
Algorithms for Constru
tion ofOptimal and Almost-OptimalLength-Restri
ted CodesMarek Karpinski � Yakov Nekri
h yAbstra
t. In this paper we present new results on sequentialand parallel
onstru
tion of optimal and almost-optimal length-restri
ted pre�x-free
odes. We show that length-restri
ted pre�x-free
odes with error 1=nk for any k > 0
an be
onstru
ted inO(n log n) time, or in O(log n) time with n CREW pro
essors. Alength-restri
ted
ode with error 1=nk for any k � L= log� n, where� = (1 +p5)=2,
an be
onstru
ted in O(log n) time with n= log nCREW pro
essors. We also des
ribe an algorithm for the
onstru
-tion of optimal length-restri
ted
odes with maximum
odewordlength L that works in O(L) time with n CREW pro
essors.1 Introdu
tionConsider a list of items e1; e2; : : : ; en with weights �p = p1; p2; : : : ; pn respe
-tively. A
ode with lengths L = l1; l2; : : : ; ln is a pre�x-free
ode if no
ode-word is a pre�x of another one. A (pre�x-free)
ode is a length-restri
ted (orlength-limited)
ode for some integer L if li � L for all 1 � i � n. A
ode�Dept. of Computer S
ien
e, University of Bonn. Work partially supported by DFGgrants, Max-Plan
k Resear
h Prize, DIMACS, and IST grant 14036 (RAND-APX). Emailmarek�
s.uni-bonn.de.yDept. of Computer S
ien
e, University of Bonn. Work partially supported by ISTgrant 14036 (RAND-APX). Email yasha�
s.uni-bonn.de.1

is
alled a minimum redundan
y
ode or Hu�man
ode for the set of itemswith weights �p = p1; p2; : : : ; pn if Length(L; �p) = P lipi is minimal amongall pre�x-free
odes. A
ode L is a minimum redundan
y length-restri
ted
ode if Length(L; �p) is minimal among all length-restri
ted pre�x-free
odes.The problem of length-restri
ted
oding is motivated by pra
ti
al implemen-tations of
oding algorithms. If a
odeword does not �t into a ma
hine wordthis
an lead to less eÆ
ient de
oding algorithms.A Hu�man
ode
an be
onstru
ted in O(n log n) time or in O(n) timeif elements are sorted by weight (see, for instan
e [vL76℄, [MK95℄). How-ever, the
onstru
tion of a length-restri
ted minimum redundan
y
ode re-quires more time. Garey [G74℄ has des
ribed an algorithm for
onstru
tinglength-restri
ted
odes that runs in O(n2L) time. Larmore and Hirs
hberg[L87℄ des
ribed an algorithm that requires O(n3=2L log1=2 n) time. In [LH90℄the same authors presented a O(nL) time sequential algorithm, based onthe Pa
kage-Merge paradigm. Katajainen, Mo�at and Turpin [KMT95℄des
ribed an O(nL) time in-pla
e implementation of the Pa
kage-Mergeapproa
h. In [LM02℄ Lidell and Mo�at presented an algorithm that worksin O((H � L + 1)n) time, where H is the height of the longest
odeword ina Hu�man
ode (without length restri
tions). This leads to, e.g., a lineartime algorithm for the
ase when L = H �
, where
 is a
onstant. Usingthe problem redu
tion due to Larmore and Przyty
ka (see [LP95℄), S
hieber[S95℄ has given an O(n2O(plogL log logn)) algorithm for this problem. Althoughthis algorithm is slightly asymptoti
ally faster than [LH90℄ and [KMT95℄, wedo not know of any pra
ti
al implementations of this algorithm.Milidiu, Pessoa and Laber [MPL98℄ des
ribed an algorithm for length-restri
ted
odes with error 1=FL�dlog(n+dlogne�L)e+1, where Fi is the i-th Fi-bona

i number. Their algorithm runs in O(n) time for a sorted list ofweights. In [MPL99℄ the same authors presented a heuristi
 solution anddemonstrated its eÆ
ien
y in pra
ti
e.The fastest n-pro
essor algorithm for the
onstru
tion of Hu�man
odes(without length restri
tion) is due to Larmore and Przyty
ka [LP95℄. Theiralgorithm, based on a redu
tion of the Hu�man tree
onstru
tion problem tothe
on
ave least weight subsequen
e problem runs in O(pn log n) time. Analgorithm from [MPL99a℄ runs in O(H log log(n=H)) time with O(n) work,where H is the height of a Hu�man tree. Kirkpatri
k and Przyty
ka [KP96℄introdu
ed a problem of
onstru
ting so
alled almost optimal
odes, i.e. theproblem of �nding a tree T 0 that is related to the Hu�man tree T a

ordingto the formula wpl(T 0) � wpl(T) + n�k for an arbitrary error parameterk (assuming P pi = 1). They presented an eÆ
ient parallel algorithm forthe
onstru
tion of almost optimal
odes that works in O(k log n log� n) timewith n pro
essors on a CREW PRAM, and an O(k2 log n) time algorithm2

that works with n2 pro
essors on a CREW PRAM. These results were furtherimproved in [BKN02℄.In this paper we present a parallel algorithm for the
onstru
tion of minimum-redundan
y length-restri
ted
odes that is based on the Pa
kage-Mergealgorithm of Larmore and Hirs
hberg [LH90℄. Our algorithm
onstru
ts alength-restri
ted
ode in O(L) time with n pro
essors on a CREW PRAM.Thus our algorithm has the same time-pro
essor produ
t as the sequentialalgorithm of [LH90℄.We also
onsider the problem of
onstru
ting the almost-optimal length-restri
ted
odes. We show that an almost-optimal
ode with error 1=nk forany k > 0
an be
onstru
ted in O(kn log n) time using a
ombination ofresults from [LP95℄ and [AST94℄. We also des
ribe an alternative algorithmbased on Pa
kage-Merge that works with an error 1=nk in O(k log n) timewith n pro
essors on a CREW PRAM. Besides that, we present an algorithmthat works sequentially in time O(n) or in logarithmi
 time with O(n= log n)pro
essors and
onstru
ts a
ode with error 1=nk, where k � L= log� n and� = (1 +p5)=2.The rest of this paper is stru
tured as follows. In the next se
tion we sket
hthe Pa
kage-Merge algorithm. In se
tion 3 we des
ribe algorithms for the
onstru
tion of almost-optimal
odes. In se
tions 4 and 5 we des
ribe aneÆ
ient parallelization of Pa
kage-Merge. This parallelization leads to anO(L) time n-pro
essor algorithm for minimum-redundan
y length-limited
odes, and to an O(log n) time n-pro
essor algorithm for almost-optimallength-limited
odes with error 1=nk.2 Pa
kage-MergeIn this se
tion we give a sket
h of Pa
kage-Merge. In the Pa
kage-Mergealgorithm L lists of trees Si are
onstru
ted. A list S1
onsists of n leaveswith weights p1; p2; : : : ; pn, sorted a

ording to their weight. The list Sj+1is
reated from the list Sj by forming new trees tj+1i = meld(tj2i; tj2i+1) andmerging the list of new elements with a
opy of the list S1. Here tji denotesthe i-th item in the list Sj. An operation meld(t0; t00)
reates a new tree twith two sons t0 and t0, su
h that the weight of t equals to the sum of weightsof its sons. By merging two sorted lists S1 and S2 we mean
onstru
ting asorted list S3 that
onsists of all elements from S1 and S2. The depth of theelement pi equals to the number of o

urren
es of pi in the �rst 2n�2 trees ofthe list SL. On Figure 1 we show how the algorithm Pa
kage-Merge workson the set of items with weights p = 1; 1; 3; 7; 11; 15 for L = 4. The resulting
ode
onsists of
odewords with lengths L = 4; 4; 3; 2; 2; 2 respe
tively.3

1110 73211

15117311

3

4
S

S

2
S

1
S

15

1 26 4315121175321

261715117 53211

26Figure 1: An example of Pa
kage-Merge for L = 4. Elements of S1 aremarked by squares, elements resulting from melding elements on the previouslist are marked by
ir
les.When list SL is
onstru
ted, we
an
ompute depths of all elements in anoptimal
ode in O(L) time with n pro
essors. Indeed, SL
onsists of 2n� 1trees, and these trees have in total at most n leaves on every tree level.These leaves
orrespond to elements p1; : : : ; pn. We
an mark all nodes inthe biggest tree in SL and then
ompute all o

urren
es of pi in the 2n � 2smallest trees in time O(L).In se
tions 4 and 5 we des
ribe parallel algorithms for the
onstru
tionof SL. We will see in se
tion 4 that the most time-
onsuming operation isthe merging of two lists. We show how after a
ertain pre-pro
essing stagea logarithmi
 number of merge operations
an be performed in logarithmi
time with n log n pro
essors. During this pre-pro
essing stage we
omputethe prede
essor values pred(e; i) for every element e and every list Sj. Thesevalues
an be eÆ
iently re-
omputed after a meld operation and they willallow us to merge arrays in
onstant time. In se
tion 5 we show how thenumber of pro
essors
an be redu
ed from n log n to n.3 Almost-optimal length-restri
ted
odesWe de�ne average length of a
ode L as AvLen(L; p) = Length(L; p)=P ,where P = Pni=1 pi. We say that a length-restri
ted
ode L is almost-optimalwith error �, if AvLen(L; p) � AvLen(L0; �p)+� for all length-restri
ted
odesL0. Below we show how an almost-optimal length-restri
ted
ode with error1nk
an be sequentially
onstru
ted in timeO(n log n). Observe that P = P piis the length of the message, and
oding error equals to the average
ompres-sion loss per symbol. Therefore, if we want to
ompress the message of length4

O(nk), using a
ode with error 1=nk instead of an optimal length-limited
odewould lead to only a
onstant in
rease in length of the
ompressed message.Besides that, if message length is O(nk0) with k0 < k, then a
ode with error1=nk is optimal.To a
hieve this goal, we
onstru
t an optimal
ode for the \quantized"set of weights pnew = pnew1 ; pnew2 ; : : : ; pnewn . Before we de�ne pnewi ,
onsiderweights pni , where pni = dpi=(dP=nke)e(dP=nke) and P = Pni=1 pi. For any
ode L, P lipni �P lipi+(P=nk)P li � P lipi+P �n�k+2, sin
e li � n. Hen
eAvLen(L; pn) � Length(L; pn)=P � AvLen(L; p) + n�k+2.Let L� be an optimal length-restri
ted
ode for p, and LA be an opti-mal length-restri
ted
ode for pn. Then AvLen(LA; p) � AvLen(LA; pn) �AvLen(L�; pn) � AvLen(L�; p) + n�k+2. Therefore we
an
onstru
t an op-timal
ode for weights pni , then repla
e pni with pi, and the resulting
odewill have an error at most n�k+2. All weights pni are divisible by dP=nke. Wede�ne pnewi = pni (dP=nke) = pi=(dP=nke) An optimal
ode for weights pnewiis also an optimal
ode for pni . Hen
e we
an
onstru
t an optimal
ode forweights pnewi , then repla
e pnewi with pi, and the resulting
ode will also havean error at most n�k+2. Sin
e pi < P , all weights pnewi < nk for all i.Observe that instead of division by dP=nke we
an set pnewi = dpi=2me form su
h that dP=nke � 2m � 2dP=nke. This would in
rease
oding error byat most a fa
tor of 2 and allow us to
onstru
t the new set of weights usingonly bit operations, sin
e division by a power of 2
an be implemented as aright bit shift.The
onstru
tion of a length-restri
ted
ode with maximum
odeword lengthL
an be redu
ed to �nding a minimum-weight L-link path in a graph withthe
on
ave Monge property (see [LP95℄). The last problem
an be solved inO(n log U) time, where U is the maximum absolute value of the edge weightsin a graph ([AST94℄). The graph des
ribed in [LP95℄ has n nodes and edges(i; j); s.t. i < j and 2j � i � n. Edge (i; j) has weight w(i; j) = P2j�ik=1 pk.Sin
e pnewi < nk for all i, w(i; j) < nk+1 8i; j, and U < nk+1. Hen
e, we
an
onstru
t an almost optimal
ode with error 1=nk in O(kn log n) time.We
an also
onstru
t a length-restri
ted
ode with error 1=nk in loga-rithmi
 parallel time with n log n operations using the Pa
kage-Merge ap-proa
h and \quantized" weights pnewi . In [B93℄ it was shown that maximal
odeword length of a Hu�man
ode does not ex
eed min(d� log� p0mine; n�1),where p0min = pmin=P is the minimal normalized weight. Sin
e for the set ofweights pnew p0min � n�k, maximal
odeword length is above bounded byk log� n. A tighter upper bound is possible, but it is not ne
essary for ouranalysis.If L < k log� n, we
an
onstru
t an almost-optimal
ode by applyingPa
kage-Merge to the set of weights pnew de�ned above. If L > k log� n, we5

an
onstru
t an optimal (not length-restri
ted)
ode for weights pnew . Sin
ethe maximum
odeword length in this
ode does not ex
eed k log� n < L,this
ode is also an optimal length-restri
ted
ode. An optimal
ode
anbe
onstru
ted in time O(n), or in time O(k log n) with n= log n pro
essors(see [BKN02℄), if elements are sorted by weight. Sin
e pnewi < nk, elements
an be sorted in O(n) time, or, under
ertain
onditions, in O(log n) timewith n= log n pro
essors. Thus an almost-optimal length-restri
ted
ode witherror 1=nk, su
h that k � L= log� n,
an be sequentially
onstru
ted in lineartime, or in parallel time O(k log n) with n= log n pro
essors.In general
ase, we
an
onstru
t an almost-optimal length-restri
ted
odewith error 1=nk in O(k log n) time with n pro
essors. We sum up the resultsof this se
tion in the followingTheorem 1 A length-restri
ted
ode with error 1=nk for any k > 0
an be
onstru
ted in O(kn log n) time. If k � L= log� n, a length-restri
ted
odewith error 1=nk
an be
onstru
ted in O(n) time or in O(k log n) time withn= log n CREW pro
essors.4 A Parallelization of the Pa
kage-MergeWe divide elements of Sj into
lasses W jl , su
h that an element e 2 W jl i�weight(e) 2 [2l�1; 2l). We will say that elements t1; t2 from Sj are siblings ifat the j-th stage of the algorithm t1 will be melded with t2.Suppose that two elements, t1; t2 fromW jl are siblings. Then t = meld(t1; t2)will belong to W j+1l+1 . Therefore after melding elements of W jl will be mergedwith elements of W 1l+1. The only ex
eption may be an element from W jlwhose sibling does not belong to W jl . However there is at most one su
hex
eption per
lass W jl and this ex
eption
an be inserted into a
lass W jl in
onstant time with jW jl j pro
essors.The pseudo
ode des
ription of the parallel algorithm is shown on Figure2. We say e < a for an element e and a number a whenever weight(e) < a.An array ex
[l℄ helps us to handle \ex
eptions" i.e. elements e 2 W jl , su
hthat sibling(e) 62 W jl . We denote by length(W jl) the number of elementsin W jl , m is the maximum number of
lasses Wi. Pro
edure Meld(W jl)melds
onse
utive pairs of elements in W jl thus produ
ing an array of lengthjW jl j=2, first(W jl) and last(W jl) denote the �rst and the last elements of W jlrespe
tively.The bottlene
k of this algorithm is fun
tion Merge shown on line 10 ofFigure 2. This fun
tion merges ~W jl (the sorted list of elements from W jlsequentially melded in order of their weight) with the sorted list of elementsfrom W 1l+1. All other operations
an be implemented in
onstant time with6

1 for j := 1 to L do2 for 8 l s.t. Wl 6= ; pardo3 ex
[l℄ := NULL4 if (sibling(first(W jl)) < 2l�1)5 ex
[l℄ := meld(first(W jl); sibling(first(W jl)))6 W jl :=W jl n ffirst(W jl)g7 if (sibling(last(W jl)) � 2l)8 W jl :=W jl n flast(W jl)g9 ~W jl :=Meld(W jl)10 W j+1l+1 :=Merge(~W jl ;W 1l+1)11 if (ex
[l℄ 6= NULL)12 if (ex
[l℄ � 2l)13 W j+1l :=Merge(W j+1l ; fex
[l℄g)14 else15 W j+1l�1 :=Merge(W j+1l�1 ; fex
[l℄g)Figure 2: Parallel Implementation of Pa
kage-Mergen pro
essors. We will show below how arrays
an be merged eÆ
iently inaverage
onstant time per iteration. First we will show how this algorithm
an be implemented to work in O(L) time with n log n pro
essors. In thenext se
tion we will redu
e the number of pro
essors to n.We will use the following notation. Relative weight r(t) of an elementt 2 W il is weight(t)�2�l. If elements t1 and t2 belong to W jl and t is the resultof melding two elements t1 and t2 , su
h that r(t1) > r(e) and r(t2) > r(e)(r(t1) < r(e) and r(t2) < r(e)), where e is an element from W 1l+1, then theweight of t is bigger (smaller) than the weight of e.We
ompute for every item e 2 W jl and every i, l � i � l + log n thevalue of pred(e; i) = k, s.t. S1[k℄ 2 W 1i and r(S1[k℄) � r(e) < r(S1[k + 1℄).In other words, pred(e; i) is the index of the biggest element in a
lass W 1i ,whose relative weight is smaller than or equal to r(e). We also need valuesof pred0(e; l) for all e 2 S1 and all l 2 [i� log n; i) if e 2 W 1i , where pred0(e; l)is the index of the biggest element in W jl whose relative weight is smallerthan or equal to r(e). Obviously, if pred(t; i) = j and t 2 W li , then there areexa
tly j elements in S1 whose weight is less than or equal to the weight oft. Thus, if pred and pred0 are known Merge(~W jl ;W 1l+1)
an be performed in
onstant time.It remains to show how pred(e; i) and pred0(e; i)
an be
omputed andupdated after ea
h iteration. 7

S1[p1℄

t2t1 t = Sj[k℄
S1[p2℄S1[p3 + 1℄

Sj[k � 1℄
S1[p3℄

Figure 3: Computing pred(t; i) if pred(t1; i) 6= pred(t2; i).Statement 1 The values of pred(e; i) for e 2 Sj and pred0(e; i) for e 2 S1
an be
omputed in O(log n) time with n pro
essors.Proof: First we
onstru
t arrays Rl = W jl logn+1[W jl logn+2[: : :[W jl logn+logn[W 1l logn+1 [W 1l logn+2 [: : : [W 1l logn+2 logn for l = 0; : : : ;m= log n � 1 and sortelements of Rl a

ording to their relative weights. Next we
onstru
t arraysCl;k, k = 1; : : : ; 2 log n so that elements of Cl;k
orrespond to elements of Rland Cl;k[i℄ = 1 if Rl�logn[i℄ 2 W 1l logn+k and Cl;k[i℄ = 0 otherwise. We
omputepre�x sums Pl;k[i℄ = Pim=1 Cl;k[i℄ for all arrays Cl;k. One su
h pre�x sum
an be
omputed in O(log n) time with jRlj= log n pro
essors. Sin
e the totalnumber of elements in all arrays Cl;k is O(n log n), we
an allo
ate pro
essorsin appropriate way in logarithmi
 time and then
ompute all pre�x sums alsoin logarithmi
 time.The values of pred(e; i)
an be
omputed from Cl;k as follows. Supposee 2 W jl . Let k0 = i � l log n. Let s be the index of e in Rl and let v bePl;k0 [s℄. Then pred(e; i) equals to v. Values of pred0(e; i)
an be
omputed inthe same way.2On Fig. 4 an algorithm for updating pred and pred0 after Meld(W jl) isshown. We use some additional notation on Fig. 4. If e 2 W jl then
lass(e) =l and if e = meld(e1; e2) then left(e) = e1. Suppose that pred0(e; l) = k forsome e 2 S1, Sj[k℄ 2 W jl . Then it is easy to see that the prede
essor ofe in ~W jl is either t = meld(Sj[k℄; sibling(Sj[k℄)) or the element pre
edingt in ~W jl (see lines 1-6 of Fig. 4). If t = meld(t1; t2) we tentatively setpred(t; i) = pred(t1; i) (lines 7-9). The value of pred(t; i) is
orre
t only ifpred(t1; i) = pred(t2; i). If pred(t1; i) = p1, pred(t2; i) = p2, and p1 6= p2,then pred(t; i) = p3 su
h that p1 � p3 � p2. Otherwise the
orre
t valueof pred(t1; i)
an be found as follows. Let k be the index of t in Sj. It is8

1 for 8e 2 S1 pardo2 for
lass(e)� log n � l �
lass(e) pardo3
 := dpred0(e; l)=2e4 if (r(e) < r(Sj[
℄))5
 :=
� 16 pred0(e; l) :=
7 for 8e 2 Sj pardo8 for
lass(e) � l �
lass(e) + log n pardo9 pred(e; l) := pred(left(e); l)10 for 1 � s � jS1j pardo11 for
lass(S1[s℄)� log n � l �
lass(S1[s℄) pardo12 k := pred0(S1[s℄; l)13 if (r(Sj [k℄) < r(S1[s℄)) AND(r(S1[s+ 1℄) > r(Sj[k + 1℄))14 pred(Sj [k + 1℄; l) := s15 if (r(Sj [k℄) = r(S1[s℄)) AND(r(S1[s+ 1℄) > r(Sj[k℄))16 pred(Sj [k℄; l) := sFigure 4: Re
omputing pred(e; i) and pred0(e; i) after Meld(W jl)easy to see that for 8 p p1 < p � p3 pred0(S1[p℄; i) is either k or k � 1. Ifpred(t; i) = p3 and r(S1[p3℄) < r(t), then pred0(S1[p3℄; i) = k� 1, r(S1[p3℄) >r(Sj[k � 1℄), and r(S1[p3 + 1℄) > r(S1[k℄) (see Fig. 3). If pred(t; i) = p3and r(S1[p3℄) = r(t), then pred0(S1[p3℄; i) = k, r(S1[p3℄) = r(Sj [k℄), andr(S1[p3+1℄) > r(S1[k℄). We
he
k for this
ondition on lines 10-16 of Fig. 4and
ompute the
orre
t values of pred(t; i) in
ase pred(t1; i) 6= pred(t2; i).When the elements of W ji are melded and prede
essor values pred(e; i) arere
omputed pred(W ji [t℄; i�1) equals to the number of elements in W 1i�1 thatare smaller than or equal to W ji [t℄ and pred0(W 1i�1[t℄; i) equals to the numberof elements inW ji that are smaller than or equal toW 1i�1[t℄. Therefore indi
esof all elements in the merged array
an be
omputed in
onstant time. WhenSj and S1 are merged pred and pred0
an be re
omputed in
onstant time.In this way we
an perform log n iterations of Pa
kage-Merge in
onstanttime per iteration. After this we have to
ompute pred(e; i) and pred0(e; i) forS1 and Slogn as des
ribed in Statement 1. Then we will be able to performthe next log n iterations in the same way. Therefore every log n iterations ofPa
kage-Merge
an be performed in O(log n) time with n log n pro
essors9

and we have provenTheorem 2 The algorithm Pa
kage-Merge
an be implemented in O(L)time with n log n pro
essors on CREW PRAM.5 An O(nL) work algorithmThe algorithm des
ribed in the previous se
tion requires n log n pro
essorsto work in O(L) time, be
ause at every step 2n log n values of pred andpred0 must be re
omputed. But the number of pro
essors
an by redu
edby a logarithmi
 fa
tor, sin
e not all values pred and pred0 are ne
essaryat ea
h iteration. In fa
t, if we know values of pred(e; i) for the next
lassW 1i , if e 2 W ji�1 for all e 2 Sj and values of pred0(e; i) for the previous
lassW ji , if e 2 W 1i+1 for all e 2 S1 then merging
an be performed in
onstanttime. Therefore we will use fun
tions pred and pred0 instead of pred andpred0 su
h that this information is available at ea
h iteration, but the totalnumber of values in pred and pred0 is limited by O(n). We must also be ableto re
ompute values of pred and pred0 in
onstant time after ea
h iteration.For an array R we will denote by samplek(R) a subarray of R that
onsistsof every 2k-th element of R. We de�ne pred(e; i) for e 2 W jl as index ofthe biggest element ~e in samplei�l�1(W 1i), su
h that r(~e) � r(e). Besidesthat, we maintain the values of pred(e; i) only for e 2 samplei�l�1(W jl). Inother words, for every 2i�l�1-th element of W jl we know its prede
essor withpre
ision up to 2i�l�1 elements. We de�ne pred0(e; l) for e 2 samplei�l�1(W 1i)as the index of the biggest element ~e in samplei�l�1(W jl), su
h that r(~e) �r(e). Obviously, the total number of values in pred and pred0 is O(n).After pro
edure Meld prede
essors must be re
omputed and \re�ned".That is, for every e 2 samplei�l�1(~W jl) its prede
essor from samplei�l�1(W 1i)is known. However ~W jl will be merged with W 1l+1 into W j+1l+1 . Therefore fore 2 samplei�l�2(~W jl) its prede
essor from samplei�l�2(W 1i) must be
om-puted. Re
omputing and \re�ning" pred and pred0 after Meld is similar inspirit to the algorithm des
ribed in the previous se
tion. A detailed des
rip-tion will be given in the full version of this paper.Using the values of pred and pred0, we
an merge S1 and Sj in a
onstanttime.Thus we
an perform log n iterations of Pa
kage-Merge in logarithmi
time. Combining this fa
t with Statement 1 we getTheorem 3 The algorithm Pa
kage-Merge
an be implemented in O(L)time with n CREW pro
essors. 10

Corollary 1 An optimal length-restri
ted
ode with maximum
odeword lengthL
an be
onstru
ted in O(L) time with n CREW pro
essors. An almost op-timal length-restri
ted
ode with maximum
odeword length L and error 1=nk
an be
onstru
ted in O(k log n) time with n CREW pro
essors.6 Con
lusionWe des
ribed an algorithm for the
onstru
tion of almost-optimal length-restri
ted
odes with error 1=nk for any k > 0 that works in O(n log n) time.We show that this algorithm
an be parallelized to work in time O(log n)with n CREW pro
essors. We also showed that an almost-optimal length-restri
ted
ode with error 1=nk for any k � L= log� n
an be
onstru
tedin O(kn) time or in O(k log n) time with n= log n CREW pro
essors. Ouralgorithms use only
omparison, addition, and bit shift operations.A
knowledgementsWe thank Piotr Berman and Larry Larmore for stimulating remarks anddis
ussions.Referen
es[AST94℄ Aggarwal, A., S
hieber, B., Tokuyama, T., Finding a Minimu-Weight k-Link Path in Graphs with the Con
ave Monge Prop-erty, Journal on Dis
rete & Computational Geometry 12 (1994),pp. 263{280.[BKN02℄ Berman, P., Karpinski, M., Nekrit
h, Y., Approximating Hu�manCodes in Parallel, Pro
. 29th ICALP (2002).[B93℄ Buro, M., On the Maximum Length of Hu�man Codes, InformationPro
essing Letters 45(1993), pp. 219-223.[G74℄ Garey, M., Optimal binary sear
h trees with restri
ted maximaldepth, SIAM Journal on Computing 3 (1974), pp. 101{110.[KMT95℄ Katajainen,J., Mo�at, A. , Turpin, A. , A Fast and Spa
e-e
onomi
al Algorithm for Length-Limited Coding, Pro
. Interna-tional Symposium on Algorithms and Computation (1995), pp.12-21. 11

[KP96℄ Kirkpatri
k, D., Przyty
ka, T., Parallel Constru
tion of BinaryTrees with Near Optimal Weighted Path Length, Algorithmi
a(1996), pp. 172{192.[L87℄ Larmore, L., Height-restri
ted optimal binary trees, SIAM Journalon Computing 16 (1987), pp. 1115{1123.[LH90℄ Larmore, L., Hirs
hberg, D., A Fast Algorithm for Optimal Length-Limited Hu�man Codes, Journal of the ACM 37(3) (1990),pp. 464{473.[LPW93℄ Larmore, L. L., Przyty
ka, T.,Rytter, W., Parallel Constru
tion ofOptimal Alphabeti
 Trees, Pro
. 5th ACM Symposium on ParallelAlgorithms and Ar
hite
tures (1993), pp. 214{223.[LP95℄ Larmore, L., Przyty
ka, T., Constru
ting Hu�man trees in parallel,SIAM Journal on Computing 24(6) (1995), pp. 1163{1169.[LM02℄ Liddell, M., Mo�at, A., In
remental Cal
ulation of Minimum-Redundan
y Length-Restri
ted Codes, Pro
. Data CompressionConferen
e (2002), pp. 182-191.[MK95℄ Mo�at, A., Katajainen, J., In-Pla
e Cal
ulation of Minimum-Redundan
y Codes, Pro
. WADS (1995), pp. 393-402[MPL98℄ Milidiu, R. L., Pessoa, A. A., Laber, E.S., In-Pla
e Length-Restri
ted Pre�x Coding, Pro
. String Pro
essing and InformationRetrieval: A South Ameri
an Symposium (1998), pp. 50-59.[MPL99℄ Milidiu, R. L., Pessoa, A. A., Laber, E.S., EÆ
ient Implementa-tion of the WARM-UP Algorithm for the Constru
tion of Length-Restri
ted Pre�x Codes, Pro
. ALENEX(1999), pp. 1-17.[MPL99a℄ Milidiu, R. L., Pessoa, A. A., Laber, E.S., A Work EÆ
ientParallel Algorithm for Constru
ting Hu�man Codes, Pro
. DataCompression Conferen
e (1999), pp. 277-286.[S95℄ S
hieber, B., Computing a minimum-weight k-link path in graphswith
on
ave Monge property, Pro
. the 6th Annual Symposiumon Dis
rete Algorithms (1995), pp. 405{411.[vL76℄ van Leeuwen, J., On the
onstru
tion of Hu�man trees, Pro
.3rd Int. Colloquium on Automata, Language s and Programming(1976), pp. 382{410. 12

