuitively, this states that the
ase shown to the right in Fig. 5 with the dotted line repla
ed by a �jump�following some edge with 
ost B is the worst 
ase, i.e., the 
ase with lowestextra 
ost.Sin
e a bridge 
ontaining an unde�ned traversal makes both edge gadgetspassing through it semitraversed, the proof of the lemma is 
omplete.Lemma 7. Given that B ≥ max{a + b, 3b} it is possible to asso
iate a 
ost ofat least min{a/2, b} with every edge gadget that be
omes semitraversed be
auseof a bridge with a de�ned traversal.Proof. We �rst 
onsider the 
ase when the metri
 is not bounded and show laterhow to extend the argument to 
over also bounded metri
s. In the unbounded
ase, the distan
e between two verti
es u and v is exa
tly the length of theshortest path from u to v in the graph de�ning the instan
e.Consider �rst a bridge traversed from left to right but where the 
onne
tingedge leaving the bridge is not traversed by the tour. Hen
e, the tour makes ajump leaving the bridge. There are three sub-
ases:The tour goes down (Fig. 6). The earliest available free 
ity is a distan
eof 2b away; that blo
ks the tour leaving the right bridge, for
ing it to also makea jump of at least 2b. The next available free 
ity is a distan
e of 3b away. Boththese 
ases give a total extra 
ost of 2b.The tour goes forwards (Fig. 7). The earliest available free 
ity is adistan
e of a + b away, giving a total extra 
ost of a.The tour goes ba
kwards (Fig. 8). The earliest available free 
ity is adistan
e of a + b away, giving a total extra 
ost of a.11



Figure 6: Swit
hing from traversing an edge gadget representing an o

urren
eof x to traversing another edge gadget representing an o

urren
e of x gives anextra 
ost of at least b. The dotted edge above has length 3b; that gives anextra 
ost of 2b whi
h is then shared evenly among the two semitraversed edgegadgets. 12



Figure 7: Swit
hing from traversing an edge gadget representing an o

urren
eof x to traversing an edge gadget representing an o

urren
e of x̄ gives an extra
ost of at least a/2. The dashed edges above has length a + b; that gives anextra 
ost of a whi
h is then shared evenly among the two semitraversed edgegadgets.
Figure 8: Swit
hing from traversing an edge gadget representing an o

urren
eof x to traversing an edge gadget representing an o

urren
e of x̄ gives an extra
ost of at least a/2. The dashed edges above has length a + b; that gives anextra 
ost of a whi
h is then shared evenly among the two semitraversed edgegadgets. 13



Next, 
onsider a bridge traversed from left to right where the 
onne
tingedge entering the bridge is not traversed by the tour. Again, there are threesub-
ases.The tour 
omes from above (Fig. 6). The earliest available free 
ity isa distan
e of 2b away, but that blo
ks the tour entering the right bridge, for
ingit to also make a jump of at least 2b. The next available free 
ity is a distan
eof 3b away. Both these 
ases give a total extra 
ost of 2b.The tour 
omes from the front (Fig. 7). The earliest available free 
ityis a distan
e of a + b away, giving a total extra 
ost of a.The tour 
omes from behind (Fig. 8). The earliest available free 
ityis a distan
e of a + b away, giving a total extra 
ost of a.So far, the analysis only 
onsidered unbounded metri
s. Note �rst, however,that if B ≥ max{3b, a + b}, the above argument is valid. If the tour makes alarger jump than the shortest possible jumps stated above, the additional 
ost
an never de
rease, thanks to the triangle inequality. Next, note that if the tourleaves a bridge with a de�ned traversal with a �long jump�, i.e., following an edge
(u, v) where c(u, v) 6= ℓ(u, v), that parti
ular bridge 
an only 
ause one of theedge gadgets passing through it to be semitraversed and hen
e we 
an allo
atethe entire net 
ost of B/2 − b/2 to that edge gadget. If B ≥ max{3b, a + b},then B/2 − b/2 ≥ max{a/2, b}, hen
e the lemma holds also in this 
ase.Note, �nally, that the above analysis is valid also for tours su
h that a �longjump� may start in a semitraversed gadget with no unde�ned traversal and endin an unde�ned traversal, and vi
e versa.3.6 Proof of Lemma 5The proof uses the same main idea as the proof that establishes existen
e of6-regular 2-pushers: It uses the fa
t that it is possible to lower bound the sizeof neighbours to any given set of verti
es in d-regular bipartite graphs. For aset W , let N(W ) denote the neighbours ofW in the graph. With this notation, are
ent study of Engebretsen [2℄ implies that there exist, for every large enough k,a 7-regular bipartite multigraph with vertex set V1∪· V2 (|V1| = |V2| = k) su
hthat for every W ⊆ V1 and every W ⊆ V1, the following holds:

|W | ≤ 0.15k =⇒ |N(W )| > 8|W |/3,
0.15k ≤ |W | ≤ 0.60k =⇒ |N(W )| > 0.25k + |W |,
|W | ≥ 0.60k =⇒ |N(W )| > 5k/8 + 3|W |/8,
|W | ≤ 0.31k =⇒ |N(W )| > 2|W |,
0.31k ≤ |W | ≤ 0.35k =⇒ |N(W )| > 0.31k + |W |,
|W | ≥ 0.35k =⇒ |N(W )| > 31k/65 + 34|W |/65.Our task is to prove that for every partition of the left verti
es into sets T1, U1and S1 and every partition of the right verti
es into sets T2, U2 and S2 su
h14



that there are no edges from T1 to T2, and there are no edges from U1 to U2,
2
(

|S1| + |S2|
)

≥ min
{

k, |U1| + |T2| + |S1| + |S2|, |U2| + |T1| + |S1| + |S2|
}.Sin
e there are no edges between T1 and T2 and there are no edges between U1and U2, it follows that |S1| ≥ |N(T2)| − |U1|. Similarly, |S2| ≥ |N(U1)| − |T2|.Also, it is easy to see that |T1| ≤ k−|N(T2)| and that |U2| ≤ k−|N(U1)|. Theseobservations are used repeatedly in the 
ase analysis below.From now on, we use the shorthands |T1| = kt1, |U1| = ku1, |S1| = ks1,

|T2| = kt2, |U2| = ku2, and |S2| = ks2. We 
an also assume without loss ofgenerality that u1 + t2 ≤ t1 + u2. Hen
e, we must show that
2s1 + 2s2 ≥ min{1, u1 + t2 + s1 + s2}. (1)We let n(x) denote the size of the neighbours of some set with size x. Thefollowing, somewhat overlapping, 
ases 
over all possible values of u1 and t2.Hen
e, they are enough to 
omplete the proof of the lemma.Case I: u1 ≤ 0.31 and t2 ≤ 0.31. In this 
ase s1+s2 ≥ n(t2)−u1+n(u1)−t2 ≥

u1 + t2, whi
h implies (1).Case II: 0.15 ≤ u1 ≤ 0.60 and 0.15 ≤ t2 ≤ 0.60. Sin
e s1 ≥ n(t2) − u1 ≥
t2 + 1

4
− u1 and s2 ≥ n(u1) − t2 ≥ u1 + 1

4
− t2 in this 
ase, it follows that

s1 + s2 ≥ 1

2
, whi
h implies (1).Case III: u1 ≥ 0.35 and t2 ≥ 0.35. Using the fa
t that u1 + t2 ≤ t1 + u2 ≤

2− n(t2)−n(u1) ≤
68

65
− 34

65
u1 −

34

35
t2, or, equivalently, that u1 + t2 ≤ 68

99
< 0.70,we rea
h a 
ontradi
tion sin
e u1 + t2 must be at least 0.70 in this 
ase. Hen
ethis 
ase 
annot o

ur.Case IV a: u1 ≤ 0.35 and t2 ≥ 0.60. In this 
ase s1 ≥ n(t2) − u1 ≥ 3

8
t2 +

5

8
− u1 ≥ 3

8
· 3

5
+ 5

8
− 7

20
= 1

2
, whi
h implies (1).Case IVb: u1 ≥ 0.60 and t2 ≤ 0.35. In this 
ase s2 ≥ n(u1) − t2 ≥ 3

8
u1 +

5

8
− t2 ≥ 3

8
· 3

5
+ 5

8
− 7

20
= 1

2
, whi
h implies (1).Case V a: u1 ≤ 0.15 and t2 ≥ 0.35. In this 
ase s1 ≥ n(t2) − u1 ≥ 31

65
+

34

65
t2 − u1 ≥ 31

65
+ 34

65
· 35

100
− 15

100
= 51

100
> 1

2
, whi
h implies (1).Case Vb: u1 ≥ 0.35 and t2 ≤ 0.15. In this 
ase s2 ≥ n(u1) − t2 ≥ 31

65
+

34

65
u1 − t2 ≥ 31

65
+ 34

65
· 35

100
− 15

100
= 51

100
> 1

2
, whi
h implies (1).Case VI a: u1 ≤ 0.15 and 0.31 ≤ t2 ≤ 0.35. In this 
ase s1 ≥ n(t2) − u1 ≥

t2 + 0.31− u1 and s2 > max{n(u1) − t2, 0} > max{ 8

3
u1 − t2, 0}. This gives twosub-
ases that together imply (1).

t2 ≥ 8

3
u1: s1 + s2 ≥ s1 ≥ 5

8
t2 + 0.31 ≥ 5

8
· 0.31 + 0.31 = 403

800
> 1

2
.

t2 ≤ 8

3
u1: s1 + s2 ≥ 5

3
u1 + 0.31 ≥ 5

8
t2 + 0.31 > 1

2
.15



A BFigure 9: The symmetri
 gadget for equations of the form x + y + z = 1. Thereis a Hamiltonian path from A to B only if an odd number of the ti
ked edgesare traversed.Case VI b: 0.31 ≤ u1 ≤ 0.35 and t2 ≤ 0.15. In this 
ase s1 > max{n(t2) −
u1, 0} > max{ 8

3
t2 − u1, 0} and s2 ≥ n(u1) − t2 ≥ u1 + 0.31− t2. This gives twosub-
ases that together imply (1).

u1 ≥ 8

3
t2: s1 + s2 ≥ s2 ≥ 5

8
u1 + 0.31 ≥ 5

8
· 0.31 + 0.31 = 403

800
> 1

2
.

u1 ≤ 8

3
t2: s1 + s2 ≥ 5

3
t2 + 0.31 ≥ 5

8
u1 + 0.31 > 1

2
.4 The hardness of (1,B)-TSPTo adapt the 
onstru
tion from the � 3 to the symmetri
 
ase we 
hange thegadgets; on a high level both the 
onstru
tion and the proof of 
orre
tness areas in the asymmetri
 
ase. The equation gadget is repla
ed with the gadget inFig. 9; this gadget tests odd instead of even parity.Proposition 2. The only way to traverse the equation gadget in Fig. 9 with atour of length �ve�if the edge gadgets 
ount as length one�is to traverse anodd number of edge gadgets. All other traversals have length at least six.To 
onstru
t a symmetri
 edge gadget, note that already the asymmetri
 edgegadget is in fa
t almost symmetri
 sin
e the bridge in the asymmetri
 edgegadget is an undire
ted path of length a. Consider the following attempt tomake an undire
ted edge gadget: Let the edges 
onne
ting the bridge withother bridges in the asymmetri
 edge gadget be undire
ted and 
onne
t the edgegadgets as in the asymmetri
 
ase. The resulting gadget penalises many, butnot all, unwanted tours. In parti
ular, the weakness with the above 
onstru
tionis that a path may, without any additional penalty, enter a bridge through anedge that is dire
ted towards the bridge in the asymmetri
 version of the gadgetand leave the same bridge along the other edge that is dire
ted towards thebridge. To over
ome this problem, we 
onstru
t a symmetri
 version of theasymmetri
 bridge by hooking up three 
opies of the �symmetrised asymmetri
bridge� des
ribed above in parallel and then rotating the resulting pa
kage 90◦(see Fig. 10). We 
all the resulting stru
ture a symmetri
 bridge.Similar to the asymmetri
 
ase, we say that a symmetri
 bridge has a de�nedtraversal if the tour restri
ted to the bridge traverses all three bridges andexa
tly two of the horizontal edges in Fig. 10. With a = 4, b = 2 and B = 8,the te
hni
al lemmas from � 3.5 
an be used to show that any unde�ned traversal16



Figure 10: To transform the edge gadget from Fig. 2 into a gadget that 
an beused in the symmetri
 
ase, all o

urren
es of the stru
ture to the left above arerepla
ed with the stru
ture to the right above. All verti
al edges in the right�gure have weight 1 and there are a edges in ea
h of the three verti
al paths;the other edges in the right �gure have weight b.of the edge gadget gives an additional lo
al 
ost of four, i.e., an additional lo
al
ost of two 
an be attributed to ea
h of the two edge gadgets that meet atthe symmetri
 bridge. De�ning traversed, untraversed and semitraversed edgegadgets as in the asymmetri
 
ase, a 
ase analysis similar to that in the proofof Lemma 7 then shows that a 
ost of at least two 
an be asso
iated with ea
hsemitraversed symmetri
 edge gadget. As in the asymmetri
 
ase, the individualedge gadgets 
orresponding to the same variable are stit
hed together a

ordingto the edges in a d-regular bipartite multigraph with vertex set V1∪· V2 (where
|V1| = |V2| = k and 2k is the number of o

urren
es of the variable) that hasthe property that for every partition of V1 into sets T1, U1 and S1 and everypartition of V2 into sets T2, U2 and S2 su
h that there are no edges from T1to T2, and there are no edges from U1 to U2, it holds that

2
(

|S1| + |S2|
)

≥ min
{

k, |U1| + |T2| + |S1| + |S2|, |U2| + |T1| + |S1| + |S2|
}.To summarise, the following lemma follows in the same way as in the asymmetri

ase:Lemma 8. Consider a system of linear equations with the properties des
ribedin Theorem 1 with δ su�
iently small and an instan
e of (1,B)-TSP 
onstru
tedfrom it as outlined above with a = 4, b = 2, d = 7, and B = 8. A TSP tourof length 9md(a + b) + 10m + u in this instan
e 
an be used to 
onstru
t inpolynomial time an assignment satisfying all but at most u equations.For the symmetri
 analogue of Lemma 1, note that a �jump� past an edge gadgeta
tually requires following an edge of length 9md(a + b) +1 as the 
onstru
tionis des
ribed above. However, by adding for every edge gadget an edge of lengthtwo that is parallel with the edge gadget in the graph de�ning the TSP instan
e,it is easy to see that the following lemma holds:Lemma 9. Consider a system of linear equations with the properties des
ribedin Theorem 1 and an instan
e of (1,B)-TSP 
onstru
ted from it as outlined17



above. Given an assignment to the variables in the system of linear equationsthat satis�es all but u equations, it is possible to 
onstru
t a TSP tour withlength 9md(a + b) + 10m + u.Given the above lemmas, our se
ond main theorem follows in exa
tly the sameway as in the asymmetri
 
ase.Theorem 3. For any 
onstant ε > 0, it is NP-hard to approximate (1,8)-TSPwithin 389/388− ε.5 Con
luding remarksThere are two main 
on
lusions from the work presented in this paper. First,the fa
t that it is relatively straightforward to adapt the 
onstru
tion devised byPapadimitriou and Vempala [9℄ to the 
ase of bounded metri
s shows that thislatter 
onstru
tion is essentially lo
al, in spite of the fa
t that it uses as a 
riti
al
omponent edges with unbounded�but 
onstant�length. This indi
ates thatnew ideas are needed to obtain hardness within fa
tors that are ω(1), or evenhardness within an arbitrarily large 
onstant fa
tor.The se
ond main 
on
lusion is that simpler 
onstru
tions and simpler proofsof 
orre
tness are needed in order to obtain hardness results that are substan-tially better than the 
urrently best known ones. Current te
hniques have beenpushed more or less to their limits. Also, earlier versions of this paper as well asearlier versions of [9℄ 
ontained errors in the a

ounting of penalties due to non-standard traversals. In order to a
hieve stronger hardness results, some kindof more stru
tured approa
h is probably ne
essary�more 
ompli
ated gadgetredu
tions and a

ounting pro
edures are bound to be even more sensitive to er-rors in the analysis than the 
onstru
tion of Papadimitriou and Vempala [9℄. Webelieve that a dire
t PCP 
onstru
tion is the natural next step for 
onstru
tingstronger approximation hardness results for TSP with triangle inequality.A
knowledgementsWe thank Santosh Vempala for many 
larifying dis
ussions on the subje
t of thispaper. Also, the anonymous referees 
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