
A Note on Traversing Skew MerkleTreesMarek Karpinski� Yakov Nekri
hyAbstra
t. We
onsider the problem of traversing skew (unbalan
ed)Merkle trees and design an algorithm for traversing a skew Merkle treein time O(logn=h) and spa
e O(logn(2h=h)). This algorithm
an be ofspe
ial use in situations when exa
t number of items to be identi�ed isnot known in advan
e.1 Introdu
tionMerkle tree is a
omplete binary tree su
h that the values of internal nodesare one-way fun
tions of the values of their
hildren. Every leaf value in aMerkle tree
an be veri�ed with respe
t to a publi
ly known root and theauthenti
ation path of that leaf. An authenti
ation path of a leaf
onsists ofthe siblings of all nodes on the path from this leaf to the root.Merkle trees
an be used in di�erent
ryptographi
 appli
ations and inmany su
h appli
ations the so-
alled Merkle tree traversal, i.e.
onse
utivegeneration of authenti
ation paths for all tree leaves, must be performed.The problem of Merkle tree traversal for balan
ed trees, i.e. trees of loga-rithmi
 height , was
onsidered in a number of papers, e.g. [S03℄, [JLMS03℄,[BKN04℄.�Dept. of Computer S
ien
e, University of Bonn. Work partially supported by DFGgrants , Max-Plan
k Resear
h Prize, DIMACS and IST grant 14036 (RAND-APX). E-mailmarek�
s.uni-bonn.deyDept. of Computer S
ien
e, University of Bonn. Work partially supported by ISTgrant 14036 (RAND-APX). E-mail yasha�
s.uni-bonn.de1

In this note we introdu
e a notion of a skew Merkle tree. In the skewMerkle tree di�erent leaves are allowed to have di�erent depths. We showhow Merkle tree traversal algorithms
an be extended to the
ase of
ertainskew Merkle trees without additional time and memory resour
es.We
an imagine a skew Merkle tree as a traditional Merkle tree with someextra nodes appended to some of the leaves. In other words, in this paper weshow that extra nodes
an be appended to the balan
ed Merkle tree without
hanging the time and spa
e bounds of the traversal algorithm.2 Algorithm Des
riptionIn the argumentation below we will use the same notation as in [BKN04℄.We denote by n the minimal number of items in a skew Merkle tree andH = log n. Parameter h is the height of the subtree that is stored afterevery node
omputation (see [JLMS03℄ and [BKN04℄ for an explanation ofthis
on
ept).The key idea of our traversal method is that we do not have to re-
omputesubtrees on higher levels from a
ertain time. Therefore we
an use theresour
es wasted in the
ase of balan
ed trees and append some additionalnodes. In [BKN04℄ and [JLMS03℄ subtree levels were indexed by numbersbetween 1 and L = H=h. In this note we modify the de�nition of treelevel and we also use zero or negative subtree levels to spe
ify the levels ofappended subtrees. We say that a node is on level k if its depth d = H � kh.We say that the authenti
ation path for a leaf j is output during thej-th round. We will also use the notion of superround . During the k-thsuperround the algorithm outputs authenti
ation paths of all des
endants ofthe k-th node of depth H. Please note that sin
e the di�erent leaves in atree have di�erent depths the number of authenti
ation paths output duringa superround
an vary. Thus the algorithm
onsists of 2H superrounds andea
h superround
onsists of a variable number of rounds.For easiness of des
ription we start by
onsidering the
ase of h = 1 andshow that for h = 1 almost n log n=2 nodes
an be added. The general
asewill be
onsidered later.Sin
e we do not have to
ompute the subtree on the H�1-th level duringthe last 2H�1 superrounds, we have two spare
omputation units during ea
hof these superrounds. We
an use these units to atta
h two extra leaves toleaves 2H�1+2; : : : ; 2H . In other words, during superrounds 2H�1+1; : : : ; 2H2

Lev. -1

Lev. 0

Level 1

Level 2

Level 3

Figure 1: Example of a skew Merkle tree for h = 1 with two appended levelswe
ompute nodes on levels 0; 1; 2; : : : ;H � 2 instead of
omputing nodes onlevels 1; 2; : : : ;H�1 as we did before. This results in 2H�2�2H�1 = 2H�1�2new leaves.By the same argument we do not
ompute the subtree on theH�2-th levelduring superrounds 2H�1 + 2H�2 + 1; : : : ; 2H . Therefore we
an atta
h twomore leaves to ea
h of the last 2H�1 extra leaves. This a

ounts for another2H�121 � 2 � 2H�1 nodes. In the same way an arbirtary number m of levels
an be added. Repeating the same for levels H � 3;H � 4; : : : ; 1; : : : ;m�Hwe see, that we
an add in total (2H�221�2)+(2H�322�2)+: : :+(2H�i�12i�2) + : : : = m2H�1 � 2m leaves. And the last expression equals to nm=2 �2m. However this method puts additional memory requirements, be
ausethe rightmost path in the skew Merkle tree has to be stored. Therefore madditional memory units must be stored.For the general
ase h � 1 our method is almost the same as des
ribedabove.Namely, we add levels 0;�1;�2; : : : to the Merkle tree. Level 0
anbe added after 2H � 2(L�1)h + 2h � 1 superrounds level �1
an be addedafter 2H � 2(L�2)h + 2h � 1 superrounds and level �i
an be added after3

2H � 2(L�i)h + 2h � 1 superrounds.Sin
e subtrees appended at levels 0;�1; : : : have 2h leaves, superrounds2H �2(L�1)h+2h; : : : ; 2H �2(L�2)h+2h�1
onsist of 2H rounds, superrounds2H � 2(L�2)h + 2h; : : : ; 2H � 2(L�3)h + 2h � 1
onsist of 22h rounds and soon. Thus the total number of rounds is Pm=h�1i=1 (2(L�i�1)h2ih � 2h + 1) =L2(L�1)h�L2h+L. Therefore the total number of extra nodes that
ould beappended to a Merkle tree is (nm=h2h)� 2hm=h+m=hWe sum up the above argument in a theorem:Theorem 1 There exists an eÆ
ient skew Merkle tree traversal algorithmthat works in O(log n) time and O(log n) + m spa
e. This algorithm
anbe used to authenti
ate up to n + mn � m items. There exists an eÆ-
ient skew Merkle tree traversal algorithm that works in O(log n=h) timeand O((2h=h) log n) + m spa
e. This algorithm
an be used to authenti
aten+ nm� (m=h)2h + (m=h) items.An interesting question remains on the optimal trade-o� for traversinghash
hains (
.f.,e.g., [CJ02℄, [J02℄) . Unlike the Merkle tree, in hash
hainsall the values result from applying the hash fun
tion to the same initial seedvalue. That is, a hash
hain is a sequen
e of values h0; h1; : : : ; hn so thathi = H(hi�1), where H is a hash fun
tion. The problem of a hash sequen
etraversal, i.e. of generating the hash values in reverse order hn�1; hn�2; : : : ; h0is
onsidered by Coppersmith and Jakobsson [CJ02℄ and Jakobsson [J02℄. In[CJ02℄ it was shown that hash
hains
an be traversed with O(log n) hashfun
tion appli
ations per value and O(log n) memory
ells.We leave it as an open question whether our approa
h
an be also appliedfor the general hash
hains.A
knowledgementsWe thank Markus Jakobsson and Mi
hael Szydlo for helpful dis
ussions.Referen
es[BKN04℄ P. Berman, M. Karpinski, Y. Nekri
h, Opti-mal Trade-O� for Merkle Tree Traversal , Te
hni-
al Report TR-85255, University of Bonn, Available atftp://theory.
s.uni-bonn.de/pub/reports/
s-reports/2004/4

[CJ02℄ D. Coppersmith, M. Jakobsson, \Almost Optimal Hash Sequen
eTraversal", Finan
ial Cryptography, 2002, 102-119[J02℄ M. Jakobsson, Fra
tal Hash Sequen
e Representation and Traversal,Pro
. of the ISIT, 2002 p.437; Full version available athttp://
iteseer.ist.psu.edu/jakobsson02fra
tal.html[JLMS03℄ M. Jakobsson, T. Leighton, S. Mi
ali and M. Szydlo, Fra
talMerkle Tree Representation and Traversal, RSA Cryptographers Tra
k,RSA Se
urity Conferen
e, 2003.[S03℄ M. Szydlo, Merkle Tree Traversal in Log Spa
e andTime, to appear in Euro
rypt 2004 Available athttp://www.szydlo.
om/logspa
etime.ps.gz

5

