
Spae EÆient Dynami Orthogonal RangeReportingYakov Nekrih�AbstratIn this paper we present new spae eÆient dynami data struturesfor orthogonal range reporting. The desribed data strutures supportplanar range reporting queries in time O(log n + k log log(4n=(k + 1)))and spae O(n log log n), or in time O(log n+k) and spae O(n log" n) forany " > 0. Both data strutures an be onstruted in O(n log n) timeand support insert and delete operations in amortized time O(log2 n) andO(log n log log n) respetively. These results math the orresponding up-per spae bounds of Chazelle [Ch88℄ for the stati ase.We also present a dynami data struture for d-dimensional range report-ing with searh time O(logd�1 n + k), update time O(logd n), and spaeO(n logd�2+" n) for any " > 0.1 IntrodutionGiven a set of points P � Rd, range reporting problem Q is to �nd all pointsin P \ Q for some set Q � Rd. If set Q is a retangle, the problem is alledorthogonal range reporting problem. An example of orthogonal range reportingproblem applied to databases is \Find all employees with inome between 20000and 30000 who are older than 40 and younger than 50 years old\. See Willard[W96℄ for an extensive list of appliations to database theory.The time and spae omplexity of stati and dynami planar range reportingwas onsidered in a number of papers. See [AE99℄ and [CT91℄ for surveys ofwork in this area. Chazelle [Ch88℄ has shown that this problem an be solvedin time O(logn + k) and spae O(n log" n) in the stati ase. Here and furtherk denotes the size of the answer. In [Ch88℄ two other spae eÆient solutionsare also desribed. These solutions require O(n log logn) spae and O(logn +k log log(4n=(k+1))) time, or O(n) spae and O(logn+k log2(2n=(k+1))) timerespetively. The above results are valid for the RAM model.For the ase of the pointer mahine model (see e.g. [T79℄), it was shown in[Ch90℄ that any range reporting data struture that works in O(logn+ k) time�Dept. of Computer Siene, University of Bonn.Work partially supported by IST grant14036 (RAND-APX). E-mail yasha�s.uni-bonn.de1



Soure Query Spae Insertion/Time Usage DeletionVan Kreveld, O(pn logn + k) O(n) O(logn)Overmars, [vKO88℄Van Kreveld, O(pn logn + k) O(n) O(logn)Overmars, [vKO89℄Chazelle, [Ch88℄ O(logn+ k log2(2n=(k+ 1))) O(n) {Mehlhorn, [MN90℄ O(logn log logn + k) O(n logn) O(logn log logn)Mortensen, [M03℄ O(logn+ k) O(n logn= log logn) O(logn)Chazelle, [Ch88℄ O(logn+ k log log(4n=(k+ 1))) O(n log logn) {Chazelle, [Ch88℄ O(logn+ k) O(n log" n) {this paper O(logn+ k) O(n log" n) O(log2 n)/O(logn log logn)this paper O(logn+ k log logn) O(n log logn) O(log2 n)/O(logn log logn)Table 1: Data Strutures for Planar Orthogonal Range Reportingrequires at least spae 
(n logn= log logn). An optimal upper bound for thepointer mahine was also obtained (see [Ch86℄).Dynami algorithms for geometri problems have gained inreasing atten-tion due to a number of important appliations. However, the dynami datastrutures are not so eÆient as the stati ones. An algorithm of Mehlhorn andN�aher [MN90℄ answers planar range reporting queries in O(logn log logn + k)time and O(n logn) spae, and supports update operations in O(logn log logn)time. Reently, Mortensen [M03℄ desribed a dynami data struture with querytime O(logn + k), update time O(logn), and spae O(n logn= log logn).In ase of massive data sets it is sometimes important to answer orthogonalrange queries using a linear (or almost linear ) spae data struture. If we aeptpolylogarithmi penalties for every answer, it is possible to answer range queriesin O((k+ 1) log2(2n=(k+ 1))) time and linear spae [Ch88℄; this data struturesupports updates in O(log2 n) time. Other linear spae data strutures do nothave penalties for the answers at the ost of suÆiently higher query times. VanKreveld and Overmars [vKO89℄ present a data struture with O(pn logn+ k)query time. In [vKO88℄ they present a data struture with O(pn logn + k)query time and O(logn) update time.More eÆient algorithms exist for some speial ases of planar range report-ing. So, for instane, MCreight [MC85℄ desribes an algorithm for three-sidedrange queries that requires linear spae and O(logn+ k) time.In ase of dynami d-dimensional range reporting, d � 3, Willard [W87℄ hasgiven an O(logd n) query and update time, and O(n(logn= log logn)d) spae so-lution. [Ch88℄ desribes the data struture with O(logd�1 n+k log(2n=(k+1))2)query time, O(logd n) update time, and O(n logd�2 n) spae . The tehnique of[MN90℄ extends to d dimensions, yielding a data struture withO(logd�1 n log logn+k) searh and update times, and O(n logd�1 n) spae.2



1.1 Our ResultsIn this paper we present new spae eÆient dynami data strutures for orthog-onal range queries. These data strutures ome very lose to the linear spaebound and at the same time support eÆient range queries. In partiular, wedesribe the �rst dynami data struture with query time O(logn + k) thatrequires O(n log" n) spae for any " > 0. All previously desribed dynami datastrutures that use o(n logn= log logn) spae require either query time 
(n) for > 0 or penalties for every answer.Theorem 1 There exists a dynami data struture supporting two-dimensionalrange reporting queries in timeO(logn+ k) and spae O(n log" n) for any " > 0. There exists a dynami datastruture supporting two-dimensional range reporting queries in time O(logn+k log log 4nk+1 ) and spae O(n log logn).Both data strutures an be onstruted in O(n logn) time and support in-sert and delete operations in amortized time O(log2 n) and O(logn log logn)respetively.Results of Theorem 1 are valid1 for the RAM model with word size loga-rithmi in n. Our results math the orresponding upper bounds of Chazelle[Ch88℄ for stati data strutures. Our data strutures also improve on the resultof Mehlhorn and N�aher [MN90℄ both in terms of required spae and of querytime, and on the result of Mortensen [M03℄ in terms of spae.Many solutions of orthogonal range reporting problem are based on rangetrees and their variants, and frational asading. In this paper a di�erentapproah is used. As will be shown below, an orthogonal range query an beredued to several three-sided range queries and/or an orthogonal range queryon a smaller set of elements. The key to our spae eÆient solution is a noveldynami range redution tehnique, alled dynami range redution to extendedrank spae . We believe that this tehnique is of interest on its own and anhave other important appliations.We also extend our result for planar range searhing to higher dimensionsand obtain the following result:Theorem 2 For any " > 0 and d � 3, there is a data struture D0 that sup-ports d-dimensional range reporting quer-ies in time O(logd�1 n+k) and requiresO(n logd�2+" n) spae; D0 supports update operations in amortized timeO(logd n) and an be onstruted in time O(n logd�1 n).For d � 3, there is a data strutureD00 that supports d-dimensional range report-ing queries in time O(logd�1 n+k log log 4nk+1) and requires O(n logd�2 n log logn)spae; D00 supports update operations in amortized time O(logd n) and an beonstruted in time O(n logd�1 n).1We use O(logn+ k log log 4nk+1 ) instead of O(logn+ k log log nk ) in the seond statementof the Theorem, to avoid �1, if n = k, or division by zero , if k = 0.3



This result improves on the previously known results for dynami d-dimensionalrange reporting.The rest of this paper has the following struture. In setion 2 we desribe thedata struture D with time and spae bounds spei�ed in Theorem 1. D requiresexistene of a dynami data struture A whih answers orthogonal range queriesin logarithmi time and spae O(n logp n) for some onstant p > 0. Constantp an be arbitrarily large. In setion 3 a dynami range redution tehniqueis presented. This tehnique allows us to redue spae requirements and, webelieve, an have some other important appliations. The analysis of the datastruture D is �nished in setion 4. In setion 5 we onsider an extension of ourresults to d-dimensional queries, d � 3.2 A data struture for orthogonal range report-ingIn this setion we give a rough desription of our data struture.Our solution is based on a reursive data struture representing rows andolumns. A data struture ontainingm points is subdivided intoO(pm= logpm)olumn data strutures and O(pm= logpm) row data strutures, eah of whihontains between pm logpm=2 and 2pm logpm points. Eah point is storedin one row and one olumn data struture. For every row Ri and every olumnCj we also store the list of elements from the set Kij = Cj \ Ri. For all rowsRi and olumns Cj our data struture also supports three-sided range querieslimited by one of vertial olumn borders or one of horizontal row borders . Ifthe number of elements in a olumn or a row exeeds a ertain smin = �(logn),we store the data struture D for elements from this olumn or row.The data struture ontaining all elements will be further alled a level 0data struture (D0). Data strutures orresponding to rows and olumns of alevel k data struture will be alled level k + 1 data strutures. Observe thatthe number of elements in reursive data struture exponentially dereases withlevel l. Using the presented data struture we an either redue an orthogonalquery on [1; ::; n℄�[1; ::; n℄ to a query in a single row ( single olumn ) or to a two-dimensional query in a data struture of size O(n= logp n) and four three-sidedqueries on data strutures of size O(pn logp n).Below we give a more detailed desription of the reursive data struture.Consider a data struture Dl on level l withm elements in the range [1; ::; O(m3)℄�[1; ::; O(m3)℄ . This range is subdivided intopm= logpm olumnsCi = [i�1; i℄�[1; ::; O(m3)℄ and pm= logpm rows Ri = [1; ::; O(m3)℄� [ri�1; ::; ri℄ so that eaholumn (row ) stores between pm logpm=2 and 2pm logpm elements.For every olumn and row we store a dynami range redution struture(explained in setion 3 ) that maps point oordinates from range [1; ::; O(m3)℄�[1; ::; O(m3)℄ to [1; ::; O(n3)℄ � [1; ::; O(n3)℄ where n is the maximum number ofelements in a row (olumn). We also store level l + 1 data struture for everyolumn and row using oordinates in the redued range.4
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Figure 1: Range Query (Case 2). Areas of three-sided range queries are markedby slanted lines.Every data struture Dl ontains data strutures for three-sided range queriesfor its olumns and rows. Priority searh trees of MCreight [MC85℄ are usedfor this purpose. Dl also ontains data struture Dt with range pm= logpm �pm= logpm ontaining at most m= logpm points. An element in Dt with o-ordinates i,j orresponds to a non-empty retangle Kij = Ri \ Cj . We willuse data struture A, whih supports range queries in time O(logn), updatesin O(logn) time, and requires O(n logp n) spae as Dt. For instane, the datastruture from [M03℄ satis�es this ondition and an be used as Dt. Sine Dtontains at most m= logpm elements it requires O((m= logpm) logpm) = O(m)spae.We also need two one-dimensional strutures Dr and D that store rowborders ri and olumn borders i respetively. Any linear spae and logarithmitime data struture an be used for Dr and D.A range query [a; ::; b℄� [; ::; d℄ to data struture D is proessed as follows.First we use D and Dr to identify minh and maxh (minv and maxv) suhthat minh�1 < a < minh < minh+1 < : : : < maxh�1 < b < maxh (rminv�1 < < rminv < rminv+1 < : : : < rmaxv�1 < d < rmaxv ). We will all olumnsCminh , Cmaxh and rows Rminv , Rmaxv marginal olumns and marginal rowsrespetively. The retangles Kij with minh < i < maxh and minv < j < maxvwill be alled internal retangles.There are two possible asesCase 1 [a; ::; b℄� [; ::; d℄ is ontained in one row Ri or in one olumn Cj. Thatis, for some j, j < a < b < j+1, or for some i, ri <  < d < ri+1.5



In this ase we have to answer the same query for the data strutureorresponding to Cj (Ri). Note that the number of elements has hangedfrom m to pm logpm.Case 2 [a; ::; b℄ � [; ::; d℄ intersets with more than one row and more thanone olumn. In this ase we have to answer four three-sided queriesfor marginal retangles. That is, we must report all elements p withp 2 Cminh \ [a;+1) � [rminv ; ::; rmaxv�1℄, or p 2 Cmaxh \ (�1; b℄ �[rminv ; ::; rmaxv�1℄, or p 2 Rminv \ [a; ::; b℄ � [;+1) or p 2 Rmaxv \[a; ::; b℄� (�1; d℄. These three-sided queries an be answered using theorresponding priority searh trees. We must also report all elements fromnon-empty internal retangles. The non-empty retangles an be foundusing the struture Dt.In the �rst ase, in time O(logn) the size of the data struture is reduedfrom n to O(pn logn). In the seond ase, using struture Dt all non-emptyretangles Kij an be found in time O(logn) and all points in the marginalrows and olumns an also be found in O(logn) time. Therefore, if we ignorethe time for reporting answers, we have the following reursive equation for thequery time T (n): T (n) = min(2 logn+T (pn logp n); 2 logn+4 logpn logp n+logpn= logp n) and T (n) = O(logn).The spae requirement of this data struture an be roughly estimated withO(n logO(1) n). This follows from the fat that our data struture onsists ofO(log logn) reursive levels and every point ours in at most 2l di�erent datastrutures on reursive level l. However this rough analysis ignores the inueneof the dynami range redution. In the following setions we will show howspae requirements an be redued. In setion 3 a tehnique alled dynamirange redution to extended rank spae will be desribed. With help of thistehnique a better analysis of spae and time omplexity will be performed insetion 4.3 Dynami range redutionThe key idea of our spae-redution method is an order-preserving bijetivedynami mapping from the set S, suh that m=2 � jSj � 2m, to [1; ::; O(m3)℄.If we store instead of x 2 S its mapping f(x), every element of S an bespei�ed with O(logm3) bits. Hene, any linear size data struture an bestored with O(m logm) bits. The tehnique for onstrution and maintenaneof f is related to the solution of the list labelling problem ([IKR81℄), whih isalso used in ahe-oblivious B-trees ([BDF00℄).The mapping f is used as a base of our range-redution tehnique, furtheralled dynami range redution to extended rank spae. This tehnique an beregarded as an extension of redution to rank spae tehnique (see, for instane,[Ch88℄). First we desribe the dynami range redution tehnique, the mappingitself will be desribed later in this setion. Consider the set of planar points Rand let Rx and Ry be the sets of x-oordinates and y-oordinates of all points6



in R. Our two-dimensional range redution struture onsists of two dynamimappings fx and fy for two oordinates. For eah mapping we also store alinear spae one-dimensional data struture that allows us to �nd predeessorand suessor of an element in Rx or Ry in O(logn) time. We denote by R̂ theset of points f(fx(x); fy(y))j(x; y) 2 Rg. Range query Q = [x1; ::; x2℄� [y1; ::; y2℄in R an be translated to a range query Q̂ = [x̂1; ::; x̂2℄� [ŷ1; ::; ŷ2℄ in R̂, wherex̂1 = fx(x01) + f=2, ŷ1 = fy(y01) + f=2, x̂2 = fx(x02) � f=2, ŷ2 = fy(y02) �f=2 and x01; y01 and x02; y02 are predeessors and suessors of x1; y1 and x2; y2respetively. Constant f is suh that jf(x)�f(y)jgeqf , for all x; y. Obviously,(x; y) 2 Q \R, (fx(x); fy(y)) 2 Q̂ \ R̂.We also assoiate a time-stamp ti with every element êi 2 R̂. When R withjRj = m is onstruted its elements e1; e2; : : : ; em get time-stamps 1; 2; : : : ;m.When a new element is added to R, the orresponding element in R̂ gets time-stamp tmax+1, where tmax is the maximum time-stamp previously used. Withevery element êi in R̂ we store its time-stamp ti. We also store an array Inv withat most 2m entries, so that Inv[i℄ = ei = (xi; yi) suh that êi = (fx(xi); fy(yi))has time-stamp i. This allows us to �nd for every (x; y) 2 R̂ f�1(x; y) inonstant time.Now we turn to the desription of mapping f : S ! [1; ::; vmax℄, for adynami set S suh that m=2 � jSj � 2m. Here vmax = 4fm3 for someonstant f . We presume that every element x 2 S has an assoiated integervalue val(x) so that 8x; y 2 S val(x) < val(y) ) f(x) < f(y), but if val(x) =val(y) f(x) 6= f(y). Elements an be added to or deleted from set S, and whenS is updated values f(x) for some x 2 S may hange. We say that element x ismoved if the value f(x) has hanged. We will show that f an be onstrutedin O(jSj) time if S is sorted. We also show that update operations an beperformed in amortized time O(log2m= log logm). That is, we will show thatwhen an element is inserted into S or deleted from S, we an hange the valuesf(x) of O(log2m= log logm) elements x so that the properties of mapping f arepreserved.Lemma 1 For a set S of size m, mapping f an be onstruted in O(m) time, ifS is sorted. If m=2 � jSj � 2m, insertions of new elements an be performed inamortized time O(log2m= log logm). Deletions an be performed in amortizedtime O(1).Proof: We an set f(x) = i �m2 � f , if x is the i-th element in asendingorder. This proves the �rst par of Lemma 1.For ease of desription we say that x belongs to interval I � [1; ::; vmax℄if f(x) 2 I. Distane between two neighbor elements x and y (d(x; y)) willdenote the di�erene jf(y) � f(x)j. For an interval I the potential funtionpot(I) equals toPx2I log d(x; su(x))=f , where su(x) denotes the suessorof x. Average potential Av(I) is the logarithm of the average distane betweenneighbor elements in I:Av(I) = log(Xx2I d(x; su(x))=f jfxjf(x) 2 Igj)7



. First we show how insertions are proessed. Let Ikj = [(j�1)m2f logkm; ::; jm2f logkm℄.We say that interval I is rebuilt, if all elements of I are moved so that for allelements x; y 2 I d(x; su(x)) = d(y; su(y)). In other words, when intervalI is rebuilt, the average potential of I beomes \uniform\ on this interval, or8 I0j ; I0j0 � I : Pot(I0j ) = Pot(I0j0).Suppose that element z must be inserted, and let x and y be its predeessorand suessor respetively. If d(x; y) � 2f , we set f(z) = f(x) + d(x; y)=2.Otherwise we rebuild the interval I0m. We also keep trak of the number ofelements inserted into intervals Ikj for k � 1. If more than logk+1m elementswere inserted into Ikj sine Ikj or some Ik0j0 � Ikj was rebuilt for the last time, werebuild Ikj and split it into logm intervals ontaining at most logkm elements.It is easy to see that the average potential of every interval I0j after a re-build always exeeds logm. An insertion dereases the average potential of theorresponding interval I0j by at most 1. Therefore every I0j will be rebuilt atmost logm times between two rebuilds of I1j0 � I0j . The total number of ele-ments in I0j does not exeed log2m + logm. Rebuilding interval I takes timejfxjx 2 Igj. Hene after a sequene of m insertions, intervals I0j will be rebuiltat mostm= logm times, and every rebuilding takes O(log2m) time. Intervals Ikjare rebuilt after logk+1m insertions, and the ost of rebuilding is O(logk+2m).Therefore after m elements were inserted, total time for rebuilding all inter-vals does not exeed O(log2m) mlogm +O(log3m) mlog2m+ : : :+O(logs+1m) mlogsm ,where s = dloglogmme. Hene, total time for rebuilds is O(m log2m= log logm).The details of the rebuilding proedure will be given in the full version of thispaper.When an element z is deleted we simply \free" the value of f(z), i.e., we setd(x; y) = d(x; z)+ d(z; y), where x is the predeessor of z and y is the suessorof z.After a sequene ofm delete and insert operations, mapping f an be rebuiltin O(m) time aording to the �rst part of Lemma 1. This inurs additionalamortized ost O(1).4 AnalysisThe spae requirements of data struture D an be suÆiently redued by usingthe redution to extended rank spae. With help of this tehnique, elements ofthe data struture Dl an be stored in O(log(Dl) bits.Lemma 2 Data struture D with n elements an be onstruted in O(n logn)time.Proof: Let g(n) = pn logp n. If sorted lists of points for D are availablesorted lists of elements for olumns Cj and rows Ri an be onstruted in O(n)8



time. 4n=g(n) priority searh trees for rows and olumns an also be onstrutedin O(n) time as well as the strutures for dynami range redution. The timerequired to onstrut priority searh trees for D and Dr is O(n1=2 logn1=2) =o(n) . Dt an be onstruted in O(n) time.We get the following reurrent relation for onstrution time K(n): K(n) =O(n) + 2(n=g(n))K(g(n)) = O(n logn). Hene K(n) = O(n logn).Proofs of Lemmas 3 and 5 are provided in Appendix A.Lemma 3 Data struture D requires O(n log logn) spaeLemma 4 Using D, orthogonal range queries an be answered in O(logn +k log logn) time.Proof: Consider a query Q = [a; ::; b℄� [; ::; d℄. The searh in D0 begins bylooking for the olumns and rows that interset with [a; ::; b℄� [; ::; d℄. If thewhole retangle [a; ::; b℄� [; ::; d℄ is ontained in one row or in one olumn (Case1 desribed in setion 2 ) the searh is ontinued in the data struture on thenext level. As follows from the disussion in Lemma 3, after at most log logn+lreursion levels the searh is either redued to searh in a data struture of sizeO(logn), or the situation orresponding to Case 2 of setion 2 is ahieved. Inthe �rst ase query an be answered in time O(logn) by exhaustive searh.Reall that in Case 2 of setion 2 query retangle intersets with more than onerow and more than one olumn, and the query an be answered by answeringfour three-sided queries and one range query to Dt. Hene in O(logn) time theanswers an be found. However, we have only found the point oordinates onsome level l. To �nd the original oordinates, the reverse range redution mustbe applied l times. Sine there are at most O(log logn) reursive levels, andrange redution an be reversed in a onstant time, the osts for �nding theorret oordinates of every answer are at most O(log logn).Lemma 5 Insert operations into data strutureD an be performed in O(log2 n)amortized time. Deletions from D an be performed in O(logn log logn) amor-tized time.A ombination of Lemmas 3, 4, and 5 almost proves the seond part ofTheorem 1. We an redue query time from O(logn+ k log logn) to O(logn+k log log 4nk+1 ) applying the tehnique desribed in [Ch88℄, setion 5.We also desribe a modi�ation of the above data struture, whih re-quires slightly more spae than the previous variant, but allows us to avoidthe O(log logn) penalty for every answer. In modi�ed data struture D0 weapply range redution only on every r-th level for a parameter r. If we hooser = " log logn, for a onstant ", then range redution is applied only a onstantnumber of times. Hene, queries an be answered in time O(logn+ k).Lemma 6 Data struture D0 requires spae O(n log" n).Lemma 7 Insert operations into data strutureD0 an be performed in O(log2 n)amortized time. Deletions from D0 an be performed in O(logn log logn) amor-tized time. 9



Two above lemmas are also proven in Appendix B. Combination of thesetwo lemmas proves the �rst part of Theorem 1.5 Range Searhing in Higher DimensionsWe use a standard tehnique for extending d-dimensional queries to (d + 1)-dimensional queries (f. e.g., [Ch88℄).Let P � Rd+1. Let Pd+1 be the set of the d + 1-st oordinates of points inP . For onveniene we assume that ad+1 6= bd+1 for all a; b 2 P . We onstruta balaned binary tree T whose leaves are assoiated with elements of Pd+1, sothat leaves are ordered left to right. We assoiate with eah internal node N arange [aN ; ::; bN℄ suh that all leaf desendants of N belong to [aN ; ::; bN℄. Inevery node N we also store a d-dimensional data struture DN . DN ontainspoints e 2 P , vi < ed+1 � vj, but only �rst d oordinates of elements are stored.An arbitrary interval [a; ::; b℄ an be represented as a union of O(logn) intervals[aNi ; ::; bNi℄, where [aNi ; ::; bNi℄ is an interval assoiated to node Ni. Therefore a(d+1)-dimensional query [a; ::; b℄�Q, where Q is a d-dimensional range, an beredued to O(logn) d-dimensional queries to data strutures orresponding tonodes Ni. Thus query time is O(q(n) logn+kp(n), if a d-dimensional query timeis O(q(n)+kp(n)). Sine every element is stored in dlogne data strutures, spaerequirement inreases by a logarithmi fator, ompared to a d-dimensional datastruture. It an be shown (see, e.g., [W85℄ ) that the (amortized ) update timealso inreases by an O(logn) fator.Applying the above tehnique d � 2 times to the results of Theorem 1, weimmediately obtain Theorem 2.6 ConlusionIn this paper spae- and time-eÆient algorithms for orthogonal range report-ing were presented. We believe that the dynami range redution tehniquepresented here will also �nd appliations in other geometri data strutures.We also suppose that using deamortization tehniques amortized time boundsfor our data strutures an be turned into the orresponding worst ase timebounds.The presented data struture has O(log2 n) insertion time, due to theO(log2 n)insertion time of the dynami range redution omponent. If we will be able toimprove the performane of the dynami range redution tehnique, this wouldlead to better insertion times in our data struture.AknowledgmentsThe author thanks Marek Karpinski for helpful remarks and disussions.10
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[O87℄ M. H. Overmars \Design of Dynami Data Strutures" Springer-VerlagNew York, In., Seauus, NJ, 1987.[T79℄ R.E. Tarjan \A Class of Algorithms Whih Require Nonlinear Time toMaintain Disjoint Sets", JCSS, vol. 18, 1979, 110-127.[W85℄ D. E. Willard \New Data Strutures for Orthogonal Range Queries",SIAM J. on Computing, vol. 14, 1985, 232-253.[W87℄ D. E. Willard \Multidimensional Searh Trees That Provide New Typesof Memory Redutions", J. of the ACM, vol. 34, 1987, 846-858[W96℄ D. E. Willard \Appliations of Range Query Theory to Relational DataBase Join and Selet Operations" Journal of Computer and System Sienes,vol. 52, 1996, 157-169.A Proofs of lemmata in setion 4Proposition 1 Let sk(n) be the maximum number of elements in a data stru-ture on level k. Let lmax be the maximum number of levels in D. Thensk(n) = O(n1=2k logp nplog logn)log sk(n) = O(1=2k logn + (p+ 1) log logn)Plmaxl=0 2l log2(sl(n))= log log sl(n) = O(log2 n)Proof: The data struture on level 0 requires n logn bits, sine number ofstored values is n and eah stored value requires logn bits. Now suppose thatdata strutures on level k ontain sk(n) � n1=2k logp nplog logn elements forsome onstant . In this ase log sk(n) < (1=2k logn+ (p + 1) log logn). Then:sk+1(n) = (sk(n) log(sk(n)))1=2 <(n1=2k logp n log logn(1=2k logn+ (p + 1) log logn))1=2 <pn1=2k+1plogp n log lognplogn <pn1=2k+1 logp nplog logn <n1=2k+1 logp nplog lognand log sk+1(n) < (1=2k+1 logn + (p+ 1) log logn)This proves the �rst two equalities.It immediately follows from the �rst two inequalities thatPlmaxl=0 2l log(sl(n)) =O(log logn logn). On the other hand, sk(n) > n1=2k and log log sk(n) > (log logn�k) . Also reall that sk(n) > logn for k < lmax by de�nition of lmax, henesk(n) > log log logn. Plmaxl=0 log sl(n)= log log sl(n) =12



Plmidl=0 log sl(n)= log log sl(n) +Plmaxl=lmid+1 log sl(n)= log log sl(n), where lmid =log logn=2. Now we estimate the �rst and the seond summands separately.lmidXl=0 log sl(n)= log log sl(n) <lmidXl=0 2(logn=2l + (p + 1) log logn)=0 log logn =O(logn= log logn) lmidXl=0 1=2l = O(logn= log logn)And the seond summand is:lmaxXl=lmid+1 log sl(n)= log log sl(n) <lmaxXl=lmid+1(logn=2log logn=2)= log log sl(n) << (log logn= log log logn)plogn =O(logn= log logn). Now we an express lmaxXl=0 2l log2(sl(n))= log log sl(n) =lmaxXl=0 (2l log(sl(n))) � (log(sl(n))= log log sl(n))< lmaxXl=0 2l log(sl(n)) lmaxXl=0 log(sl(n))= log log sl(n)The last expression is O(logn log logn)O(logn= log logn) = O(log2 n).Lemma 3 Data struture D requires O(n log logn) spae.Proof: Using dynami range redution to extended rank spae, we an expresselements of D with O(log jDj) bits. Then it follows from the Proposition 1 thatevery data struture on level l ontains no more thanO(n1=2l logp nplog logn) elements and every element an be stored with(1=2l) logn+ (p+ 1) log logn bits.The total number of bits required by all data strutures on level l an beabove bounded by 0(n logn+n2l(p+1) log logn), where 0 is a onstant. Besides13



that, sl(n) � logn for all l > lmax. Here lmax = log logn+ l for some onstantl and lmax is the number of levels in the data struture. The total number ofbits isPlmaxl=0 0(n logn+n2l(p+1) log logn) = O(lmaxn logn+P 2ln log logn)bits. Sine the number of reursive levels lmax = log logn+l , the total numberof bits is O(n logn log logn). Thus we need O(n log logn) words of size logn.Lemma 5 Insert operations into data strutureD an be performed in O(log2 n)amortized time. Deletions from D an be performed in O(logn log logn) amor-tized time.Proof: Suppose that a new element e is inserted. Then it is inserted intoO(logn) range redution strutures, O(logn) priority searh trees and O(logn)strutures Dt. As explained above a new point must be inserted into one datastruture on level 0, two data strutures on level 1 and so on. Hene e must beinserted into 2l range redution strutures, O(2l) priority trees and 2l struturesDt on level l. Sine insertion into a range redution struture is the most time-onsuming operation, it is enough to estimate the total time for modifyingall dynami range redution strutures. Every insertion of an element to arange redution struture of size m an be performed by modifying values ofO(log2m= log logm) other elements (on average ). These modi�ations an beimplemented in O(log2m= log logm) time.Thus the total number of operations an be limited byPlmaxl=0 2l log2(sl(n))= log log sl(n) Aording to Proposition 1 the last expressionan be limited by O(log2 n).The ost of a deletion an be estimated in a similar way. Indeed, if a pointis deleted it must be deleted from O(2l) priority trees on level l, from 2l rangeredution strutures and from at most 2l strutures Dt Sine deleting of anelement from a range redution struture leads on average to O(1) deletionsfrom priority trees the total time is O(Plmaxl=0 2l log(sl(n))) = O(logn log logn).In the above analysis we ignored the osts of rebuildingD (global rebuilding)or parts of D (loal rebuilding). Suppose the number of elements after the lastglobal rebuilding was n0. Then the next global rebuilding takes plae whenn0=2 > jDj or 3n0=2 < jDj. During the global rebuilding the whole datastruture is reonstruted \from srath". As was shown in Lemma 2 this inurstotal ost of O(n logn) and amortized ost O(logn).Consider some Dl on level l ontaining m elements. Every row and olumnofDl an hold betweenpm logpm=2 and 2pm logpm elements. If after a seriesof updates the number of elements in a olumn Ci violates these bounds, weonsider one of the neighbor olumns Ci+1 and Ci�1. Sine pm logpm � jCi [Ci+1j < 4pm logpm (the same bounds are also true for Ci�1 ) we an onstrutv olumns from elements of Ci and Ci+1 for 1 � v � 4. Sine these olumnsan be rebuilt in time O(pm logpm logpm logpm) (see Lemma 2) rebuildingolumns inurs amortized ost O(logm). Rebuilding rows is, of ourse, identialto rebuilding olumns. 14



When a row or a olumn is rebuilt, Dt must also be updated. Namely, upto O(pm= logpm) elements are inserted to or deleted from Dt. The total ostof updating Dt is O(pm= logpm logm) = O(pm logpm). Thus rebuilding Dtinurs only onstant amortized ost and the total amortized ost of insertion ordeletion is O(logm). Now reall that when an element e is updated it is updatedin 2l strutures Dl on level l. Applying the same analysis as above we see thatthe total amortized rebuilding ost isP 2lO(log(sl(n))) = O(logn log logn).Therefore taking into onsideration amortized osts for loal and global re-building does not hange the time bounds of update operations.Lemma 6 Data struture D0 requires spae O(n log" n).Proof: Reall that in D0 we apply range redution only on every r-th level forsome parameter r. In this ase the total number of bits used by level l = ir+ qdata strutures is n2l log sir(n) for some onstant . Then the total number ofbits on levels ir; ir + 1; : : : ; (i+ 1)r � 1 isPr�1q=0 n2ir+q log sir(n)n2ir log sir(n)P2q. Sine log(sir) < 0(1=2ir logn +(p + 1) log logn) the total number of bits on levels ir; ir + 1; : : : ; (i + 1)r � 1 isO(n2r logn+2(i+1)r log logn). Then the total number of bits on all levels equalsto O((lmax=r)n2r logn + nPlmax=ri=1 2(i+1)r log logn). The seond summand isO(n logn log logn). Sine lmax � log logn + l, we an hoose r = " log lognand the �rst summand is O((1=") log1+" n). Thus the total number of bits doesnot exeed O(n logn log" n) and the modi�ed data struture an be stored inO(n log" n) words of memory.Lemma 7 Insert operations into data strutureD0 an be performed in O(log2 n)amortized time. Deletions from D0 an be performed in O(logn log logn) amor-tized time.Proof is analogous to the proof of Lemma 5.
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