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1 Introduction

A common special case of the Traveling Salesman Problem (TSP) is themetric

TSP, where the distances between the cities satisfy the triangle inequality. The

decision version of this special case was shown to beNP-complete by Karp [9],

which means that we have little hope of computing exact solutions in polynomial

time. Christofides [6] has constructed an elegant algorithm approximating the met-

ric TSP within 3/2, i.e., an algorithm that always produces a tour whose weight is

at most a factor 3/2 from the weight of the optimal tour. For the case when the

distance function may be asymmetric, the best known algorithm approximates the

solution withinO(logn), wheren is the number of cities [8]. As for lower bounds,

the PCP Theorem [1] and a result due to Papadimitriou and Yannakakis [11] to-

gether imply that there exists some constant such that it isNP-hard to approximate

TSP where the distances are constrained to be either one or two—note that such

a distance function always satisfies the triangle inequality—within that constant.

This hardness result was improved by Engebretsen [7], who proved that it is, for

every constantε > 0, NP-hard to approximate TSP with distances one and two

within 2805/2804− ε for the asymmetric and 5381/5380− ε for the symmetric,

respectively, version of the problem. Böckenhauer and Seibert [4] considered the

symmetric TSP with distances one, two and three, and proved a lower bound of

3813/3812− ε. For a discussion of bounded metric TSP, see also Trevisan [12]. It

appears that the metric TSP lacks the good definability properties which seem to be

needed for proving strong inapproximability results. Therefore, any new insights

into explicit lower bounds here are of considerable interest.

Papadimitriou and Vempala [10] recently announced stronger approximation

hardness results for the asymmetric and symmetric versions of the TSP with graph

metric, but left the case of TSP withbounded metricopen. However, their original

proof contained an error influencing the explicit constants. A new proof with the
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new constants of 117/116− ε and 220/219− ε, respectively, was announced by

Papadimitriou and Vempala in May 2002 (the latest version of the paper is avail-

able from URL http://www-math.mit.edu/~vempala/papers/tspinapprox.ps). Apart

from being an interesting question on its own, it is conceivable that the special cases

with bounded metric are easier to approximate than the cases when the distance be-

tween two points can grow with the number of cities in the instance. Indeed, the

asymmetric TSP with distances bounded byB can be approximated withinB by

just picking any tour as the solution and the asymmetric TSP with distances one

and two can be approximated within 4/3 [3]. The symmetric version of the latter

problem can be approximated within 7/6 [11].

Definition 1.1. TheAsymmetric Traveling Salesman Problem (ATSP)is the fol-

lowing minimization problem: Given a collection of cities and a matrix whose

entries are interpreted as the distance from a city to another, find the shortest tour

starting and ending in the same city and visiting every city exactly once.

Definition 1.2. (1,B)-ATSP is the special case of ATSP where the entries in the

distance matrix obey the triangle inequality and the off-diagonal entries in the

distance matrix are integers between 1 andB. (1,B)-TSP is the special case of

(1,B)-ATSP where the distance matrix is symmetric.

In this paper, we prove that it is, for any constantε > 0, NP-hard to approximate

(1,2)-ATSP within 321/320− ε (Corollary 2.2), and that it is, for any constant

ε > 0, NP-hard to approximate (1,2)-TSP within 741/740− ε (Corollary 3.1).

This shows that the currently best known bounds for TSP with bounded metrics

are, in some sense, not that far from the best currently known bounds for general

TSP with triangle inequality. Specifically, the bounds for TSP with graph metric

announced by Papadimitriou and Vempala in May 2002 can be written as 1+ ε,

whereε ≈ 0.01 for the asymmetric TSP andε ≈ 0.005 for the symmetric TSP. We
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show, on the other hand, bounds for (1,B)-(A)TSP that are of the same form but

with ε ≈ 0.003 andε ≈ 0.0013, respectively.

By relaxing the requirement on the “boundedness” of the metric, i.e., by al-

lowing some larger, but still constant,B in the (1,B)-(A)TSP problem, the actual

constants in the approximation hardness results for TSP with bounded metrics can

be made even closer to the constants obtained by Papadimitriou and Vempala. We

elucidate on this matter in a sequel to this article.

The proofs of our approximation hardness results follow by reduction from the

problemHybrid introduced by Berman and Karpinski [2]. Another way to im-

prove our bounds is therefore to establish stronger approximation hardness results

for Hybrid. Some such progress has recently been reported by Chlebíková and

Chlebík [5].

2 The approximation hardness of (1,2)-ATSP

As mentioned above, we prove our hardness results by reduction from the prob-

lemHybrid, introduced by Berman and Karpinski [2] to prove hardness results for

special cases of several combinatorial optimization problems where the number of

occurrences of every variable is bounded by some constant. Essentially, Hybrid is

the problem of maximizing, given a system of linear equations with special struc-

ture, the number of satisfied equations. The special structure of the linear equations

in Hybrid is particularly well-suited for our reduction: The equations have either

two or three unknowns and each variable occurs exactly three times in the instance.

The main idea in the reduction is the same as in earlier reductions [7, 11];

the reduction islocal andgadget based. Specifically, each equation in the Hybrid

instance is transformed into a certain subgraph of the TSP instance—a so called

gadget. Different parts of the gadget correspond to the different variables partici-
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pating in the equation. The gadgets are then linked together to form a circle. By

the construction of the gadgets, there is a natural way to interpret a TSP tour in

the resulting graph as an assignment to the variables in the Hybrid instance. To

ensure that there is a certain connection between the length of the TSP tour and

the number of equations satisfied by the corresponding assignment, the parts of the

instance corresponding to the same variable are connected to each other in a certain

way.

To obtain a good approximation hardness result, the gadgets must, loosely

speaking, contain as few nodes as possible. On the other hand, the major chal-

lenge in the proof of correctness is to prove thateveryTSP tour in the resulting

graph can be interpreted as an assignment to the variables in the Hybrid instance

with the property that the number of satisfied equations is connected to the cost of

the tour. Such connections are usually easier to establish when the gadgets con-

tain more nodes. In this work, we are able to improve the approximation hardness

constants by, firstly, observing that the Hybrid instances actually have even more

structure than is explicitly stated by Berman and Karpinski [2] and, secondly, using

gadgets with few nodes. This requires a fairly involved argument to establish that

our reduction is correct.

2.1 The Hybrid problem and its connection to TSP

In their paper on approximation hardness of bounded occurrence instances of sev-

eral combinatorial optimization problems, Berman and Karpinski [2] introduced

the problemHybrid and proved that it is hard to approximate.

Definition 2.1. Hybrid is the following maximization problem: Given a system

of linear equations mod2 containingn variables,m2 equations with exactly two

unknowns, andm3 equations with exactly three unknowns, find an assignment to

the variables that satisfies as many equations as possible.
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Theorem 2.1 [2]. For any constantδ > 0, there exists instances of Hybrid with

42ν variables,60ν equations with exactly two variables, and2ν equations with

exactly three variables such that:

1. Each variable occurs exactly three times.

2. Either there is an assignment to the variables that leaves at mostδν equa-

tions unsatisfied, or else every assignment to the variables leaves at least

(1− δ)ν equations unsatisfied.

3. It is NP-hard to decide which of the two cases in item 2 above holds.

Delving into the details of the Berman-Karpinski construction, it can be seen that

every instance of Hybrid produced by it has an even more special structure: The

equations containing three unknowns are of the formx+y+z = {0,1}; the number

of such equations with right-hand side 0 is equal to the number of such equations

with right-hand side 1. The equations containing two unknowns are all of the form

xi + xj = 0. Moreover, the set of variables can be partitioned into classes with

the property that for each class{x1, x2, . . . , xk} of variables there are equations

xi + xi+1 = 0 (1≤ i < k) and one equationxk + x1 = 0.

By rewriting the latter equations mentioned above asxi + x̄i+1 = 1 (1≤ i < k)

andxk + x̄1 = 1, we have established the following corollary of Theorem 2.1:

Corollary 2.1. There are instances of Hybrid with42ν variables,42ν equations of

the formx+ ȳ = 1 mod 2, 18ν equations of the formx+ y = 0 mod 2, ν equations

of the formx+ y + z = 0 mod 2, andν equations of the formx+ y + z = 1 mod 2

such that:

1. Each variable occurs exactly three times, two times positively and one time

negatively.
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2. Either there is an assignment to the variables that leaves at mostδν equa-

tions unsatisfied, or else every assignment to the variables leaves at least

(1− δ)ν equations unsatisfied.

3. It is NP-hard to decide which of the two cases in item 2 above holds.

To prove our hardness result for (1,2)-ATSP, we reduce instances of Hybrid having

the form described in Corollary 2.1 to instances of (1,2)-ATSP:

Theorem 2.2. Suppose that we are given an arbitrary instance of Hybrid with

n variables,m2,0 equations of the formx + y = 0 mod 2, m2,1 equations of the

form x + ȳ = 1 mod 2, m3,0 equations of the formx + y + z = 0 mod 2, and

m3,1 equations of the formx + y + z = 1 mod 2such that each variable occurs

exactly three times, two times positively and one time negatively.

Then it is possible to construct in polynomial time an instance of (1,2)-ATSP,

with size polynomial in the size of the Hybrid instance, such that

1. If there is an assignment to the variables in the Hybrid instance that leaves

at mostu equations unsatisfied, then there is a TSP tour of length6n+m2,0+

m2,1 + 4m3,0 + 4m3,1 + u.

2. From any TSP tour of length6n+m2,0+m2,1+4m3,0+4m3,1+u, it is possible

to construct in polynomial time an assignment to the variables in the Hybrid

instance that leaves at mostu equations unsatisfied.

The rest of this section is devoted to the proof of Theorem 2.2. Before turning

to that, however, let us use the theorem to establish approximation hardness of

(1,2)-ATSP:

Corollary 2.2. For any constantε > 0, it is NP-hard to approximate (1,2)-ATSP

within 321/320− ε.
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Proof. Selectδ > 0 such that (321− δ)/(320+ δ) ≥ 321/320− ε. From an

instance of Hybrid with the structure described in Corollary 2.1, construct an in-

stance of (1,2)-ATSP with the properties guaranteed by Theorem 2.2. Combining

Theorem 2.2 with item 2 in Corollary 2.1 shows that the constructed (1,2)-ATSP in-

stance either has a tour of length at most 6·42ν+42ν+18ν+4ν+4ν+δν = (320+δ)ν

or that every TSP tour has length at least 6·42ν+42ν+18ν+4ν+4ν+ (1− δ)ν =

(321− δ)ν. Furthermore, item 3 in Corollary 2.1 states that it isNP-hard to distin-

guish those two cases. Therefore it isNP-hard to approximate (1,2)-ATSP within

(321− δ)/(320+ δ) ≥ 321/320− ε.

2.2 Main ideas in the proof of Theorem 2.2

To describe a (1,2)-(A)TSP instance, it is enough to specify the edges of weight

one. We do this by constructing a graphG and then let the (1,2)-(A)TSP instance

have the nodes ofG as cities. The distance between two citiesu andv is defined to

be one if (u, v) is an edge inG and two otherwise. To compute the weight of a tour,

it is enough to study the parts of the tour traversing edges ofG. In the asymmetric

caseG is a directed graph.

Definition 2.2. We call a node where the tour leaves or entersG an endpoint. A

node with the property that the tour both enters and leavesG in that particular

node is called adouble endpointand counts as two endpoints.

If c is the number of cities and 2e is the total number of endpoints, the weight

of the tour isc + e since every edge of weight two corresponds to two endpoints.

Conversely, any tour of weightc + e has exactly 2e endpoints.

On a high level, the (1,2)-ATSP instance in our reduction consists of a cir-

cle formed byequation gadgetsrepresenting the equations occurring in the corre-

sponding instance of Hybrid. These equation gadgets are also connected through
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consistency checkers. We first show that any assignment satisfying all butu equa-

tions in the Hybrid instance can be transformed into a tour with exactly 2u end-

points. We then show thatanyTSP tour can be transformed by local transforma-

tions into another tour with equal or lower cost, and that it is possible to extract an

assignment to the variables in the Hybrid instance from the way that this new tour

traverses certain parts of TSP instance. This assignment satisfies all but at most

⌊e/2⌋ equations in the Hybrid instance, wheree is the number of endpoints in the

tour.

The proof of Theorem 2.2 now proceeds by first defining the gadgets and the

consistency checkers, then defining the local transformations of an arbitrary TSP

tour, and finally describing how an assignment can be found from the resulting

tour.

2.3 Constructing a (1,2)-ATSP instance from Hybrid

The equation gadgets for equations of the formx + y + z = {0,1} are shown in

Fig. 2; gadgets for equations of the formx+y = 0 andx+ȳ = 1 are shown in Fig. 3.

The ticked edges in the gadgets correspond to the variables in the corresponding

equation as indicated in the figures. The following properties of the gadgets can be

checked by exhausting all possibilities:

Proposition 2.1. There is a Hamiltonian path from A to B in the left gadget in

Fig. 2 if and only if an even number of ticked edges is traversed and a Hamiltonian

path from A to B in the right gadget in Fig. 2 if and only if an odd number of the

ticked edges is traversed.

There is a Hamiltonian path from A to B in the left gadget in Fig. 3 if and only

if an even number of the ticked edges is traversed. There is a Hamiltonian path

from A to B in the right gadget in Fig. 3 if and only if an odd number of the ticked

edges is traversed.
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The ticked edges corresponding to the same variable are joined together in a con-

sistency checker. Specifically, the ticked edges are syntactic sugar for parts of

the corresponding consistency checker. An entire consistency checker is shown

in Fig. 4. A ticked edge in the equation gadgets shown in Fig. 2 corresponds to

one of the three structures enclosed by a curve in Fig. 4. The correspondence is

such that negated variables always correspond to the part enclosed by a dashed

curve in Fig. 4—recall that each variable occurs one times negated and two times

unnegated.

Note that there is no node between the two ticked edges in the gadget cor-

responding to equations of the formx + y = 0. Instead, the edge leaving the

consistency checker corresponding to the first ticked edge is merged with the edge

entering the consistency checker corresponding to the second ticked edge as shown

in Fig. 5. This simplifies, and improves, our accounting procedure used to compute

the actual approximation hardness constant.

The equation gadgets are hooked together in a circle in such a way that the

node B in each gadget is identified with the node A in another gadget. The order of

the gadgets is as follows: first all gadgets for equations of the formx + y + z = 1,

then the gadgets for equations of the formx + y + z = 0, and finally the gadgets

for equations containing two variables.

The connection between two gadgets corresponding to equations of the form

x+y+z = 1 is “optimized” as indicated in Fig. 6. To the left, this figure shows the

edges incident to B in one gadget and the edges leaving A in the other gadget; the

bipartite graph on the right shows how this connection is actually implemented in

our construction. This optimization improves the inapproximability factor slightly

since the total number of nodes in the graph is reduced. Also the connection be-

tween the last gadget corresponding to an equation of the formx + y + z = 1 and

the first gadget corresponding to an equation of the formx+y+z = 0 is optimized
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similarly. There is one node at A in the first gadget corresponding to an equation

of the formx+ y + z = 1; this node is shared with one gadget corresponding to an

equation containing two variables.

Lemma 2.1. A graph constructed as described above from an instance of Hybrid

with n variables,m2,0 equations of the formx + y = 0 mod 2, m2,1 equations of

the formx + ȳ = 1 mod 2, m3,0 equations of the formx + y + z = 0 mod 2, and

m3,1 equations of the formx + y + z = 1 mod 2has in total6n + m2,0 + m2,1 +

4m3,0 + 4m3,1 nodes.

Proof. There is one consistency checker for every variable; each one of them con-

tains six nodes. Not counting the nodes inside the consistency checkers, the gadgets

for equations with two variables contain two nodes; both those nodes are shared

between two gadgets. Hence each gadget corresponding to a two-variable equation

contains, on average, one node.

Gadgets for equations of the formx + y + z = 1 as shown in Fig. 2 contain

four nodes—except for the “leftmost” one which contains one extra node that is

shared with another gadget. Similarly, gadgets for equations of the formx + y +

z = 0 contain five nodes, two of which are shared between two gadgets—again

except for the “leftmost” gadget which contains four nodes, one of which is shared

with another gadget. Hence each gadget corresponding to a three-variable equation

contains, on average, four nodes.

2.4 Constructing a tour from an assignment

Consider an instance of Hybrid and an instance of (1,2)-ATSP constructed from

it as described in § 2.3. Letπ be an assignment to the variables in the Hybrid

instance. We now describe a TSP tour corresponding to this assignment.

Consider the tour that 1) For each variablex traverses the consistency checker

corresponding tox as shown in Fig. 7a ifπ(x) = 0 and as shown in Fig. 7b if
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π(x) = 1. 2) For each equation gadget enters each equation gadget at A, takes the

shortest possible way to B under the condition that the ticked edges are traversed as

prescribed by the traversals of the consistency checkers described above, and then

exits the equation gadget at B.

Such a tour has precisely two endpoints in each equation gadget corresponding

to an unsatisfied equation and no endpoints elsewhere. (A slight technicality arises

here, however, since the three ticked edges in a gadget corresponding to equations

of the formx + y + z = 0 cannot be simultaneously traversed—that would result

in a short cycle. Similarly, both edges in gadgets corresponding to equations of the

form x + ȳ = 1 cannot be simultaneously traversed. We resolve these issues by

defining the tour as shown in Figs. 8 and 9, thereby maintaining the property that

the tour has two endpoints for each unsatisfied equation and no other endpoints.)

The properties of the above construction can be summarized as follows:

Proposition 2.2. Consider an instance of Hybrid and an instance of (1,2)-ATSP

constructed from it as described in § 2.3. Letπ be an assignment to the variables

in the Hybrid instance that satisfies all butu equations. Then the tour constructed

as described above has exactly2u endpoints.

2.5 Constructing an assignment from a tour

To construct an assignment from a given TSP tour, we consider how the tour be-

haves on the edges of the graph defining the TSP instance. The main idea in the

construction is that if the tour traverses a consistency gadget as shown in Fig. 7a

the corresponding variable should be given the value 0, and if the consistency gad-

get is traversed as shown in Fig. 7b the corresponding variable should be given

the value 1. Complications arise, of course, from the fact that an arbitrary TSP

tour may enter, or leave, a consistency checker somewhere in the middle. Such
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traversals cannot immediately be interpreted as an assignment to the correspond-

ing variable.

Considering the equation gadgets, the ticked “edges” in Figs. 2 and 3 are not re-

ally edges since they correspond to parts of the corresponding consistency checker.

Hence a TSP tour may leave or enter a ticked “edge” in the middle—we call such

edgessemitraversed. With slight abuse of notation, we also say that an occur-

rence of a literal istraversedif both of its connecting edges in the corresponding

consistency checker are traversed,untraversedif none of its connecting edges are

traversed, andsemitraversedotherwise.

We resolve the problem of semitraversed occurrences by performing a se-

quence of local transformations of the given tour. These transformations convert

an arbitrary TSP tour into a TSP tour with equal or lower cost that does not con-

tain any semitraversed occurrences. From this resulting tour, an assignment can be

constructed and it can be shown that every equation that is unsatisfied under this

assignment can be associated with two unique endpoints in the TSP tour.

2.5.1 Obtaining structure inside consistency checkers

In the first phase, we first make allbridges, i.e., all pairs of undirected edges in the

consistency checkers, traversed. Knowing that all bridges are traversed by the tour

then makes it possible to prove results about further transformations of the tour.

Lemma 2.2. Consider an instance of Hybrid and an instance of (1,2)-ATSP con-

structed from it as described in § 2.3. In such an instance, any TSP tour can be

modified into a TSP tour that traverses both bridges in every consistency checker.

Moreover, this transformation can be done in polynomial time and it does not in-

crease the length of the tour.

Proof. For every bridge, it can be seen by considering all possibilities exhaustively

that any TSP tour that traverses some setE of the four connection edges can be
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modified into a tour with fewer endpoints that traverses the bridge and a subset of

the edges inE. The less obvious cases are shown in Fig. 10.

Lemma 2.3. Consider an instance of Hybrid and an instance of (1,2)-ATSP con-

structed from it as described in § 2.3. In such an instance, any TSP tour that

traverses both bridges in every consistency checker can be modified into a TSP

tour where the consistency checkers are traversed as shown in Figs. 7, 11, 12a–d,

and 13. Moreover, this transformation can be done in polynomial time and it does

not increase the length of the tour.

Proof. The assumption that the TSP tour traverses both bridges in every con-

sistency checker implies that the consistency checkers are traversed as shown in

Figs. 7, 11, 12, and 13. Without increasing the number of endpoints in the tour, we

can replace the traversals shown in Figs. 12e, g and i with the traversal shown in

Fig. 12a; and the ones shown in Figs. 12f, h and j with the one shown in Fig. 12b.

2.5.2 Removing semitraversals

The transformations described in this section have the purpose of removing all

semitraversals from the TSP tour. This is performed by a two-step procedure. First,

we take care of variablesx for which the negative occurrence ofx is semitraversed.

After this procedure, the only possible remaining semitraversals are on positive oc-

currences of variables. An exhaustive case analysis then shows that it is possible to

get rid of also those semitraversals without increasing the total number of endpoints

in the graph.

Lemma 2.4. Consider an instance of Hybrid and an instance of (1,2)-ATSP con-

structed from it as described in § 2.3. In such an instance, any TSP tour that

traverses the consistency checkers as shown in Figs. 7, 11, 12a–d, and 13 can be
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transformed into a tour where the consistency checkers are traversed as shown in

Figs. 7, 11, and 13. Moreover, this transformation can be done in polynomial time

and it does not increase the length of the tour.

Proof. We need to prove that we can get rid of traversals shown in Figs. 12a–d. To

this end, consider an arbitrary consistency checker traversed as shown in Fig. 12c.

The corresponding variabley occurs negatively in some equationx + ȳ = 1. We

claim that it is possible to modify the tour, without increasing the total number

of endpoints, in such a way that the considered consistency checker is traversed

either as in Fig. 7a or as in Fig. 11a. In particular, first suppose that the gadget is

traversed as shown in Fig. 14a, i.e., that none of the two edges leading to node B

is traversed. Then we can remove two endpoints inside the gadget by traversing

the consistency checker for ¯y as shown in Fig. 7a. This may introduce at most two

endpoints elsewhere, so the net effect is that the total number of endpoints is not

increased. Secondly, if there is one traversed edge leading to node B, the equation

gadget must be traversed as shown in Fig. 14b. We can then change the traversal

inside the gadget so that the upper edge leaving node A in Fig. 14b is traversed

instead of the lower edge. This does not change the total number of endpoints in

the graph and it makes the consistency checker for ¯y traversed as in Fig. 11a.

The procedure described above can also be used to change traversals shown

in Fig. 12a into traversals shown in Figs. 7a and 11c. A very similar procedure

changes traversals shown in Fig. 12d into traversals shown in Figs. 7a and 11b. and

traversals shown in Fig. 12b into traversals shown in Figs. 7a and 11c.

Lemma 2.5. Consider an instance of Hybrid and an instance of (1,2)-ATSP con-

structed from it as described in § 2.3. In such an instance, any TSP tour that

traverses the consistency checkers as shown in Figs. 7, 11, and 13 can be trans-

formed into a tour where the consistency checkers are traversed as shown in Figs. 7
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and 11. Moreover, this transformation can be done in polynomial time and it does

not increase the length of the tour.

Proof. First note that each semitraversed occurrence contains one endpoint. By

making a semitraversed occurrence traversed, one endpoint is therefore removed

from the consistency checker.

Since only positive occurrences of variables can be semitraversed according

to the assumptions in the lemma, the only possibility to consider for gadgets cor-

responding to equations of the formx + ȳ = 1 is thatx is semitraversed and ¯y

untraversed. In that case, however, we can remove two endpoints from the tour by

makingx traversed.

Gadgets corresponding to equations of the formx+y = 0 can contain either two

semitraversed ticked edges or one semitraversed and one untraversed ticked edge

since the two ticked edges are connected as shown in Fig. 5. In the former case, we

make both semitraversed edges traversed and the edge from A to B untraversed by

the tour; in the latter case we make the semitraversed edge untraversed and let the

tour traverse the edge from A to B. It is easy to see that the resulting tours do not

have more endpoints than the original tours.

In gadgets corresponding to equations of the formx + y + z = 0, the tour is

modified as follows: If there are three semitraversed occurrences we modify the

tour so that the gadget is traversed according to Fig. 8—since every semitraversed

occurrence contains one endpoint that removes at least one endpoint. If there are

two semitraversed occurrences and one traversed we again modify the tour so that

the gadget is traversed according to Fig. 8—that does not increase the number of

endpoints. If there are two semitraversed occurrences and one untraversed we make

both semitraversed occurrences traversed and modify the tour on the equation gad-

get so that there is a Hamiltonian path from A to B—that removes two endpoints.

For the remaining case, one semitraversed edge, an exhaustive case analysis shows
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that by changing the traversal of the equation gadget in such a way that there is

an even number of traversed edges and a Hamiltonian path from A to B, the total

number of endpoints is not increased.

In gadgets corresponding to equations of the formx + y + z = 1, we make

all semitraversed occurrences traversed and then adjust the tour on the rest of the

gadget in such a way that the total number of endpoints is minimized. If there

are initially three semitraversed occurrences we remove at least two endpoints. If

there are initially two semitraversed occurrences and one traversed, we remove two

endpoints. If there are initially two semitraversed occurrences and one untraversed,

we keep the number of endpoints constant. If there is initially one semitraversed

occurrence and either two traversed or two untraversed, we remove two endpoints.

Finally, if there is initially one semitraversed, one traversed and one untraversed

occurrence, we keep the number of endpoints constant.

2.5.3 Defining the assignment

By the local transformations described in the previous two subsections, we can

assume that the consistency checkers are traversed as shown in Figs. 7 and 11,

i.e., there are no semitraversed occurrences. Turning to the equation gadgets, this

means that each ticked edge is either traversed or untraversed; there are no semi-

traversed ticked edges. If we look at each equation locally, and assume that the

variables participating in the equation are given assignments according to how the

corresponding ticked edge is traversed—0 for untraversed edges; 1 for traversed

edges—Proposition 2.1 states that there will be at least two endpoints in equation

gadgets corresponding to unsatisfied equations. Hence, if all consistency checkers

were traversed as shown in Fig. 7, we could assign values to variables according

to the traversal of the consistency checkers and directly attribute two endpoints to

every unsatisfied equation.
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However, some consistency checkers may be traversed as shown in Fig. 11.

Suppose that the consistency checker corresponding to some variablex is traversed

as shown in Fig. 11a and suppose that we assign the value 1 tox. In the equation

wherex occurs negated and in one of the two equations wherex occurs positively,

the corresponding ticked edges then “announce” the correct value forx. In the

remaining equation, though, the ticked edge corresponding to the second positive

occurrence ofx looks untraversed althoughx has been assigned the value 1. Since

the ticked edges announces thatx = 0 although in factx = 1, the number of end-

points in this equation gadget could be zero even though the equation will not be

satisfied by the assignment. But there are in this case two endpoints in the con-

sistency checker forx; these two endpoints correspond precisely to the occurrence

for which the consistency checker announces the wrong assignment. Announcing

a wrong assignment in the worst case makes an equation gadget “think” that an

equation is satisfied although it is not, but then the two endpoints that come with

this erroneous announcement can pay for this unsatisfied equation.

Lemma 2.6. Consider an instance of Hybrid and an instance of (1,2)-ATSP con-

structed from it as described in § 2.3. From any TSP tour withe endpoints that

traverses the consistency checkers as shown in Figs. 7 and 11 it is possible to con-

struct an assignment to the variables in the Hybrid instance with the property that

at most⌊e/2⌋ equations are left unsatisfied.

Proof. The assignment is constructed as follows: Variables whose consistency

checker is traversed as shown in Figs. 7a and 11c–d are given the value 0; all

other variables are given the value 1.

Consider an arbitrary equation gadget. Since all consistency checkers are tra-

versed as shown in Figs. 7 and 11, there are no semitraversed ticked edges. Under

the assumption that each variable in the considered equation is given an assign-

ment according to the traversal of the corresponding ticked edge in the considered
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equation gadget—the value 0 if the ticked edge is untraversed and the value 1

otherwise—there will be at least two endpoints in the gadget if the assignment

does not satisfy the equation.

Consider now an arbitrary consistency checker. If it is traversed as shown in

Fig. 11, there is one equation where the ticked edge is not traversed according to the

assignment defined in the first paragraph of this proof. Hence it may happen that

there is no endpoint in the corresponding equation gadget although the equation

is in fact not satisfied under the assignment defined above. However, each consis-

tency checker traversed as shown in in Fig. 11 contains at least two endpoints. To

sum up, there is at least two distinct endpoints for each unsatisfied equation if the

assignment is defined as in the first paragraph of this proof.

2.6 Proof of Theorem 2.2

Given an instance of Hybrid with the properties described in Theorem 2.2, an in-

stance of (1,2)-ATSP is constructed as described in § 2.3. By Lemma 2.1, this

instance has in total 6n + m2,0 + m2,1 + 4m3,0 + 4m3,1 cities.

If there is an assignment to the variables in the Hybrid instance that leaves

at mostu equations unsatisfied, it follows from Proposition 2.2 that the tour con-

structed from this assignment as described in § 2.4 has length 6n + m2,0 + m2,1 +

4m3,0 + 4m3,1 + u.

Conversely, given a TSP tour of length 6n + m2,0 + m2,1 + 4m3,0 + 4m3,1 + u,

Lemmas 2.2–2.6 show that we can construct in polynomial time an assignment to

the variables in the Hybrid instance that leaves at mostu equations unsatisfied by

first applying the transformations described in §§ 2.5.1 and 2.5.2 and then defining

the assignment as described in § 2.5.3.

20



3 The hardness of (1,2)-TSP

It is possible to adapt the above construction for (1,2)-ATSP to prove a lower bound

also for (1,2)-TSP, yielding the following result:

Theorem 3.1. Suppose that we are given an arbitrary instance of Hybrid with

n variables,m2,0 equations of the formx + y = 0 mod 2, m2,1 equations of the

form x + ȳ = 1 mod 2, m3,0 equations of the formx + y + z = 0 mod 2, and

m3,1 equations of the formx + y + z = 1 mod 2such that each variable occurs

exactly three times, two times positively and one time negatively.

Then it is possible to construct in polynomial time an instance of (1,2)-TSP,

with size polynomial in the size of the Hybrid instance, such that

1. If there is an assignment to the variables in the Hybrid instance that leaves at

mostu equations unsatisfied, then there is a TSP tour of length16n+m2,0 +

m2,1 + 3m3,0 + 5m3,1 + u.

2. From any TSP tour of length16n + m2,0 + m2,1 + 3m3,0 + 5m3,1 + u, it is

possible to construct in polynomial time an assignment to the variables in

the Hybrid instance that leaves at mostu equations unsatisfied.

Corollary 3.1. For any constantε > 0, it is NP-hard to approximate (1,2)-TSP

within 741/740− ε.

Proof. Selectδ > 0 such that (741− δ)/(740+ δ) ≥ 741/740− ε. From an

instance of Hybrid with the structure described in Corollary 2.1, construct an in-

stance of (1,2)-TSP with the properties guaranteed by Theorem 3.1. Combining

Theorem 3.1 with item 2 in Corollary 2.1 shows that the constructed (1,2)-ATSP

instance either has a tour of length at most 16· 42ν + 42ν + 18ν + 3ν + 5ν + δν =

(740+ δ)ν or that every TSP tour has length at least 16· 42ν + 42ν + 18ν + 3ν +

5ν + (1 − δ)ν = (741− δ)ν. Furthermore, item 3 in Corollary 2.1 states that it
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is NP-hard to distinguish those two cases. Therefore it isNP-hard to approximate

(1,2)-TSP within (741− δ)/(740+ δ) ≥ 741/740− ε.

The details of the construction leading to Theorem 3.1, as well as the proof of

correctness, is very similar to the construction for the asymmetric case. Therefore,

we describe most of the construction on a high level, delving into details only

where the argument differs from the asymmetric case.

3.1 Constructing a (1,2)-TSP instance from Hybrid

Given an instance Hybrid withn variables,m2,0 equations of the formx + y =

0 mod 2,m2,1 equations of the formx + ȳ = 1 mod 2,m3,0 equations of the form

x + y + z = 0 mod 2, andm3,1 equations of the formx + y + z = 1 mod 2, the

corresponding instance of (1,2)-TSP is constructed as described below:

The equation gadgets for equations of the formx + y + z = {0,1} are shown

in Fig. 15; gadgets for equations of the formx + y = 0 andx + ȳ = 1 are shown

in Fig. 16. The ticked edges in the gadgets correspond to the variables in the

corresponding equation as indicated in the figures.

The ticked edges corresponding to the same variable are joined together in a

consistency checker as shown in Fig. 17. The correspondence is such that negated

variables always correspond to the part enclosed by a dashed curve in Fig. 17—

recall that each variable occurs one times negated and two times unnegated.

As in the asymmetric case, there is no node between the two ticked edges in

the gadget corresponding to equations of the formx + y = 0. Instead, the edge

leaving the consistency checker corresponding to the first ticked edge is merged

with the edge entering the consistency checker corresponding to the second ticked

edge as shown in Fig. 18. Similarly, there is no node in the center of the gadget for

equations of the formx + y + z = 0. Instead, the consistency checkers are joined

as shown in Fig. 19.
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The equation gadgets are hooked together in a circle in such a way that node B

in each gadget is identified with node A in another gadget. With an argument

similar to the proof of Lemma 2.1, it can be seen that the instance produced as

described above has 16n + m2,0 + m2,1 + 3m3,0 + 5m3,1 cities.

3.2 Constructing a tour from an assignment

Consider an instance of Hybrid and an instance of (1,2)-TSP constructed from it as

described in § 3.1. Letπ be an assignment to the variables in the Hybrid instance.

We now describe a TSP tour corresponding to this assignment.

Consider the tour that 1) For each variablex traverses the consistency checker

corresponding tox as shown in Fig. 20a ifπ(x) = 0 and as shown in Fig. 20b if

π(x) = 1. 2) For each equation gadget enters each equation gadget at node A, takes

the shortest possible way to B under the condition that the ticked edges are tra-

versed as prescribed by the traversals of the consistency checkers described above,

and then exits the equation gadget at node B.

It can be seen by case analysis that such a tour has precisely two endpoints in

each equation gadget corresponding to an unsatisfied equation and no endpoints

elsewhere. (As in the asymmetric case, slight technicalities arise here since the

three ticked edges in a gadget corresponding to equations of the formx + y +

z = 0 cannot be simultaneously traversed, nor can the two ticked edges in gadgets

corresponding to equations of the formx+ ȳ = 1. These technicalities are resolved

in the same way as in the asymmetric case.)

3.3 Constructing an assignment from a tour

As in the asymmetric case, it remains to show thatanyTSP tour withe endpoints

in a (1,2)-TSP instance constructed from a Hybrid instance as described in § 3.1
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can be associated with an assignment to the variables in the Hybrid instance and

that this assignment satisfies all but at most⌊e/2⌋ equations.

The proof of this fact follows in exactly the same way as in the asymmetric

case. The only additional complication follows from that fact that some consis-

tency checkers have two connection edges on one side due to the gadgets corre-

sponding to equations of the formx + y + z = 0 (Fig. 19). However, any tour that

traverses two connection edges on some consistency checker can be transformed

into a tour without this property by a simple local transformation as indicated in

Fig. 22. Having established this, it can be seen by a case analysis that any tour

can be transformed into a tour that traverses all bridges and does not have more

endpoints than the original tour in precisely the same way as indicated in the proof

of Lemma 2.2 and Fig. 20. The remaining transformations described in §§ 2.5.1

and 2.5.2 can be straightforwardly adapted to the symmetric case since they only

work with the connection edges of the consistency checkers. Having transformed

the tour, the assignment to the variables in the Hybrid instance is defined as follows:

Variables whose consistency checker is traversed as shown in Figs. 20a and 21c–d

are given the value 0; all other variables are given the value 1. It can then be seen

in the same way as in § 2.5.3 that this assignment has the properties required by

Theorem 3.1.
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A

B

C

Figure 1. The above figure contains two partial tours—one entering the graph at A
and leaving at B, and one both entering and leaving at C. The nodes A and B are
endpoints and C is a double endpoint. The dashed parts of the tour denotes parts
where the tour traverses edges with weight two.
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Figure 2. The gadget for equations of the formx+ y + z = 0 (left) andx+ y + z = 1
(right). There is a Hamiltonian path from A to B only if an even (left) or odd (right)
number of the ticked edges is traversed.
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ȳ

Figure 3. The gadget for equations of the formx+ y = 0 (left) andx+ ȳ = 1 (right).
There is a Hamiltonian path from A to B only if an even (left) or odd (right) number
of the ticked edges is traversed.
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Figure 4. The gadget used to connect the ticked edges that correspond to the same
variablex. The ticked edges corresponding to the two positive occurrences ofx are
represented by the parts enclosed in the dotted curves and the ticked edge correspond-
ing to x̄ is represented by the part enclosed in the dashed curve.
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A B

x y

Figure 5. A more detailed view of the gadget for equations of the formx + y = 0.
In this figure the ticked edges have been expanded to show the consistency checkers.
The black edges correspond to the gadget shown in Fig. 3
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A

B

Figure 6. The cost of the gadgets for equations of the formx + y + z = 1 is lowered
by the above transformation. The figure to the left shows the connection between two
such gadgets as it is obtained by joining B in one gadget as shown in Fig. 2 with A
in another such gadget. The figure to the right shows how this connection is actually
implemented.
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(a) (b)

Figure 7. The figure above shows the “intended” traversals of the consistency check-
ers. The traversal (a) is to be interpreted as assigning 0 to the corresponding variable;
traversal (b) as assigning 1.
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A B

Figure 8. A more detailed view of how the tour corresponding to an assignmentπ

such thatπ(x) = π(y) = π(z) = 1 traverses the gadget for equations of the form
x + y + z = 0. In this figure the ticked edges have been expanded to show the
consistency checkers. The black edges correspond to the gadget shown in Fig. 2.
Note that the tour has two endpoints in the consistency checker corresponding tox.
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A B

x

ȳ

Figure 9. A more detailed view of how the tour corresponding to an assignmentπ

such thatπ(x) = 1 andπ(y) = 0 traverses the gadget for equations of the form
x+ ȳ = 1. In this figure the ticked edges have been expanded to show the consistency
checkers. The black edges correspond to the gadget shown in Fig. 3. Note that the
tour has two endpoints in the consistency checker corresponding tox.
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Figure 10. It is possible to change the traversals in the left column into the traversals
in the right column without increasing the total number of endpoints in the graph.
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(a) (b)

(c) (d)

Figure 11. The traversals shown above may still be present in the tour after the
“normalization” described in Lemmas 2.2–2.5.
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(i)

(b)

(d)

(f)

(h)

(j)

Figure 12. If the negative occurrence in the consistency checker is semitraversed, the
checker has to be traversed as shown above.
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Figure 13. If there is at least one semitraversed occurrence in the consistency checker
but the upper level is untraversed, the checker has to be traversed as shown above.
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Figure 14. A gadget for equations of the formx + ȳ = 1 where the variable gadget
corresponding to ¯y is traversed as shown in Fig. 12c.
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Figure 15. The gadget for equations of the formx+y+z = 0 (left) andx+y+z = 1
(right). There is a Hamiltonian path from A to B only if an even (left) or odd (right)
number of ticked edges is traversed.
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Figure 16. The gadget for equations of the formx + y = 0 (left) andx + ȳ = 1
(right). There is a Hamiltonian path from A to B only if an even (left) or odd (right)
number of the ticked edges is traversed.
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Figure 17. The gadget used to connect the ticked edges that correspond to the same
variablex. The ticked edges corresponding to the two positive occurrences ofx are
represented by the parts enclosed in the dotted curves and the ticked edge correspond-
ing to the negative occurrence is represented by the part enclosed in the dashed curve.
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A B

Figure 18. A more detailed view of the gadget for equations of the formx + y = 0.
In this figure the ticked edges have been expanded to show the consistency checkers.
The black edges correspond to the gadget shown in Fig. 16
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C

D

Figure 19. A more detailed view of the gadget for equations of the formx+y+z = 0.
The figure shows how the three variable gadgets meet in the center of the gadget. The
black edges above correspond to the ticked edges in Fig. 15 and the three labeled
nodes above are the same as the corresponding nodes in Fig. 15.
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(a) (b)

Figure 20. The figure above shows the “intended” traversals of the consistency check-
ers. The traversal (a) is to be interpreted as assigning 0 to the corresponding variable;
traversal (b) as assigning 1.

48
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Figure 21. If there are no semitraversed occurrences in the consistency checker it
may still be traversed as shown above.
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Figure 22. Some consistency checkers have double connection edges at one point,
see also Fig. 19. By local transformations according to the above pattern we can
assume that at most one of the double edges are traversed.
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Figure 23. It is possible to change the traversals in the left column into the traversals
in the right column without increasing the total number of endpoints in the graph.
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