Algorithms for Construction of
Optimal and Almost-Optimal
Length-Restricted Codes

Marek Karpinski * Yakov Nekrich |

Abstract. In this paper we present new results on sequential
and parallel construction of optimal and almost-optimal length-
restricted prefix-free codes. We show that length-restricted prefix-
free codes with error 1/n* for any k > 0 can be constructed in
O(nlogn) time, or in O(logn) time with n CREW processors. A
length-restricted code with error 1/n* for any k < L/logg n, where
® = (1+/5)/2, can be constructed in O(log n) time with n/logn
CREW processors. We also describe an algorithm for the construc-
tion of optimal length-restricted codes with maximum codeword
length L that works in O(L) time with n CREW processors.

1 Introduction

Consider a list of items ey, €9, ..., €, with weights p = py,pa,...,p, respec-
tively. A code with lengths £ = [1,15,...,{, is a prefiz-free code if no code-
word is a prefix of another one. A (prefix-free) code is a length-restricted (or
length-limited) code for some integer L if [; < L for all 1 <i < n. A code

*Dept. of Computer Science, University of Bonn. Work partially supported by DFG
grants, Max-Planck Research Prize, DIMACS, and IST grant 14036 (RAND-APX). Email
marek@cs.uni-bonn.de.

TDept. of Computer Science, University of Bonn. Work partially supported by IST
grant 14036 (RAND-APX). Email yasha@cs.uni-bonn.de.

1

is called a minimum redundancy code or Huffman code for the set of items
with weights p = p1,p2,...,ps if Length(L,p) = > l;p; is minimal among
all prefix-free codes. A code L is a minimum redundancy length-restricted
code if Length(L,p) is minimal among all length-restricted prefix-free codes.
The problem of length-restricted coding is motivated by practical implemen-
tations of coding algorithms. If a codeword does not fit into a machine word
this can lead to less efficient decoding algorithms.

A Huffman code can be constructed in O(nlogn) time or in O(n) time
if elements are sorted by weight (see, for instance [vL76], [MK95]). How-
ever, the construction of a length-restricted minimum redundancy code re-
quires more time. Garey [G74] has described an algorithm for constructing
length-restricted codes that runs in O(n?L) time. Larmore and Hirschberg
[L87] described an algorithm that requires O(n*2Llog'/?*n) time. In [LH90]
the same authors presented a O(nl) time sequential algorithm, based on
the Package-Merge paradigm. Katajainen, Moffat and Turpin [KMT95]
described an O(nL) time in-place implementation of the Package-Merge
approach. In [LMO02] Lidell and Moffat presented an algorithm that works
in O((H — L + 1)n) time, where H is the height of the longest codeword in
a Huffman code (without length restrictions). This leads to, e.g., a linear
time algorithm for the case when L = H — ¢, where ¢ is a constant. Using
the problem reduction due to Larmore and Przytycka (see [LP95]), Schieber

[S95] has given an O(n20(V1eeL1osloen)y alaorithm for this problem. Although
this algorithm is slightly asymptotically faster than [LH90] and [KMT95], we
do not know of any practical implementations of this algorithm.

Milidiu, Pessoa and Laber [MPL98] described an algorithm for length-
restricted codes with error 1/FL—[log(n+[logn]—L)]+17 where F; 1s the -th Fi-
bonacci number. Their algorithm runs in O(n) time for a sorted list of
weights. In [MPL99] the same authors presented a heuristic solution and
demonstrated its efficiency in practice.

The fastest n-processor algorithm for the construction of Huffman codes
(without length restriction) is due to Larmore and Przytycka [LP95]. Their
algorithm, based on a reduction of the Huffman tree construction problem to
the concave least weight subsequence problem runs in O(y/nlogn) time. An
algorithm from [MPL99a] runs in O(H loglog(n/H)) time with O(n) work,
where H is the height of a Huffman tree. Kirkpatrick and Przytycka [KP96]
introduced a problem of constructing so called almost optimal codes, i.e. the
problem of finding a tree T” that is related to the Huffman tree T" according
to the formula wpl(T') < wpl(T) + n=F for an arbitrary error parameter
k (assuming Y. p; = 1). They presented an efficient parallel algorithm for
the construction of almost optimal codes that works in O(klognlog™n) time

with n processors on a CREW PRAM, and an O(k*logn) time algorithm

that works with n? processors on a CREW PRAM. These results were further
improved in [BKNO02].

In this paper we present a parallel algorithm for the construction of minimum-
redundancy length-restricted codes that is based on the Package-Merge
algorithm of Larmore and Hirschberg [LH90]. Our algorithm constructs a
length-restricted code in O(L) time with n processors on a CREW PRAM.
Thus our algorithm has the same time-processor product as the sequential
algorithm of [LLH90].

We also consider the problem of constructing the almost-optimal length-
restricted codes. We show that an almost-optimal code with error 1/n* for
any k > 0 can be constructed in O(knlogn) time using a combination of
results from [LP95] and [AST94]. We also describe an alternative algorithm
based on Package-Merge that works with an error 1/n* in O(klogn) time
with n processors on a CREW PRAM. Besides that, we present an algorithm
that works sequentially in time O(n) or in logarithmic time with O(n/log n)
processors and constructs a code with error 1/n*, where k < L/logg n and
d = (14+5)/2.

The rest of this paper is structured as follows. In the next section we sketch
the Package-Merge algorithm. In section 3 we describe algorithms for the
construction of almost-optimal codes. In sections 4 and 5 we describe an
efficient parallelization of Package-Merge. This parallelization leads to an
O(L) time n-processor algorithm for minimum-redundancy length-limited
codes, and to an O(logn) time n-processor algorithm for almost-optimal
length-limited codes with error 1/n*.

2 Package-Merge

In this section we give a sketch of Package-Merge. In the Package-Merge
algorithm L lists of trees S’ are constructed. A list S! consists of n leaves
with weights pi, pa, ..., pn, sorted according to their weight. The list S7+!
is created from the list S/ by forming new trees 71! = meld(t‘%i,t%i_l_l) and
merging the list of new elements with a copy of the list S'. Here tf denotes
the s-th item in the list S7. An operation meld(#,t") creates a new tree ¢
with two sons " and #, such that the weight of ¢ equals to the sum of weights
of its sons. By merging two sorted lists S and S; we mean constructing a
sorted list 53 that consists of all elements from S; and S;. The depth of the
element p; equals to the number of occurrences of p; in the first 2n —2 trees of
the list ST. On Figure 1 we show how the algorithm Package-Merge works
on the set of items with weights p=1,1,3,7,11,15 for L = 4. The resulting
code consists of codewords with lengths £ =4.4,3,2, 2,2 respectively.

Figure 1: An example of Package-Merge for L = 4. Elements of S! are
marked by squares, elements resulting from melding elements on the previous
list are marked by circles.

When list S” is constructed, we can compute depths of all elements in an
optimal code in O(L) time with n processors. Indeed, ST consists of 2n — 1
trees, and these trees have in total at most n leaves on every tree level.
These leaves correspond to elements pq,...,p,. We can mark all nodes in
the biggest tree in S* and then compute all occurrences of p; in the 2n — 2
smallest trees in time O(L).

In sections 4 and 5 we describe parallel algorithms for the construction
of S¥. We will see in section 4 that the most time-consuming operation is
the merging of two lists. We show how after a certain pre-processing stage
a logarithmic number of merge operations can be performed in logarithmic
time with nlogn processors. During this pre-processing stage we compute
the predecessor values pred(e,i) for every element ¢ and every list S7. These
values can be efficiently re-computed after a meld operation and they will
allow us to merge arrays in constant time. In section 5 we show how the
number of processors can be reduced from nlogn to n.

3 Almost-optimal length-restricted codes

We define average length of a code £ as AvLen(L,p) = Length(L,p)/P,
where P = 377" | p;. We say that a length-restricted code L is almost-optimal
with error €, if AvLen(L,p) < AvLen(L',p)+ e for all length-restricted codes
L'. Below we show how an almost-optimal length-restricted code with error
nik can be sequentially constructed in time O(nlog n). Observe that P =Y p;
is the length of the message, and coding error equals to the average compres-
sion loss per symbol. Therefore, if we want to compress the message of length

O(n"*), using a code with error 1/n* instead of an optimal length-limited code
would lead to only a constant increase in length of the compressed message.
Besides that, if message length is O(n*') with &’ < k, then a code with error
1/n* is optimal.

To achieve this goal, we construct an optimal code for the “quantized”
set of weights p™e% = pi® . pi*, ..., pi®". Before we define p?*"’, consider
weights p?, where p? = [p;/([P/n*1)]([P/n*]) and P = F, pi. For any
code L, S Lip? < Lipi+(P/n*) Xl < S lipi+ P-n~"2 since [; < n. Hence
AvLen(L,p") < Length(L,p")/ P < AvLen(L,p) + n~F2,

Let £* be an optimal length-restricted code for 7, and £# be an opti-
mal length-restricted code for p?. Then AvLen(LA,p) < AvLen(LA,p") <
AvLen(L*,p") < AvLen(L*,p) +n~ %2, Therefore we can construct an op-
timal code for weights p?, then replace p? with p;, and the resulting code
will have an error at most n=**2. All weights p? are divisible by [P/n*]. We
define pr¥ = p»([P/n*]) = p:/([P/n*]) An optimal code for weights pre

is also an optimal code for p?. Hence we can construct an optimal code for

weights p“", then replace p?” with p;, and the resulting code will also have

an error at most n %2, Since p; < P, all weights p*** < n* for all 7.

Observe that instead of division by [P/n*] we can set pPe¥ = [p;/2™] for
m such that [P/n*] < 2™ < 2[P/n*]. This would increase coding error by
at most a factor of 2 and allow us to construct the new set of weights using
only bit operations, since division by a power of 2 can be implemented as a
right bit shift.

The construction of a length-restricted code with maximum codeword length
L can be reduced to finding a minimum-weight L-link path in a graph with
the concave Monge property (see [LP95]). The last problem can be solved in
O(nlog U) time, where U is the maximum absolute value of the edge weights
in a graph ([AST94]). The graph described in [LP95] has n nodes and edges
(1,7), s.t. i < j and 2j —i < n. BEdge (i,7) has weight w(i,7) = 12" pe.
Since pr¥ < n* for all 4, w(i,7) < n**! Vi, 7, and U < n**!. Hence, we can
construct an almost optimal code with error 1/n* in O(knlogn) time.

We can also construct a length-restricted code with error 1/n* in loga-
rithmic parallel time with nlog n operations using the Package-Merge ap-
proach and “quantized” weights p’““. In [B93] it was shown that maximal
codeword length of a Huffman code does not exceed min([—logg pli,]1.n—1),
where pl i = Pmin/ P is the minimal normalized weight. Since for the set of
weights p"* p/ . > n~% maximal codeword length is above bounded by

klogg n. A tighter upper bound is possible, but it is not necessary for our

ew

analysis.
If L < kloggn, we can construct an almost-optimal code by applying
Package-Merge to the set of weights p?*? defined above. If L > klogg n, we

can construct an optimal (not length-restricted) code for weights p™*. Since
the maximum codeword length in this code does not exceed kloggn < L,
this code is also an optimal length-restricted code. An optimal code can
be constructed in time O(n), or in time O(klogn) with n/logn processors
(see [BKNO2]), if elements are sorted by weight. Since p?** < n*, elements
can be sorted in O(n) time, or, under certain conditions, in O(logn) time
with n/log n processors. Thus an almost-optimal length-restricted code with
error 1/n*, such that k < L/logg n, can be sequentially constructed in linear
time, or in parallel time O(klogn) with n/logn processors.

In general case, we can construct an almost-optimal length-restricted code
with error 1/n* in O(klogn) time with n processors. We sum up the results

of this section in the following

Theorem 1 A length-restricted code with error 1/n* for any k > 0 can be
constructed in O(knlogn) time. If k < L[/loggn, a length-restricted code
with error 1/n* can be constructed in O(n) time or in O(klogn) time with

n/logn CREW processors.

4 A Parallelization of the Package-Merge

We divide elements of S7 into classes I/Vlj, such that an element e € I/Vlj iff
weight(e) € [2!71,21). We will say that elements ¢;,#, from S/ are siblings if
at the j-th stage of the algorithm #; will be melded with #,.

Suppose that two elements, ¢y, ¢ from W/ are siblings. Then t = meld(t;, ;)
will belong to I/Vl]_:'ll Therefore after melding elements of W} will be merged
with elements of W}, ;. The only exception may be an element from I/Vlj
whose sibling does not belong to I/Vlj. However there is at most one such
exception per class I/Vlj and this exception can be inserted into a class I/Vlj in
constant time with |WW/| processors.

The pseudocode description of the parallel algorithm is shown on Figure
2. We say e < a for an element e and a number ¢ whenever weight(e) < a.
An array exc[l] helps us to handle “exceptions” i.e. elements ¢ € I/Vlj, such
that sibling(e) & I/Vlj. We denote by length(ﬂ/lj) the number of elements
in W/, m is the maximum number of classes W;. Procedure Meld(W7)
melds consecutive pairs of elements in W thus producing an array of length
|(W//2, first(W]) and last(W]) denote the first and the last elements of W/
respectively.

The bottleneck of this algorithm is function Merge shown on line 10 of
Figure 2. This function merges W/ (the sorted list of elements from W/
sequentially melded in order of their weight) with the sorted list of elements
from W},. All other operations can be implemented in constant time with

6

1 for j:=1 to L do

2 for VIs.t. W, # 0 pardo

3 exc|l] := NULL

4 if (sibling(first(W)) < 2'=1) 4
5 excll] := meld(first(W}), sibling(first(W/)))
6 WP = W\ {first (W)}

7 if (sibling(last(W{)) > 21)

8 Wi = Wi {last(W/) }

9 Wi o= Meld(W/)

10 Wikh = Merge(W/, W)

11 if (exc[l] # NULL)

12 if (exc[l] > 21

13 Wit = Merge(W;/t, {exc[l]})

14 else 4

15 Wit o= Merge(Wi! fecll]})

Figure 2: Parallel Implementation of Package-Merge

n processors. We will show below how arrays can be merged efficiently in
average constant time per iteration. First we will show how this algorithm
can be implemented to work in O(L) time with nlogn processors. In the
next section we will reduce the number of processors to n.

We will use the following notation. Relative weight r(¢) of an element
t € W} is weight(t)-27". If elements ¢; and ¢, belong to W} and ¢ is the result
of melding two elements ¢; and ¢, , such that r(¢1) > r(e) and r(tz) > r(e)
(r(t1) < r(e) and r(t3) < r(e)), where e is an element from W}, then the
weight of ¢ is bigger (smaller) than the weight of e.

We compute for every item e € I/Vlj and every 7, [< 1 < [+ logn the
value of pred(e,i) = k, s.t. S'[k] € W} and r(S'[k]) < r(e) < r(S'k + 1]).

In other words, pred(e,i) is the index of the biggest element in a class W},

whose relative weight is smaller than or equal to r(e). We also need values
of pred'(e,l) for all e € S* and all I € [i —logn, i) if e € W}, where pred’(e,l)
is the index of the biggest element in I/Vlj whose relative weight is smaller
than or equal to r(e). Obviously, if pred(t,7) = j and ¢t € W/, then there are
exactly j elements in S' whose weight is less than or equal to the weight of
t. Thus, if pred and pred’ are known Merge(ﬁ/l], Wl,) can be performed in
constant time.

It remains to show how pred(e,i) and pred'(e,i) can be computed and
updated after each iteration.

SI[k — 1]

Figure 3: Computing pred(t,1) if pred(t,,i) # pred(ts,1).

Statement 1 The values of pred(e,i) for e € S7 and pred'(e,i) for ¢ € S!
can be computed in O(logn) time with n processors.

Proof: First we construct arrays R; = M/ljlogn—l—lum/ljlogn—l—ZU‘ . .UI/Vljlogn_l_lognU
M/lllogn+1 U W/lllogn+2 U...u W/lllogn+210gn for { =0,...,m/logn — 1 and sort
elements of R; according to their relative weights. Next we construct arrays
Cii, k=1,...,2logn so that elements of () correspond to elements of R;
and Cy[i] = 1if Riiognli] € Wilognix and Cpifi] = 0 otherwise. We compute
prefix sums P[i] = 3 _, Ciili] for all arrays Cpj. One such prefix sum
can be computed in O(log n) time with | R;|/log n processors. Since the total
number of elements in all arrays C; is O(nlog n), we can allocate processors
in appropriate way in logarithmic time and then compute all prefix sums also
in logarithmic time.

The values of pred(e,z) can be computed from Oy, as follows. Suppose
e € W/. Let ¥ =i —llogn. Let s be the index of ¢ in R; and let v be
Py ir[s]. Then pred(e,i) equals to v. Values of pred’(e,i) can be computed in
the same way.

O

On Fig. 4 an algorithm for updating pred and pred’ after Meld(I/Vlj) is
shown. We use some additional notation on Fig. 4. If e € W/ then class(e) =
[and if e = meld(ey, e2) then left(e) = e;. Suppose that pred'(e,l) = k for
some e € St SI[k] € I/Vlj. Then it is easy to see that the predecessor of
e in I/T/l] is either ¢ = meld(S[k], sibling(S/[k])) or the element preceding
tin W/ (see lines 1-6 of Fig. 4). If t = meld(t1,12) we tentatively set
pred(t,i) = pred(ty,i) (lines 7-9). The value of pred(t,:) is correct only if
pred(ty,i1) = pred(ty,i). If pred(ti,i) = p1, pred(tz,i) = pa, and py # pa,
then pred(t,i) = ps such that p; < ps < py. Otherwise the correct value
of pred(t;,i) can be found as follows. Let k be the index of ¢ in S7. It is

1 for Ve € S' pardo
2 for class(e) —logn <[< class(e) pardo
3 c:= [pred(e,l)/2]
4 if (r(e) < r(57]d]))
3 c:=c—1
6 pred'(e,l) :=c
7 for Ve € S/ pardo
8 for class(e) <1 < class(e) +logn pardo
9 pred(e,l) := pred(left(e),l)
10 for 1 <s<|S' pardo
11 for class(S'[s]) —logn <1 < class(S'[s]) pardo
12 k= pred'(S']s],{)
13 if (r(S7[k]) < r(S's])) AND
(5" s + 1)) > (S7[k +1])
14 pred(S7[k 4+ 1],1) :=s
15 if (r(S7[k]) = r(S's])) AND
((5']s + 1) > r(2[8)
16 pred(S7[k], 1) :=s

Figure 4: Recomputing pred(e,i) and pred'(e,1) after Meld(I/Vlj)

easy to see that for V p p; < p < p3 pred'(S*[p],7) is either k or k — 1. If
pred(t,i) = p3 and r(S'[ps]) < r(t), then pred' (S*[ps], i) = k — 1, r(S'[ps]) >
r(S[k — 1)), and r(St[ps + 1]) > r(S'[k]) (see Fig. 3). If pred(t,i) = ps
and r(Stps]) = r(t), then pred(S'[ps),7) = k, r(St[ps]) = r(S7[k]), and
r(Stps + 1]) > r(S'[k]). We check for this condition on lines 10-16 of Fig. 4
and compute the correct values of pred(t,i) in case pred(ty,i) # pred(ts,1).
When the elements of I/Vf are melded and predecessor values pred(e, i) are
recomputed pred(ﬂ/f [t],7— 1) equals to the number of elements in W} | that
are smaller than or equal to W/[t] and pred (W>,[t],7) equals to the number
of elements in W/ that are smaller than or equal to W2 [t]. Therefore indices
of all elements in the merged array can be computed in constant time. When
S7 and S' are merged pred and pred’ can be recomputed in constant time.
In this way we can perform log n iterations of Package-Merge in constant
time per iteration. After this we have to compute pred(e, i) and pred'(e,) for
St and S'°8” as described in Statement 1. Then we will be able to perform
the next log n iterations in the same way. Therefore every log n iterations of
Package-Merge can be performed in O(logn) time with nlogn processors

and we have proven

Theorem 2 The algorithm Package-Merge can be implemented in O(L)
time with nlogn processors on CREW PRAM.

5 An O(nL) work algorithm

The algorithm described in the previous section requires nlogn processors
to work in O(L) time, because at every step 2nlogn values of pred and
pred’ must be recomputed. But the number of processors can by reduced
by a logarithmic factor, since not all values pred and pred are necessary
at each iteration. In fact, if we know values of pred(e,) for the next class
Wiiifee I/Vij_l for all ¢ € SY and values of pred’(e,1) for the previous class

Wi, if e € W, for all e € S then merging can be performed in constant
time. Therefore we will use functions pred and pred’ instead of pred and
pred’ such that this information is available at each iteration, but the total

number of values in pred and pred’ is limited by O(n). We must also be able

to recompute values of pred and pred’ in constant time after each iteration.

For an array R we will denote by sampley(R) a subarray of R that consists
of every 2F-th element of R. We define pred(e,i) for ¢ € Wi as index of
the biggest element € in sample,_;_1(W}), such that r(¢) < r(e). Besides
that, we maintain the values of pred(e,) only for ¢ € Samplei_l_l(ﬂ/lj). In
other words, for every 2:='='-th element of I/Vlj we know its predecessor with
precision up to 2°=/=! elements. We define pred'(e,) for e € sample;_;_1(W})
as the index of the biggest element ¢ in sample;,_;_1(W/), such that r(¢) <
r(e). Obviously, the total number of values in pred and pred’ is O(n).

After procedure Meld predecessors must be recomputed and “refined”.
That is, for every e Equmplei_l_l(ﬁ/ﬁ) its predecessor from sample;_;_(W1)

is known. However W/ will be merged with W}, into I/Vl]_:'ll Therefore for

e € Samplei_l_z(ﬁ/ﬁ) its predecessor from sample;_;_o(W}) must be com-
puted. Recomputing and “refining” pred and pred’ after Meld is similar in
spirit to the algorithm described in the previous section. A detailed descrip-
tion will be given in the full version of this paper.

Using the values of pred and pred’, we can merge S' and S7 in a constant
time.

Thus we can perform logn iterations of Package-Merge in logarithmic
time. Combining this fact with Statement 1 we get

Theorem 3 The algorithm Package-Merge can be implemented in O(L)
time with n CREW processors.

10

Corollary 1 An optimal length-restricted code with maximum codeword length
L can be constructed in O(L) time with n CREW processors. An almost op-
timal length-restricted code with mazimum codeword length L and error 1/n*
can be constructed in O(klogn) time with n CREW processors.

6 Conclusion

We described an algorithm for the construction of almost-optimal length-
restricted codes with error 1/n* for any k& > 0 that works in O(nlogn) time.
We show that this algorithm can be parallelized to work in time O(logn)
with n CREW processors. We also showed that an almost-optimal length-
restricted code with error 1/n* for any & < L/loggn can be constructed
in O(kn) time or in O(klogn) time with n/logn CREW processors. Our
algorithms use only comparison, addition, and bit shift operations.

Acknowledgements

We thank Piotr Berman and Larry Larmore for stimulating remarks and
discussions.

References

[AST94] Aggarwal, A., Schieber, B., Tokuyama, T., Finding a Minimu-
Weight k-Link Path in Graphs with the Concave Monge Prop-
erty, Journal on Discrete & Computational Geometry 12 (1994),
pp- 263-280.

[BKN02] Berman, P., Karpinski, M., Nekritch, Y., Approzimating Huffman
Codes in Parallel, Proc. 29th ICALP (2002).

[BI3] Buro, M., On the Mazimum Length of Huffman Codes, Information
Processing Letters 45(1993), pp. 219-223.

[G74] Garey, M., Optimal binary search trees with restricted mazximal
depth, SIAM Journal on Computing 3 (1974), pp. 101-110.

[KMT95] Katajainen,J., Moffat, A. , Turpin, A. , A Fast and Space-
economical Algorithm for Length-Limited Coding, Proc. Interna-
tional Symposium on Algorithms and Computation (1995), pp.
12-21.

11

[KP96]

[L.87]

[LHI0]

[LPW93]

[LPY5]

[LM02]

[MK95]

[MPL9S]

[MPL99]

Kirkpatrick, D., Przytycka, T., Parallel Construction of Binary
Trees with Near Optimal Weighted Path Length, Algorithmica
(1996), pp. 172-192.

Larmore, L., Height-restricted optimal binary trees, SIAM Journal
on Computing 16 (1987), pp. 1115-1123.

Larmore, L., Hirschberg, D., A Fast Algorithm for Optimal Length-
Limited Huffman Codes, Journal of the ACM 37(3) (1990),
pp. 464-473.

Larmore, L. L., Przytycka, T.,Rytter, W., Parallel Construction of
Optimal Alphabetic Trees, Proc. 5th ACM Symposium on Parallel
Algorithms and Architectures (1993), pp. 214-223.

Larmore, L., Przytycka, T., Constructing Huffman trees in parallel,
SIAM Journal on Computing 24(6) (1995), pp. 1163-1169.

Liddell, M., Moffat, A., [Incremental Calculation of Minimum-
Redundancy Length-Restricted Codes, Proc. Data Compression
Conference (2002), pp. 182-191.

Moftat, A., Katajainen, J., In-Place Calculation of Minimum-
Redundancy Codes, Proc. WADS (1995), pp. 393-402

Milidiu, R. L., Pessoa, A. A., Laber, E.S., [In-Place Length-
Restricted Prefiz Coding, Proc. String Processing and Information
Retrieval: A South American Symposium (1998), pp. 50-59.

Milidiu, R. L., Pessoa, A. A., Laber, E.S., Efficient Implementa-
tion of the WARM-UP Algorithm for the Construction of Length-
Restricted Prefix Codes, Proc. ALENEX(1999), pp. 1-17.

[MPL99a] Milidiu, R. L., Pessoa, A. A., Laber, E.S., A Work Efficient

S95]

[vL76]

Parallel Algorithm for Constructing Huffman Codes, Proc. Data
Compression Conference (1999), pp. 277-286.

Schieber, B., Computing a minimum-weight k-link path in graphs
with concave Monge property, Proc. the 6th Annual Symposium
on Discrete Algorithms (1995), pp. 405-411.

van Leeuwen, J., On the construction of Huffman trees, Proc.
3rd Int. Colloquium on Automata, Language s and Programming

(1976), pp. 382-410.

12

