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Abstract

The general asymmetric TSP with triangle inequality is known to be ap-
proximable only within logarithmic factors. In this paper we study the
asymmetric and symmetric TSP problems with bounded metrics, i.e., met-
rics where the distances are integers between one and some constant upper
bound. Recently, Papadimitriou and Vempala announced improved ap-
proximation hardness results for both symmetric and asymmetric TSP
with graph metric. In this note, we show that a similar construction can
be used to obtain only slightly weaker approximation hardness results for
TSP with triangle inequality and distances that are integers between one
and eight. This shows that the Papadimitriou-Vempala construction is
“local” in nature and, intuitively, indicates that it cannot be used to ob-
tain hardness factors that grow with the size of the instance.
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1 Introduction

A common special case of the Travelling Salesman Problem (TSP) is the metric
TSP, where the distances between the cities satisfy the triangle inequality. The
decision version of this special case was shown to be NP-complete by Karp [7],
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which means that we have little hope of computing exact solutions in polynomial
time. Christofides [1] has constructed an elegant algorithm approximating the
metric TSP within 3/2, i.e., an algorithm that always produces a tour whose
weight is at most a factor 3/2 from the weight of the optimal tour. For the
case when the distance function may be asymmetric, the best known algorithm
approximates the solution within O(logn), where n is the number of cities [6].
As for lower bounds, a recent result of Engebretsen and Karpinski [4] shows
that it is NP-hard to approximate TSP where the distances are constrained to
be either one or two—note that such a distance function always satisfies the
triangle inequality—within 321/320 — ¢ and that it is NP-hard to approximate
the symmetric TSP with distances one and two within 741/740 — ¢ for every
constant € > 0. Papadimitriou and Vempala [8] recently announced stronger
approximation hardness results for the asymmetric and symmetric versions of
the TSP with graph metric, but left the case of TSP with bounded metric open.
(Their original proof contained an error influencing the explicit constants. A
new proof with the new constants 117/116 —¢e and 220/219 —e&, respectively, was
announced by Papadimitriou and Vempala in May 2002; the latest version of
the paper is available from URL http://www-math.mit.edu/~ vempala/papers/
tspinapprox.ps). Apart from being an interesting question on its own, it is
conceivable that the special cases with bounded metric are easier to approximate
than the cases when the distance between two points can grow with the number
of cities in the instance. Indeed, the asymmetric TSP with distances bounded
by B can be approximated within B by just picking any tour as the solution.

Definition 1. The Asymmetric Travelling Salesman Problem (ATSP) is the
following minimisation problem: Given a collection of cities and a matriz whose
entries are interpreted as the distance from a city to another, find the shortest
tour starting and ending in the same city and visiting every city exactly once.

Definition 2. (1,B)-ATSP is the special case of ATSP where the entries in the
distance matriz obey the triangle inequality and the off-diagonal entries in the
distance matriz are integers between 1 and B. (1,B)-TSP is the special case of
(1,B)-ATSP where the distance matriz is symmetric.

In this paper, we prove that a slight modification to the recent construction
of Papadimitriou and Vempala shows that it is, for any constant ¢ > 0, NP-
hard to approximate (1,8)-ATSP within 135/134 —¢ (Theorem 2) and that it is,
for any constant € > 0, NP-hard to approximate (1,8)-TSP with 389/388 — ¢
(Theorem 3). In a preliminary version of this paper [3], we erroneously claimed
slightly better bounds.

2  Overview of the “unbounded” construction

Papadimitriou and Vempala [9] prove their hardness result by reduction from
Hastad’s approximation hardness result for systems of linear equations [5].



Theorem 1 (|5]). For any constant § € (0,1/2), there exists systems of linear
equations mod 2 with 2m equations and exactly three unknowns in each equation
such that: 1) Each variable in the instance occurs a constant number of times,
half of them negated and half of them unnegated. This constant grows as Q(2'/°).
2) Fither there is an assignment satisfying all but at most dm equations, or every
assignment leaves at least (1 — 0)m equations unsatisfied. 3) It is NP-hard to
distinguish between these two cases.

From a system of linear equations with the properties described in Theorem 1,
Papadimitriou and Vempala construct an instance of ATSP by hooking several
gadgets together. Each equation is represented by an equation gadget of the
form shown in Fig. 1. The ticked edges in that figure in fact correspond to
gadgets themselves; these gadgets are shown in Fig. 2. The construction is pa-
rameterised; Papadimitriou and Vempala set a = 4, b = 2 and d = 6 in the
current version of their paper [9]. The main idea in the construction is that the
way a TSP tour traverses the latter gadgets mentioned above, the so called edge
gadgets, gives an assignment to the variables in the underlying system of linear
equations (see Figs. 3 and 4). The main technical challenge is to prove that
there is a correspondence between the length of TSP tours in the constructed
graph and the number of equations satisfied by the corresponding assignment.
To this end, Papadimitriou and Vempala devised a way to connect the edge
gadgets corresponding to the same variable in a net with certain expander-type
properties. Informally, the structure of this net i1s such that any attempt to con-
struct a TSP-tour that represents the value of a certain variable inconsistently
in the gadgets corresponding to the equations where that variable occurs gives
a tour of high cost. Intuitively, it is therefore always suboptimal to construct
such “cheating” TSP-tours.

More formally, Papadimitriou and Vempala introduces the notion of a b-
pusher [9, Definition 1] to precisely describe the structure that is needed to
thwart “cheating” TSP-tours: A d-regular bipartite graph with vertex set V1UVs
is called a b-pusher if, for any partition of V; into subsets Uy, S1,71 and any
partition of V4 into subsets Us, So, T such that there are no edges from vertices
in Uy to vertices in Us, the number (71, 7%) of edges between vertices in 77 and
T, satisfies

1 1
(b+5) (@1 12) = min{ O3]+ |T2], | T3] + |V} = (b= 5) (1511 + [ S2])-

Papadimitriou and Vempala establish the existence of 6-regular 2-pushers [9,
Theorem 5.1] and use such graphs to construct the precise coupling between
different edge gadgets.

2.1 Modifications for bounded metrics

An inspection of the details of the Papadimitriou-Vempala construction shows
that it, essentially, uses a metric which is bounded, in our sense of the word,
by some constant that depends on e. Qualitatively, their result is therefore



Figure 1: The gadget for equations of the form z + y 4+ 2z = 0. There is a
Hamiltonian path from A to B only if zero or two of the ticked edges, which are
actually gadgets themselves (Fig. 2), are traversed. The non-ticked edges have
weight 1.

Figure 2: The edge gadget consists of d bridges. Each of the bridges are shared
between two different edge gadgets. Each bridge consist of aL undirected edges
of weight 1/L each. In the construction of Papadimitriou and Vempala [9], L is
a (very) large integer constant—in our construction for bounded metrics, L = 1.
The edges between bridges have weight b, the first horizontal edge has weight

|21, and the last horizontal edge has weight [25L].

Figure 3: An untraversed edge gadget represents the value 0.

Figure 4: A traversed edge gadget represents the value 1.



of the form “there exists a constant c¢ such that for every € > 0 it is hard to
approximate TSP within ¢ —e¢ in instances with metrics bounded by B(g)”. Our
result in this paper 1s, again qualitatively, that the order of the quantifiers may
be reversed, i.e., our result is of the form “there exists constants B and c such
that for every € > 0 it is hard to approximate TSP within ¢ — € in instances
with metrics bounded by B”. Quantitatively, Papadimitriou and Vempala [9]
have ¢ = 117/116 for the asymmetric TSP and ¢ = 220/219 for the symmetric
TSP. For our case, the result is a trade-off between B and c. We settle for
B = 8 which gives ¢ = 135/134 for the asymmetric TSP and ¢ = 389/388 for
the symmetric TSP.

As mentioned in the caption of Fig. 2, the edge gadgets devised by Papadim-
itriou and Vempala [9] contain edges with very small weight. Specifically, the
weight of the lightest edge in the instance is negligible compared to the con-
stant € in the main hardness result. In our model for bounded metrics, we only
allow distances that are integers between one and some bound B. Consequently,
we must modify the bridges in the edge gadgets so that they contain a edges
of weight one instead of aL edges of weight 1/L. This modification implies
that the analysis must be modified. In particular, the so called “doubly tra-
versed bridges”, that incur an extra cost of @ + b in the Papadimitriou-Vempala
construction, only incur a cost of a + b — 2 in our case. We believe that it 1s
more natural to view those bridges as a kind of “semitraversed edge gadget” in
our case. This change implies that a certain trick used by Papadimitriou and
Vempala to associate a larger cost with the semitraversed edge gadgets does not
work.

To conclude, we obtain weaker bounds on the cost incurred by “cheating
TSP tours” in our case. This means that we cannot use the 6-regular 2-pushers
used by Papadimitriou and Vempala—to use the straightforward reduction, we
would instead need 2.5-pushers. It is easy to prove that 8-regular 2.5-pushers
exist. However, using 8-regular graphs instead of 6-regular ones gives weaker
approximation hardness results. To improve our results somewhat, we use a
slightly more elaborate reduction, that does not need pushers but bipartite
graphs with slightly weaker properties. As the final link in the proof of our
hardness results, we show that there exist 7-regular graphs with the properties
we need for our analysis to go through.

3 The hardness of (1,B)-ATSP

The purpose of this section is to show that the Papadimitriou-Vempala con-
struction can be analysed also in the setting of bounded metrics with only small
modifications. Specifically, we prove the following result:

Theorem 2. For any sufficiently small constant € > 0, there exists for any large
enough integer m instances of (1,8)-ATSP with 113m cities such that: 1) Either
there is a TSP tour with length at most (134 + &)m or else every TSP tour has
length at least (135 —e)m. 2) It is NP-hard to distinguish these two cases.



The proof of this theorem follows from Lemmas 1 and 2 described below.

We describe our instance of (1,B)-ATSP by constructing a weighted directed
graph and then let the (1,B)-ATSP instance have the nodes of this graph as
cities. In this paper we denote by f(u,v) the distance from w to v in this
weighted graph and define the distance between two cities u and v is the (1,B)-
ATSP instance, denoted by c(u,v), as ¢(u,v) = min{l(u,v), B}.

3.1 The gadgets

The gadgets are parameterised by the parameters a, b and d; they will be
specified later. The equation gadget for equations of the form x +y+ 2 =0 is
shown in Fig. 1. The following property of the equation gadget was established
by Papadimitriou and Vempala [9]:

Proposition 1. There is a Hamiltonian path of length four through the gadget
only if zero or two of the ticked edges are traversed. All other traversals have
cost at least five.

The equation gadgets are connected in a circle by identifying vertex B in
one gadget with vertex A in the next gadget in the circle.

The ticked edges in Fig. 1 are gadgets themselves. This gadget is shown in
Fig. 2. Each of the bridges is shared between two different edge gadgets, one
corresponding to a positive occurrence of the literal and one corresponding to
a negative occurrence. The precise coupling is provided by a certain d-regular
bipartite multigraph. Specifically, proceed as follows for each literal z: Let k
be the number of occurrences of x (and therefore also of z); Take a bipartite
d-regular multigraph with vertex set ViUV (|V1| = |Va| = k); Label the vertices
in V4 with the occurrences of x and the vertices in V5 with the occurrences of &;
Let a positive and a negative occurrence correspond to the same edge gadget
if there is an edge between the corresponding vertices in the bipartite graph—
the order of the occurrences inside the edge gadget i1s not important. Later,
we describe some additional required properties of the bipartite multigraph, for
now it only remains to mention that they can be constructed in constant time
since they are of constant size.

3.2 Constructing a tour from an assignment

Consider a system of linear equations with the properties described in Theorem 1
and an instance of (1,B)-ATSP constructed from it as described in § 3.1. Let
7 be an assignment to the variables in the system of linear equations and consider
the tour that 1) For each variable = traverses the edge gadget corresponding
to = as shown in Fig. 3 if m(x) = 0 and as shown in Fig. 4 if w(x) = 1. 2) For
each equation gadget enters each equation gadget at node A, takes the shortest
possible way to B under the condition that the ticked edges are traversed as
prescribed by the traversals of the edge gadgets, and then exits the equation
gadget at node B.



Since there are 2m equations in the system of linear equations, the number
of cities contained in the equation gadgets is 4-2m = 8m. Similarly, since every
edge gadget is shared between two equation gadgets, there are 2m - %d(a—l— 1=
3md(a + 1) cities inside the equation gadget.

The length of the tour described above “inside” the edge gadgets is d(a + b).
The “extra” cost of one that comes from the two “outermost” horizontal edges
in Fig. 2 is attributed to the equation gadget; in this way we can assign a cost
of one to all edges in Fig. 1. Since there are 2m equations, three edge gadgets
per equation gadget, and every edge gadget is shared between two equation
gadgets, it follows that the total cost of the tour inside the edge gadgets is
3md(a + b). Considering an arbitrary equation gadget, the path from A to B
in a tour constructed as described above has length four if the corresponding
equation in the system of linear equations is satisfied by the assignment 7 and
length five otherwise. (Strictly speaking, it is impossible to have three traversed
edge gadgets in an equation gadget, since this does not result in a TSP tour.
However, we can regard the case when the tour of the third edge gadget leaves
the edge gadget by jumping directly to the exit node of the equation gadget as
a tour with three traversals; such a tour gives a cost of five, in addition to the
cost attributed to the edge gadgets.) Hence, the total cost accounted to the
equation gadgets is 8m 4 u, where u is the number of unsatisfied equations. We
summarise the above discussion:

Lemma 1. Consider a system of linear equations with the properties described
in Theorem 1 and an instance of (1,B)-ATSP constructed from it as described
in § 3.1. This instance contains 3md(a+1)+8m cities. Given an assignment to
the variables in the system of linear equations that satisfies all but u equations,
the tour produced from this assignment as described above has length 3md(a +
b) +8m + u.

3.3 Constructing an assignment from a tour

The main challenge now is to prove that the above correspondence between
the length of the optimum tour and the number of unsatisfied equation holds
also when we drop the assumption that the tour is shaped in the intended way.
Specifically, the aim is to show the following:

Lemma 2. Consider a system of linear equations with the properties described
in Theorem 1 with 0 sufficiently small and an instance of (1,B)-ATSP con-
structed from it as described in § 3.1 witha=4,b=2,d="7, and B=8. Any
TSP tour of length 3md(a+b)+8m—+wu in this instance can be used to construct
mn polynomial time an assignment satisfying all but at most u equations.

Our proof uses three technical lemmas. The first one shows that any tour can be
transformed into a tour with a certain behaviour inside the bridges. The second
lemma lower bounds the additional cost caused by non-standard traversals of
an edge gadget and the last lemma establishes that the bipartite graph used has
a certain expansion-related property.



Lemma 3. Consider a system of linear equations with the properties described
in Theorem 1 and an instance of (1,B)-ATSP constructed from it as described
wm § 3.1. If B > a, any TSP tour in such an instance can be transformed in
polynomial time into a tour with smaller, or equal, length with the following
properties:

1) Let (u,v) be an edge of the tour and suppose that u and v both belong
to the same bridge. Then w and v are neighbours in the graph defining the
(1,B)-ATSP instance.

2) Let u and v be neighbours on the same bridge and assume that there is no
edge between u and v in the tour. Let (u,u’) and (v,v") be edges of the tour and
assume that c(u,u’) = £(u,u’) and that c(v,v') = L(v,v"). Then the shortest
path from w to v’ does not intersect the shortest path from v to v'.

Definition 3. A bridge has a defined traversal if the tour restricted to the
bridge 1s a path of length a; otherwise the bridge has an undefined traversal.

Definition 4. An edge gadget is traversed if all bridges have defined traversals
and the connection edges (horizontal in Fig. 2) are traversed by the tour; it is
untraversed if all bridges have defined traversals and none of the the connection
edges are traversed by the tour. All other edge gadgets are semitraversed.

Lemma 4. Consider a system of linear equations with the properties described
in Theorem 1 and an instance of (1,B)-ATSP constructed from it as described
wm § 3.1. From a tour with the properties guaranteed by Lemma 3, it 1s possible
to associate a cost of at least min{a/2,b,a/2+b/2—1} with every semitraversed
edge gadget given that B > max{3b,a+ b,2a +b— 2}.

Lemma 5. For every large enough constant k, there exists a 7-regular bipartite
multigraph with vertex set ViuVa (|Vi| = |Va| = k) such that for every partition
of V1 into sets Ty, Uy and S1 and every partition of Vo into sets Ty, Us and
So such that there are no edges from Ty to Ts, and there are no edges from Uy
to UQ,

2(1S1| + [S2]) = min{k, [U1] + | To| + [S1] + ||, [Ua] + T3] + [ S1] + | S|}

Before proving these lemmas, we show that they give—Dby appropriate choice
of parameters—the desired connection between the length of an arbitrary TSP
tour and the number of satisfied equations in the corresponding system of linear
equations.

Proof of Lemma 2. Set a =4, b=2,d="7,and B = 8. Then it follows from
Lemma 4 that every semitraversed edge gadget incurs a cost of at least two.

For every variable z, let the bipartite multigraph used to construct the edge
gadget have the property stated in Lemma 5 with k equal to the number of
occurrences of « (and hence also of Z). Lemma b asserts that such graphs exist
for sufficiently large k; hence we must assume that § in Theorem 1 is small
enough.



The assignment to an arbitrary variable z is constructed as follows: Suppose
that x occurs k times positively and k times negatively. Let T} be the set of tra-
versed positive occurrences and 15 be the set of traversed negative occurrences.
Define Uy, U, S1, and Sy similarly. If |Sy| + |S2| > k/2, set 7(z) = 0 with
probability 1/2 and m(x) = 1 with probability 1/2. Otherwise define m(x) de-
terministically as follows: If |T1| + |Uz| > |T2| + |Ui], let m(x) = 1, otherwise let
m(z) = 0. The resulting probabilistic assignment is then derandomised, using
the method of conditional probabilities, to produce an assignment satisfying at
least as many equations as the expected number of equations satisfied by 7.

We need to prove that there is at most one unsatisfied equation per unit of
the “extra” cost u, i.e., per unit of the cost in addition to the “normal” cost of
3md(a + b) for the edge gadgets and 8m for the equation gadgets. To this end,
we show that it is possible to associate a cost of at least 1/2 with every equation
containing a variable that has been set at random and a cost of at least 1 with
every other equation that could be unsatisfied by .

Let x be an arbitrary variable and suppose that x occurs 2k times. Define
Ty, Ty, Uy, Us, S1, and So as above. Since variables are given probabilistic
assignments only when |S1| + |S2| > k/2 and every semitraversed edge gadgets
incurs an extra cost of 2, there is an extra cost of at least 1/2 associated with
every equation containing a variable that has been assigned a random value.
Since every such eqation is satisfied with probability 1/2, no matter the number
of variables in the equation that were given random assignments, the extra
cost attributed to variables with a random assignment is equal to the expected
number of unsatisfied equations from this assignment.

Consider next the case when |S1| + |S2| < k/2. Since Lemma 5 guarantees
that the extra cost incurred by the semitraversed occurrences of x and Z is no
less than

min{|Uy| + [To| + |S1] + [Sal, U] + |T1] + |S1] +1S2| }

in this case, the extra cost incurred by the semitraversed occurrences pays for the
potential unsatisfaction of every equation that contains a variable that has been
assigned a value contradicting the traversal of the corresponding edge gadget.
The only remaining possibility for equations that are unsatisfied under m comes
from equations where all variables have been assigned values according to the
traversal of the corresponding edge gadgets and that assignment does not satisfy
the equation. However, for such equations, there is an extra cost of one in the
equation gadget according to Proposition 1. O

3.4 Proof of Lemma 3

To ensure property 1, repeat the following for all edges (u,v) of the tour such
that u and v belong to the same bridge but are not neighbours in the graph:
Redefine the tour, so that instead of jumping from u directly to v, the tour
follows the shortest path from u to v in the graph defining the instance. Since
B > a this does not increase the length of the tour. This change will make the



tour pass through some cities—the cities that are on the shortest path from u
to v in the graph—twice. For all such cities w, do the following: Let w’ be
the city visited immediately before w and w’ be the city visited immediately
after w. Then replace the edges (w’, w) and (w,w”) by the single edge (w’, w")
in the tour. By triangle inequality this procedure does not increase the length
of the tour.

To ensure property 2, repeat the following for all vertices u and v that belong
to the same bridge but for which there is no edge between u and v in the tour:
Let v’ and v’ be defined as in the formulation of the lemma. If the shortest path
from u to u’ does not intersect the shortest path from v to v’, no transformation
of the tour is needed. Otherwise, the fact that u and v are on the same bridge
implies that we can assume without loss of generality that the shortest path
from u to u' passes v (otherwise we just exchange « and v in the argument). We
then redefine the tour, so that instead of jumping from u directly to «’, the tour
follows the shortest path from w to «’ in the graph defining the instance. As
above, for every node w on the shortest path from u to u' (including v), let w’ be
the city visited immediately before w and w” be the city visited immediately
after w and replace the edges (w’, w) and (w,w’) by the single edge (w’,w”) in
the tour. By triangle inequality this procedure does not increase the length of
the tour.

3.5 Proof of Lemma 4

Consider a semitraversed edge gadget. We now argue by case analysis that it
introduces an extra cost in addition to the “standard” cost of a + b per bridge.
For accounting purposes, we use the convention that this standard cost corre-
sponds to a cost of b/2 for the incoming edge of the tour plus a cost of b/2 for
the outgoing edge of the tour plus a cost of a for the traversal of the bridge
itself. When analysing the extra cost due to semitraversals, it is important to
attribute this extra cost to both edge gadgets that take part in the semitraver-
sal. Sometimes this means two different edge gadgets that represent the same
literal  (or Z); sometimes this means the two edge gadgets that cross at a cer-
tain bridge. For “long” jumps, i.e., cases when the tour traverses an edge (u,v)
with cost ¢(u,v) # £(u,v), a cost of B/2 is attributed to both of the involved
bridges.

Lemma 6. Given that B > 2a + b — 2, it 1s possible to associate a cost of at
least of at least a/2+b/2 — 1 with every edge gadget that becomes semitraversed
because of a bridge having an undefined traversal.

Proof. We first consider the case when the metric is not bounded; we will show
later how to extend the argument to cover also bounded metrics. In the un-
bounded case, the distance between two vertices u and v is exactly the length
of the shortest path from u to v in the graph defining the instance.

Since the bridge has an undefined traversal, there must be two adjacent
cities u and v that are not neighbours in the tour. Consider the edges (u,u’)

10



Figure 5: We can assume that traversals shown in the left figure above never
occur since they can be transformed into the traversal shown in the right figure
without increasing the length of the tour. A bridge with a traversal of that form
gives an extra cost of at least min{a+b—2,a+b/2—1} if B> 2a+b— 2.

and (v,v’) in the tour—thanks to Lemma 3 we can assume that neither v’ nor
v’ belong to the bridge.

The tour must visit all cities on the bridge. Therefore the total cost of the
tour on the bridge is, according to our convention, at least 2a + 2b — 2, which
gives an extra cost of a +b — 2.

When the metric is bounded by some bound B, a case analysis shows, that
if B/2 > a+b/2 —1 it follows that the cost of the tour on a bridge with an
undefined traversal is still at least 2a + 2b — 2. Intuitively, this states that the
case shown to the right in Fig. 5 with the dotted line replaced by a “jump”
following some edge with cost B is the worst case, i.e., the case with lowest
extra cost.

Since a bridge containing an undefined traversal makes both edge gadgets
passing through it semitraversed, the proof of the lemma is complete. O

Lemma 7. Given that B > max{a + b,3b} it is possible to associate a cost of
at least min{a/2,b} with every edge gadget that becomes semitraversed because
of a bridge with a defined traversal.

Proof. We first consider the case when the metric is not bounded and show later
how to extend the argument to cover also bounded metrics. In the unbounded
case, the distance between two vertices u and v is exactly the length of the
shortest path from u to v in the graph defining the instance.

Consider first a bridge traversed from left to right but where the connecting
edge leaving the bridge is not traversed by the tour. Hence, the tour makes a
jump leaving the bridge. There are three sub-cases:

The tour goes down (Fig. 6). The earliest available free city is a distance
of 2b away; that blocks the tour leaving the right bridge, forcing it to also make
a jump of at least 2b. The next available free city is a distance of 3b away. Both
these cases give a total extra cost of 2b.

The tour goes forwards (Fig. 7). The earliest available free city is a
distance of a 4+ b away, giving a total extra cost of a.

The tour goes backwards (Fig. 8). The earliest available free city is a
distance of a 4+ b away, giving a total extra cost of a.

11



Figure 6: Switching from traversing an edge gadget representing an occurrence
of = to traversing another edge gadget representing an occurrence of = gives an
extra cost of at least b. The dotted edge above has length 3b; that gives an
extra cost of 2b which is then shared evenly among the two semitraversed edge
gadgets.
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Figure 7: Switching from traversing an edge gadget representing an occurrence
of z to traversing an edge gadget representing an occurrence of & gives an extra
cost of at least a/2. The dashed edges above has length a + b; that gives an
extra cost of a which is then shared evenly among the two semitraversed edge
gadgets.

Figure 8: Switching from traversing an edge gadget representing an occurrence
of = to traversing an edge gadget representing an occurrence of & gives an extra
cost of at least a/2. The dashed edges above has length a + b; that gives an
extra cost of a which is then shared evenly among the two semitraversed edge
gadgets.
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Next, consider a bridge traversed from left to right where the connecting
edge entering the bridge 1s not traversed by the tour. Again, there are three
sub-cases.

The tour comes from above (Fig. 6). The carliest available free city is
a distance of 2b away, but that blocks the tour entering the right bridge, forcing
it to also make a jump of at least 2b. The next available free city is a distance
of 3b away. Both these cases give a total extra cost of 2b.

The tour comes from the front (Fig. 7). The earliest available free city
is a distance of a 4+ b away, giving a total extra cost of a.

The tour comes from behind (Fig. 8). The earliest available free city
is a distance of a 4+ b away, giving a total extra cost of a.

So far, the analysis only considered unbounded metrics. Note first, however,
that if B > max{3b,a + b}, the above argument is valid. If the tour makes a
larger jump than the shortest possible jumps stated above, the additional cost
can never decrease, thanks to the triangle inequality. Next, note that if the tour
leaves a bridge with a defined traversal with a “long jump”, i.e., following an edge
(u,v) where c(u,v) # €(u,v), that particular bridge can only cause one of the
edge gadgets passing through it to be semitraversed and hence we can allocate
the entire net cost of B/2 — b/2 to that edge gadget. If B > max{3b,a + b},
then B/2 —b/2 > max{a/2,b}, hence the lemma holds also in this case. O

Note, finally, that the above analysis is valid also for tours such that a “long
jump” may start in a semitraversed gadget with no undefined traversal and end
in an undefined traversal, and vice versa.

3.6 Proof of Lemma 5

The proof uses the same main idea as the proof that establishes existence of
6-regular 2-pushers: It uses the fact that it is possible to lower bound the size
of neighbours to any given set of vertices in d-regular bipartite graphs. For a
set W, let N(W) denote the neighbours of W in the graph. With this notation, a
recent study of Engebretsen [2] implies that there exist, for every large enough k,
a T-regular bipartite multigraph with vertex set ViuUVs (|V1]| = |Va| = k) such
that for every W C V) and every W C Vj, the following holds:

W] <0.15k = |[N(W)| > 8|W|/3,

0.15k < |W| < 0.60k = |N(W)| > 0.25k + |W|,

|W| > 0.60k = |N(W)| > 5k/8+ 3|W|/8,

W] <0.31k = |[N(W)| > 2|W|,

0.31k < |W| < 0.35k = |[N(W)| > 0.31k + |W],

|W| > 0.35k = |N(W)| > 31k/65 + 34|W|/65.

Our task is to prove that for every partition of the left vertices into sets T1, Uy
and S7 and every partition of the right vertices into sets 15, Uy and Sy such
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that there are no edges from T} to T», and there are no edges from U; to Us,
2(181] + [S2]) = min{k, [Us] + [To] + |$1] + ], [Ua] + T3] + 1] + 5]}

Since there are no edges between 77 and 75 and there are no edges between U
and Us, it follows that |S1| > |N(T2)| — |Uy]|. Similarly, |Sz| > |N(U1)| — | T3]
Also, it is easy to see that |T1| < k—|N(7%)| and that |Us| < k—|N(Uy)|. These
observations are used repeatedly in the case analysis below.

From now on, we use the shorthands |T1| = kt1, |Ui| = kua, |S1| = ks,
|T2| = kta, |Ua| = kuz, and |Sz| = ks2. We can also assume without loss of
generality that u; + to < t1 + u2. Hence, we must show that

281 + 259 Zmin{l,ul—l—ﬁg—l—sl +82}. (1)

We let n(z) denote the size of the neighbours of some set with size x. The
following, somewhat overlapping, cases cover all possible values of u; and ta.
Hence, they are enough to complete the proof of the lemma.

Case I: u1 < 0.31 and t3 < 0.31. 1In this case s1+s2 > n(te)—us +n(ur)—ts >
uy + t2, which implies (1).

Case II: 0.15 < w3 < 0.60 and 0.15 < ¢35 < 0.60. Since s1 > n(te) —ug >
to + % —up and so > n(ug) —ta > ug + % — to in this case, it follows that
S1 + 89 > %, which implies (1).

Case III: u; > 0.35 and t5 > 0.35. Using the fact that u; +to <t +us <
2 —n(ta) —n(ug) < % — %ul — %fg, or, equivalently, that u; +t2 < % < 0.70,
we reach a contradiction since w1 + t9 must be at least 0.70 in this case. Hence
this case cannot occur.

Case IVa: u; < 0.35 and t2 > 0.60. In this case s1 > n(ta) —us > %tg +
% —u; > % . g + % — % = %, which implies (1).
Case IV b: u; > 0.60 and ty < 0.35. In this case so > n(uy) — ty > %ul +
% — 1y > % . g + % — % = %, which implies (1).

Case Va: u; < 0.15 and ¢ > 0.35. 1In this case s1 > n(te) —u1 > % +

34 31 34 35 15 51 1 : : :
gﬁg-ﬂlZg-’*gm—m m>§,Wthh 1mphes (1)

Case Vb: u; > 0.35 and t5 < 0.15. In this case so > n(ui) — to > % +

34 31 34 35 15 51 1 : : :
gUl-ngg-’*gm—m m>§,Wthh 1mphes (1)

Case VIa: u; < 0.15 and 0.31 < t2 < 0.35. In this case s; > n(te) —ug >
to +0.31 — u; and so > max{n(ui) —t2,0} > max{%ul — t2,0}. This gives two
sub-cases that together imply (1).

ta > Sug: s1 45> > 24+ 031> 30314031 =33 > 1.

to < %’U,l: S1 + S9 > %ul +0.31 > %ﬁg + 0.31 > %
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Figure 9: The symmetric gadget for equations of the form z +y+ 2 = 1. There
is a Hamiltonian path from A to B only if an odd number of the ticked edges
are traversed.

Case VIb: 0.31 <wuy <0.35 and t2 < 0.15. In this case s1 > max{n(t2) —
uy,0} > max{%tg —u1,0} and s2 > n(u1) —ta > ug + 0.31 — t5. This gives two
sub-cases that together imply (1).

uy > Btar 51455 > 55> 2ug +0.31>5.03140.31 = 28 > 1.

u < %tz: S1 + S9 > %ﬁg +0.31 > %ul + 0.31 > %

4 The hardness of (1,B)-TSP

To adapt the construction from the § 3 to the symmetric case we change the
gadgets; on a high level both the construction and the proof of correctness are
as in the asymmetric case. The equation gadget is replaced with the gadget in
Fig. 9; this gadget tests odd instead of even parity.

Proposition 2. The only way to traverse the equation gadget in Fig. 9 with a
tour of length five—if the edge gadgets count as length one—is to traverse an
odd number of edge gadgets. All other traversals have length at least six.

To construct a symmetric edge gadget, note that already the asymmetric edge
gadget 1s in fact almost symmetric since the bridge in the asymmetric edge
gadget is an undirected path of length a. Consider the following attempt to
make an undirected edge gadget: Let the edges connecting the bridge with
other bridges in the asymmetric edge gadget be undirected and connect the edge
gadgets as in the asymmetric case. The resulting gadget penalises many, but
not all, unwanted tours. In particular, the weakness with the above construction
is that a path may, without any additional penalty, enter a bridge through an
edge that is directed towards the bridge in the asymmetric version of the gadget
and leave the same bridge along the other edge that is directed towards the
bridge. To overcome this problem, we construct a symmetric version of the
asymmetric bridge by hooking up three copies of the “symmetrised asymmetric
bridge” described above in parallel and then rotating the resulting package 90°
(see Fig. 10). We call the resulting structure a symmetric bridge.

Similar to the asymmetric case, we say that a symmetric bridge has a defined
traversal if the tour restricted to the bridge traverses all three bridges and
exactly two of the horizontal edges in Fig. 10. With a =4, b =2 and B = 8§,
the technical lemmas from § 3.5 can be used to show that any undefined traversal
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et H

Figure 10: To transform the edge gadget from Fig. 2 into a gadget that can be
used in the symmetric case, all occurrences of the structure to the left above are
replaced with the structure to the right above. All vertical edges in the right
figure have weight 1 and there are a edges in each of the three vertical paths;
the other edges in the right figure have weight b.

of the edge gadget gives an additional local cost of four, i.e.; an additional local
cost of two can be attributed to each of the two edge gadgets that meet at
the symmetric bridge. Defining traversed, untraversed and semitraversed edge
gadgets as in the asymmetric case, a case analysis similar to that in the proof
of Lemma 7 then shows that a cost of at least two can be associated with each
semitraversed symmetric edge gadget. As in the asymmetric case, the individual
edge gadgets corresponding to the same variable are stitched together according
to the edges in a d-regular bipartite multigraph with vertex set ViUV, (where
[Vi| = |V2| = k and 2k is the number of occurrences of the variable) that has
the property that for every partition of Vi into sets 71, Uy and S; and every
partition of V5 into sets T, Uy and Sy such that there are no edges from T3
to T, and there are no edges from U; to Us, it holds that

2(181] + [S2]) = min{k, [U1] + [To] + [S1] + [Sa, [Ua] + [T1] + [ S1] + [ S2[}-

To summarise, the following lemma follows in the same way as in the asymmetric
case:

Lemma 8. Consider a system of linear equations with the properties described
in Theorem 1 with 6 sufficiently small and an instance of (1,B)-TSP constructed
from it as outlined above witha =4, b=2,d =7, and B =8. A TSP tour
of length 9md(a + b) + 10m + u in this instance can be used to construct in
polynomial time an assignment satisfying all but at most u equations.

For the symmetric analogue of Lemma 1, note that a “jump” past an edge gadget
actually requires following an edge of length 9md(a +b) + 1 as the construction
is described above. However, by adding for every edge gadget an edge of length
two that is parallel with the edge gadget in the graph defining the TSP instance,
it 1s easy to see that the following lemma holds:

Lemma 9. Consider a system of linear equations with the properties described
in Theorem 1 and an instance of (1,B)-TSP constructed from it as outlined
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above. Ghiven an assignment to the variables in the system of linear equations
that satisfies all but u equations, it is possible to construct a TSP tour with
length 9md(a + b) + 10m + u.

Given the above lemmas, our second main theorem follows in exactly the same
way as in the asymmetric case.

Theorem 3. For any constant € > 0, it is NP-hard to approzimate (1,8)-TSP
within 389/388 — ¢.

5 Concluding remarks

There are two main conclusions from the work presented in this paper. First,
the fact that it is relatively straightforward to adapt the construction devised by
Papadimitriou and Vempala [9] to the case of bounded metrics shows that this
latter construction is essentially local, in spite of the fact that 1t uses as a critical
component edges with unbounded—but constant—Ilength. This indicates that
new ideas are needed to obtain hardness within factors that are w(1), or even
hardness within an arbitrarily large constant factor.

The second main conclusion is that simpler constructions and simpler proofs
of correctness are needed in order to obtain hardness results that are substan-
tially better than the currently best known ones. Current techniques have been
pushed more or less to their limits. Also, earlier versions of this paper as well as
earlier versions of [9] contained errors in the accounting of penalties due to non-
standard traversals. In order to achieve stronger hardness results; some kind
of more structured approach is probably necessary—more complicated gadget
reductions and accounting procedures are bound to be even more sensitive to er-
rors in the analysis than the construction of Papadimitriou and Vempala [9]. We
believe that a direct PCP construction is the natural next step for constructing
stronger approximation hardness results for TSP with triangle inequality.
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