
Optimal Trade-O� for Merkle TreeTraversalPiotr Berman� Marek Karpinskiy Yakov NekrihzAbstrat. In this paper we desribe optimal trade-o�s between timeand spae omplexity of Merkle tree traversals along with their assoi-ated authentiation paths, improving on the previous results of Jakobs-son, Leighton, Miali and Szydlo [JLMS03℄ and Szydlo [S03℄. In parti-ular we show that our algorithm requires 2 logn= log(3) n hash funtionevaluations and storage of less than (logn= log(3) n) log log n + 2 lognhash values, where n is the number of leaves in the Merkle tree. Wealso prove that these trade-o�s are optimal, i.e. there is no algorithmthat requires less than �(log n= log t) time and less than �(t logn= log t)spae for any hoie of parameter t.Our algorithm ould be of speial use in the ase when both time andstorage are simultaneously limited.Keywords: Merkle Trees, Publi Key Signatures, AuthentiationPath, Fratal Tree Traversal, Trade-o�, Amortization.�Dept.of Computer Siene and Engineering, The Pennsylvania State University. Re-searh done in part while visiting Dept. of Computer Siene , University of Bonn. Workpartially supported by NSF grant CCR-9700053 and NIH grant 9R01HG02238-12. E-mailberman�se.psu.eduyDept. of Computer Siene, University of Bonn. Work partially supported by DFGgrants , Max-Plank Researh Prize, DIMACS and IST grant 14036 (RAND-APX). E-mailmarek�s.uni-bonn.dezDept. of Computer Siene, University of Bonn. Work partially supported by ISTgrant 14036 (RAND-APX). E-mail yasha�s.uni-bonn.de

1 IntrodutionMerkle trees have found wide appliations in ryptography mainly due totheir oneptual simpliity and appliability. Merkle trees were �rst desribedby Merkle [M79℄ in 1979 and studied intensively in a number of papers, f.,e.g., [JLMS03℄ and [S03℄. In ryptographi appliations, however, Merkletrees were not very useful for small omputational devies, as the best knowntehniques for traversal required a relatively large amount of omputationand storage. In this paper we address the issue of possible improvements ofMerkle tree traversals.Merkle tree is a omplete binary tree suh that values of internal node,are one-way funtions of the values of their hildren. Every leaf value inMerkle tree an be identi�ed with respet to a publily known root and theauthentiation path of that leaf. An authentiation path of a leaf onsists ofthe siblings of all nodes on the path from this leaf to the root.Merkle trees have had many ryptographi appliations, suh as erti�a-tion refreshal [M97℄, broadast authentiation protools [PC02℄, third partydata publishing [DG01℄, zero-knowledge sets [MRK03℄ and miro-payments[RS96℄. A frequent problem faed in suh appliations is, so alled, Merkletree traversal problem, the problem of outputting the authentiation datafor every leaf. In [M87℄ Merkle has proposed a tehnique for traversal ofMerkle trees, whih required O(log2 n) spae and O(log n) time per authen-tiation path in the worst ase. Reently two results, improving a tehniqueof Merkle, have appeared. Jakobsson, Leighton, Miali and Szydlo [JLMS03℄desribe a Merkle tree traversal algorithm with O(log2 n= log log n) spae andO(log n= log log n) time per output. In [S03℄ Szydlo desribes a method, re-quiringO(log n) spae and O(log n) time and provides a proof that this boundis optimal, i.e. he proves, that there is no traversal algorithm, that wouldrequire both o(log n) spae and o(log n) time.In this paper we investigate further the trade-o� between time and spaerequirements of Merkle tree traversals. [JLMS03℄ and [S03℄ were the startingpoints of these investigations.First, we present an algorithm, that works in O(log n=h) time andO((log n=h)2h) spae per round for arbitrary parameter h. For h = O(1) ourresult is equivalent to the result of Szydlo, however we onsider all operations(not just omputations of one-way funtions) in our analysis. Our result isalso an extension of that of Jakobsson, Leighton, Miali and Szydlo [JLMS03℄,in that we prove that it an be extended for arbitrary values of h. Besidesthat, we ahieve better onstants in the spae bound.Seondly, we show that the results of [S03℄ and [JLMS03℄ remain true, ifwe onsider all operations and not just hash omputations. (If h is higher2

than onstant we ignore times, that we need to output the values in the lastase).In partiular, we show that an algorithm with 2 log n= log log log n hashfuntions evaluations and storage requirement of(log n= log log log n+1) log log n+2 log n hash values per output an be on-struted. This algorithm works with O(log n= log log log n) operations peroutput.At the end, we show that if a tree traversal algorithm works in timeO(log n=h) than required spae is O((log n=h)2h). Thus we show that ourtrade-o� is optimal.2 Preliminaries and NotationBelow we denote by a hash (unit) a one-way funtion and hash omputationwill denote a omputation of the value of a one-way funtion. In a Merkletree leaf values are hash values of the leaf pre-images. Leaf pre-images anbe, for instane, generated with a pseudo-random generator. We will de-note by leaf-al a funtion, that omputes pre-images of the leaves. Let�1=hashÆleaf-al be the funtion that omputes value of the i-th leaf. Let�2(parent)=hash(left-hildjjright-hild) be the funtion, that omputes thevalue of the parent node from the values of its hildren. We will presume,that we need one omputation unit to ompute �1 or �2.We must generate n outputs, where n is the number of leaves. Everyoutput onsists of the leaf pre-image and its authentiation path. An authen-tiation path onsists of the siblings of all nodes on the path to the root.Outputs for the leaves must be generated onseutively left-to-right. Thismakes our task easier, beause outputs for onseutive leaves have manyommon node values.In order to verify the leaf one onseutively omputes the values of itsanestors. Veri�ation sueeds only if the omputed root value equals tothe known root value.In this paper the following notation will be used. H will denote theMerkle tree height. We will say, that a node is on level A, if its depth isH �A. The i-th node from the left on level A will be denoted by (A; i). Ajob, omputing node (A; i) will also be denoted by (A; i). We will say, thatA is the job level and i is the index of the job. Sometimes we will identifya subtree of the Merkle tree by its root node (A; i). We will use a subtreeheight h as a parameter in our algorithm and L will be equal to H=h.We say, that a node N is needed if it is a part of an authentiation path.3

3 Main IdeaWe desribe here the main idea of our algorithm and give key observationson whih the algorithm is based.The following well-known evaluation algorithm is used to ompute thevalue of the i-th node at level A and is an important part of all Merkle treetraversal algorithms.Eval (A,i)if(A == 0)return �1(i);elseV = Eval(A� 1; 2i);return �2(V;Eval(A� 1; 2i+ 1))Figure 1: Algorithm EvalThis basi version of algorithm Eval requires 2A omputational units andA storage units. The last follows from the fat, that at most one node valueV for every height i = 0; 1; : : : ; A has to be stored at every stage of thealgorithm. This stored values will be further alled tail values.Our algorithm uses proedure Eval to estimate the values of nodes, thatwill be needed in the future authentiation path. Jobs, that ompute thevalues of nodes (A; i) and alled by our algorithm (and not by another job)will be alled root jobs.The key observation on whih our algorithm is based, is that during theomputation of node (A; i) its hildren (A� 1; 2i), (A� 1; 2i + 1) as well asall other desendants will be omputed. Therefore by storing intermediateresults of evaluation some future omputations an be saved. Atually forevery omputed node N on level ih all its desendants on levels ih�1; : : : ; in�h (i.e. a omplete subtree of height h rooted in N) will be retained to be usedin the future authentiation paths. Thus only nodes at height ih i = 1; : : : ; Lwill be omputed diretly.Another key observation, is that we an shedule the omputations of thenodes, needed in the future in suh a way, that at most H storage units areneessary to store all tail values. 4

2 2 2h+1 h+2h

h

h

h

h
�������
�������
�������
�������

�������
�������
�������
�������

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������
������

������
������
������
������
������ �������

�������
�������
�������
�������

�������
�������
�������
�������
�������

Figure 2: Subtrees omputed at a round of the algorithm4 Algorithm DesriptionOur algorithm onsists of three phases: root generation, output and ver-i�ation. During the �rst phase the root of the Merkle tree is generated.Additionally, the initial set of subtrees with roots at (0; 2sh), i = 1; : : : ; L isomputed and stored.The veri�ation phase is idential to the traditional veri�ation phase(see, for instane, [JLMS03℄).The output phase onsists of 2H rounds and during round j an image ofthe j-th leaf and its authentiation path are output. In the rest of this setionwe will desribe an algorithm for the output phase and prove its orretness.For onveniene we will measure time in rounds. During eah round Lomputation units will be spent on omputation of subtrees, needed in thefuture authentiation paths. Thus our algorithm will start at time 0 andend at time 2H � 1 and i-th round will start at time i. In the �rst part ofthe algorithm desription we will ignore the osts of all operations, exept ofthe omputations of hash funtions. Later we will show, that the number ofother operations, performed during a round, is O(L).During round j we store L already omputed subtrees with roots at(sh;ms) with j 2 [ms2sh; (ms+1)2sh), s = 0; 1; : : : ; L. During the same roundwe also spend 2L omputation units in order to ompute jobs (sh;ms + 1)and onstrut the orresponding subtrees. At round (ms+ 1)2sh the subtree5

(sh;ms) will be disarded, However the subtree (sh;ms+1) will be retainedfor the next 2sh rounds, while subtree (sh;ms + 2) is omputed.During eah round there are at most L di�erent jobs ompeting for 2Lomputation units. These jobs will be alled ative. Ative jobs are sheduledaording to the following rules:1. A root job (2ih; k) k = 1; : : : ;H=2ih beomes ative at time (k � 1)2ih,i.e. during the (k � 1)2ih-th round.2. All reursive alls for omputation of nodes (s; �) performed by rootjobs (s0; �) with s0 > s, that already started when job (s; �) beomesative, must be ompleted, before job (s; �) starts.3. In all other ases the jobs with the lower level have priority over thejobs with the higher level.Consider job (sh; i), that starts at time 2shi. Rule 2 guarantees us, that,all jobs with levels s0 > s will �nish their level s alls, before omputation ofjob (sh; i) starts. Therefore, when job (sh; i) is omputed only one tail nodeon eah of the levels (s � 1)h; (s � 1)h + 1; : : : ; sh � 1 will be stored. Nowonsider a job, with level s0 > s, alling a level s job in All jobs withlevels s00 > s0 do not store any tail nodes at levels 0; 1; : : : s0. All jobs withlevels ~s < s0 do not store any nodes, aording to ruled 2 and 3.This sheduling guarantees us, that at any time only one tail value fora level i = 1; 2; : : : ;H will be stored by all jobs (sh; i). Sine only 2L sub-trees (one urrently used and one urrently omputed for eah level ih) mustbe stored at eah round and subtrees require (2H=h)2h spae. Hene thememory requirement of our algorithm is (2H=h)2h +H = O((H=h)2h) .This onsiderations allow us to formulate the following trade-o� betweentime and spae omplexity.Theorem 1 Merkle tree an be traversed in time O(H=h) with O((H=h)2h)storage units.Corollary 1 Merkle tree an be traversed in time O(log n= log(3) n) withO(log n log log n= log(3) n) storage units.In the next subsetions, we will prove the algorithm orretness by show-ing, that all the values are omputed on time and we prove the time bound,stated in the theorem by analysis of the operations, neessary for the jobsheduling. 6

4.1 Corretness ProofIn the setion we show, that job (s; k) will be ompleted at time k2s.Lemma 1 Suppose, that at time (k�1)2sh for every level i = h; 2h; : : : ; (s�1)h; (s + 1)h; : : : Lh there is at most one un�nished job on level i. Then thejob (sh; k) will omplete before k2sh .Proof: Consider the time interval [(2k� 2)2sh; (2k � 1)2sh). Sine there areat most (L� s) jobs with un�nished reursive alls to Eval(s; �) the time toomplete the reursive alls is limited by (L � s)2sh+1. Besides that, thereare also jobs with lower indies, that must be ompleted before (sh; k) anbe ompleted. There are at most 2(s�s0)h suh jobs with index s0 < s. Henethe total number of omputation units, needed for these jobs is (s� 1)2sh+1.Thus we have 2sh+1 omputation units left to omplete the job (sh; 2k).Lemma 2 At every moment of time there is only one running job on levelsh, s = 1; 2; : : : ; L.Proof: At time 0 we start only one job on level sh. For every level sh andevery index i we an easily prove by indution, using Lemma 1, that at timeinterval [2shi; 2sh(i+1)) there is only one running job with index i on level sh.Lemma 3 Computation of job (sh; i) will be �nished before time k2shProof: Easily follows from Lemma 1 and Lemma 2.In our omputation only every h-th node on the omputation path isomputed diretly. Below we will show whih nodes should be retained duringthe omputation of (sh; i).All nodes (ih � m; s2m + j), where m = 1; : : : ; h and j = 0; : : : ;m � 1must be retained. In other words, all desendants of (ih; s) at levels ih �1; : : : ; (i� 1)h must be retained.Proposition 1 Desendants of a node (2ih;m) are needed during rounds[m2ih; (m+ 1)2ih).Proof: Indeed, hildren of (2ih;m) are needed during rounds [m2ih+2h�1; (m+1)2ih) and [2ih; 2ih + 2h�1). For desendants on other levels, this propositionis proved by the fat, that when a node is needed, the sibling of its parent isalso needed.Combining Lemma 3 with the above statement we see, that every nodewill be omputed before it is needed the �rst time.7

4.2 Time AnalysisWe have shown above, that our algorithm performs L hash-funtion om-putations per round. Now we will show, that all other operations will takeO(L) time per round.Lemma 4 Job sheduling, aording to rules 1.-3. an be implemented inO(L) time per round.For every level s = ih we store a list Qi of level s jobs, that have to beperformed. When a new job on level ih beomes ative, or when a level sjob is alled by another job, it is added to Qi. Lists Qi are implemented asqueues.At round j our algorithm, heks all queues Qi in asending order. If anon-empty Qi is found, we spend L hash omputations on omputing thelast job l in Qi. If the job l is �nished after k < L hash omputations weremove l to the job, that alled it. If l is not a root job, we return its resultto the job, that alled it. and traverse queues Qi; Qi+1; : : :Ql until anothernon-empty queue is found.When a job (s; i) reursively alls job (s0; 2s�s0 i) we add this new job tolist Qs0. When a non-root job is ompleted it returns its value to the job,that alled it.We also have to modify the proedure Eval in order to limit the numberof reursive alls. . In the modi�ed version, the number of reursive allsper round does not exeed L, beause a proedure on level s alls proedureson level s � h. In this proedure variable Taili stores the value of the tailnode on level i. Note that variables Taili, i = 1; 2; : : : ;H are ommon to alljobs. The value of node (s; k) is stored in Tails, if k is even. If k is odd weompute the value of parent of (s; k). (This is possible beause value of thesibling of (s; k) is stored in Tails). The modi�ed version of Eval is shown onFig. 3.5 The Lower BoundIn this setion we prove the lower bound on spae and time omplexity ofMerkle tree traversals and show that that the algorithm, desribed above isasymptotially optimal. We prove the following result:Theorem 2 Any Merkle tree traversal algorithm with average time per roundO(log n=a) requires
((log n=a)2a) spae.8

Eval(A,i)if(A== 0)return(�1(i))elseind := 2hilev := A� hwhile(lev 6= A)V := Eval(lev; ind)while(ind mod 2 = 1)V := �2(Taillev; V)lev := lev + 1ind := ind=2Taillev := Vind := (ind + 1)2lev+L�AFigure 3: Modi�ed proedure EvalIn order to prove this theorem we will onsider only time required for thehash omputations.First we will make a di�erene between nodes with even and odd indies,further alled even and odd nodes respetively. Even nodes are needed aftertheir hildren. In ase of odd non-leaf nodes the situation is opposite: theyare needed before their hildren. Namely, (s; 2i+1) is needed during the timeinterval [2i2s; (2i+ 1)2s) and its hildren, (s� 1; 4i + 3) and (s � 1; 4i + 2),are needed during [2s�1(4i+ 2); 2s�1(4i+ 3)) and [2s�1(4i+ 3); 2s�1(4i+ 4))respetively. We an generalize this observation: an odd node is neededbefore all its proper desendants. We have just proved it for hildren; toextend the proof by one more generation, observe that when a node is neededand it is not a hild or the root, then the sibling of its parent is needed.During the omputation, when we exeutev = Eval(s; i) = �2(Eval(s� 1; 2i); Eval(s� 1; 2i+ 1))we an remove v0 = Eval(s � 1; 2i) and v1 = Eval(s � 1; 2i + 1) or not.Suppose that we are not removing value vj even though we will not keepvj until it is needed (diretly). Then we an normalize our algorithm byremoving vj and keeping v instead: omputing v is the only use for vj otherthan inluding it in a erti�ate. Clearly, this normalization inreases neithermemory nor time. 9

Computing Eval(s; i) takes 2s+1 � 1 steps (that evaluate �1 or �2) andin our lower bound reasoning we an estimate this as 2s steps. By addings's over all needed odd nodes we obtain the total number of job units. Thenumber of job units for odd nodes on level s is 2s2H�s�1 = 2H�1 = n=2.Therefore the total number of job units for odd nodes of the Merkle tree isHn=2. We do not ount the osts of omputing needed values of even nodesin our lower bound proof.When we deide to remember a value that is used to ompute another,we do three things: (a) we aount for a ertain number of steps { steps usedto ompute this value that were not aounted for by other rememberedvalues, (b) we aount for a ertain number of memory units (one memoryunit allows to store one value through one round) and () we aount fora ertain number of job units { job units that orrespond to the steps thatould be exeuted eah time that this value is omputed.We aount for the remembered values in an order in whih hildrenpreede the parents.Suppose that we rememeber the value of node v0 during the omputationof node v, but do not remember the value of v1, where v1 is an asendant ofv0. Then we an save more job units by remembering v1 instead of v0. Hene,if we remember the value of v0 on level l0 during omputation of node v onlevel l, then values of all nodes on levels l0; l0+1; : : : ; l are also remembered.Therefore when a node on level s is omputed it is either omputed \fromsrath" with 2s steps or it is omputed with 1 step beause its hildren werealready omputed and remebered.Suppose that we remember the result Eval(s; 2i+1) and we use this valuea times for omputation of node values (inluding node (s; 2i+1)). The lastuse, when Eval(s; 2i+ 1) is needed, requires 2s memory units. If we wantto use this value twie, we have to ompute it before the parent (or otherodd anestor is needed), and sine the parent (anestor) is needed for 2s+1rounds (or more), we need at least 2s+1 memory units. By indution, if wewant to use Eval(s; 2i+ 1) for a node values, we need to use at least 2a�12smemory units.Consider a node (s; 2i + 1). Suppose that its value was used in a om-putations. As shown above, we need either 2s steps or 1 step to ompute it.If we need 1 step, than the total number of job values we aounted for is aand the total number of memory units is 2a�12s. Suppose, that we needed2s steps to ompute (s; 2i + 1). Then the total number of job units is a2sand the number of memory units is 2a�12s. Now we an distribute the stepsand memory units between the job units that we have aounted for. Eahof them reeives a�1 steps and at least 2a�1=a memory units.10

If we use z to express the amount of steps a job unit obtains, then theminimal number of obtained memory units is 12z21=z. Note that this is aonvex funtion of z (the seond derivative is positive for positive z). Thusif job units reeive z steps on average then on average they reeive at least12z21=z memory units.As a result, if the omputation takes Hn=2a steps then it uses at least2a=a � Hn=4 memory units, and given that we have n rounds, in averageround we need to remember at least H2a=4a values.6 A Constant ImprovementIn this setion we desribe an improved version of the algorithm from thesetion 4. In our improved version we do not ompute all nodes in thesubtrees. Instead of this only the nodes with even indies are omputed.This is possible beause even nodes will be needed after their hildren areneeded. Therefore, if we store both hildren of an even node until their parentis needed, we an ompute its value with one hash omputation.Thus in a subtree (ih; k) we only ompute nodes (ih � 1; 2k + 1); (ih �2; 4k+1); (ih�3; 8k+1); : : : and only the nodes (ih�1; 2k�1); (ih�2; 4k+1); (ih � 2; 4k + 3); : : : ; (ih� h; k2h + 1); : : : ; (ih � h; k2h + 2h � 1) must bestored.Computation of all odd desendants of (ih; k) will take time 2ih�1+1�1+2ih�2=1 � 1 + 2ih�h+1 � 1 = Ph�1k=0 2ih�k � h = 2ih+1 � 2(i�1)h+1 � h. We willneed h extra hash omputations to ompute the even nodes. Therefore thetotal number of omputations for subtree (ih; k) is 2ih+1 � 2(i�1)h+1.It is easy to see, that there is at most one \new" even node at everyround. Therefore it takes at most one extra omputation per round to dealwith even nodes (if we ompute an even node just as it is needed).To ompute the node (s; j) with one hash omputation we have to storeits odd hild (s� 1; 2j + 1) during rounds [(2j + 1)2s�1; (2j + 2)2s�1). Thusthere are at most h odd nodes, that should be kept \extra time" and atmost h nodes that are a part of an authentiation path during eah round.Therefore the total memory requirement is (2h � 1 + 2h)L per subtree. Weneed the �rst summand to store the odd nodes in the subtree and we needthe seond summand to store the even nodes from the urrent authentiationpath and odd nodes kept \extra time".The nature of our trade-o� depends on the subtree height h. For a subtreeof height h = 1 this improvement results in almost 3=2-fold inrease in spaeand speed-up of almost fator 2. This allows us to formulate the followingresult 11

Figure 4: Example of a subtree. Computed nodes are marked by irles.Nodes, marked by irles or squares are stored.Corollary 2 A Merkle tree traversal algorithm an be implented with log nhash funtion evaluations, 3 log n memory loations for hash values andO(log n) time for other operations per roundFor larger values of h the time improvement beomes very small but wehave an almost two-fold derease of the spae used by hash values. In the lastase we an also shedule our omputation in suh way that the values in thenext subtree are omputed almost exatly at the timewhen the orrespondingvalues in the urrent subtree \expire" and an be disarded. In the last aseat most one extra value per subtree would have to be stored. In our modi�edalgorithm omputation of odd nodes of subtree (ih; k), i = 2; 3; ; : : : ; L � 1will be divided into two stages. In the �rst stage level ((i� 1)h desendantsof (ih; k) (\leaves" of the subtree) will be omputed. We will further allnodes ((i� 1)h; 2hk + j), j 2 [0; 2h) bottom level nodes of subtree (ih; k). Inthe seond stage the odd nodes will be omputed from bottom level nodes.Observe that omputation of the subtree (ih; k) takes plae in the sametime interval [2ih(k � 1); 2ihk) as in our �rst algorithm. The idea of ourmodi�ation is that nodes ((i � 1)h; 2hk + j), j 2 [0; 2h) i.e. bottom levelnodes of (ih; k), will be omputed slower than odd nodes of subtree (ih; k�1)will be disarded. Computation of the odd nodes from the bottom tree nodesis performed during the last 2h rounds of the interval [2ih(k � 1); 2ihk). Wewill further all the jobs, omputing the bottom level nodes seondary jobsand the last job, omputing the remaining odd nodes of the subtree will bealled a primary job. 12

In order to reserve 2h rounds for omputation of odd nodes we alloate2(i�1)h�1 rounds for omputation of every seondary job. Below we reformu-late the sheduling rules for job omputation. Observe that these modi�edrules are applied for subtrees on levels 2h; 3h; : : : ; (L � 1)h. We also reservetwo omputational units per round for the subtrees on level h.1. Anm-th seondary job of subtree (ih; k) beomes ative at time 2ih(k�1)+2(i�1)hm�m. Primary job of (2ih; k) beomes ative at time 2ihk�2h2. All reursive alls for omputation of nodes (s; �) performed by rootjobs (s0; �) with s0 > s, that already started when job (s; �) beomesative, must be ompleted, before job (s; �) starts.3. In all other ases the jobs with the lower level have priority over thejobs with the higher level.Now we prove the spae bound of our modi�ed algorithm. First we show,that a seondary job of a node on ih an be ompleted in 2(i�1)h � 1 rounds.Lemma 5 Suppose, that at time (k�1)2ih+m2((i�1)h�m, m = 0; 1; : : : ; 2h�1 for every level l = h; 2h; : : : ; (i� 1)h; (i + 1)h; : : : Lh there is at most oneun�nished seondary job of a job on level l. Then the m-th seondary job of(ih; k) will omplete before (k � 1)2ih + (m+ 1)2((i�1)h �m� 1 .Proof: Consider the time interval [(k � 1)2ih +m2((i�1)h �m; (k � 1)2ih +(m+ 1)2((i�1)h �m� 1).Sine there are at most (L � i) jobs with un�nished reursive alls toEval(s; �) the time to omplete the reursive alls is limited by (L�i)(2sh+1�1). Besides that, there are also jobs with lower indies, that must be om-pleted before (sh; k) an be ompleted. There are at most 2(i�i0)h suh jobsfor every index i0 < i. Hene the total number of omputation units, neededfor all suh jobs is less than (s � 1)(2sh+1 � 1). Another (2h+1 � 1)2(s�1)homputation units are laimed by subtrees on level h. Thus we have morethan 2sh+1 omputation units left to omplete the job (sh; 2k).Lemma 6 Computation of the m-th seondary job of (ih; k), i = 2; 3; : : : ; L�1 will be �nished before time (k � 1)2ih +m+ 1)2((i�1)h �m� 1Proof is analogous to the Proof of Lemma 3It easily follows from Lemma 6 and Rule 1 that m-th bottom node of(sh; k) will be �nished in interval [2sh(k � 1) + tm�1; 2sh(k � 1) + tm).13

It remains to ompute how many odd nodes of (ih; k�1) will be disardedbefore 2ih(k � 1) + tm�1.Let w = 2h. After 2h(i�1)m rounds the number of remaining nodes an beestimated as (w�m)=2 + (w�m)=4 + : : :+ (w�m)=w � (w�m). We didnot ount the nodes of the urrent authentiation path in this estimation.Therefore the total number of stored nodes in (ih; k) and (ih; k�1) in interval[2sh(k � 1); 2ihk � 2h) is limited by 2h.The primary job for (sh; k) an be omputed in 2h rounds. This job anbe perormed in-plae, beause when a new node is omputed its even hildan be disarded.In the modi�ed algorithm we apply the job sheduling sheme only tosubtrees on levels ih; i = 2; : : : ; L � 1. Sine there is only one subtree fori = L it is not reomputed. Therefore the total number of tail nodes doesnot exeed H � h.During eah round we use two reserved omputation units to omputethe next level h subtree. By the same argument as above we an see that thenumber of remaining nodes in the urrent level h subtree after m rounds islimited by 2h �m . Therefore the total number of nodes in the urrent andfuture subtrees of level h is limited by 2h. This omputation would requireup to h additional units for the tail values. Therefore the total number oftail values is H � h+ h = H.The above onsiderations allow us to formulate the followingTheorem 3 A Merkle tree traversal an be implemented in O(L) time with2L hash operations. This algorithm requires L2h + 2H memory loations tostore hash values.In the last Corollary we have ignored the time neessary to output thelog n values per round. The result, desribed in the abstrat follows, if wehoose h = log(3) n.7 ConlusionIn this paper we desribe the �rst optimal trade-o� between time and spaeomplexity of Merkle tree traversals.We believe it is possible to improve further the onstants in the desribedtrade-o� by di�erentiating between various types of nodes in our proedure.14

Referenes[CJ02℄ D. Coppersmith, M. Jakobsson, \Almost Optimal Hash SequeneTraversal", Finanial Cryptography, 2002, 102-119[DG01℄ P.Devanbu, M. Gertz, C. Martel, S.G. Stublebine \Authenti ThirdParty Data Publiation" 14th IFIP Workshop on Database Seurity,2000[J02℄ M. Jakobsson, \Fratal Hash Sequene Representation and Traversal",ISIT, 2002, p. 437[JLMS03℄ M. Jakobsson, T. Leighton, S. Miali and M. Szydlo, FratalMerkle Tree Representation and Traversal, RSA Cryptographers Trak,RSA Seurity Conferene, 2003.[L02℄ H. Lipmaa, \On Optimal Hash Tree Traversal for Optimal TimeStamping", Pro. Information Seurity Conferene, 2002, LNCS 2433,357-371.[M79℄ R. Merkle, \Serey, Authentiation and Publi Key Systems", UMIResearh Press, 1982[M87℄ R. Merkle, A Digital Signature Based on a Conventional EnryptionFuntion, Pro. Crypto 1987, 369-378.[M97℄ S. Miali, \EÆient Certi�ate Revoation" , Tehnial Report TM-542b, MIT Laboratory for Computer Siene, Marh 22, 1996[MRK03℄ S. Miali, M. Rabin, J. Kilian \Zero-Knowledge Sets", Pro. 44thFOCS (2003), 80-91 .[PC02℄ A. Perrig, R.Canetti, D. Tygar, D. Song, \ The TESLA BroadastAuthentiation Protool" , Cryptobytes, vol 5, pp. 2-13,Available at http://iteseer.nj.ne.om/perrig02tesla.html[RS96℄ R. Rivest, A. Shamir, \PayWord and MiroMint - Two Simple Mi-ropayment Shemes", CryptoBytes, vol. 1, pp. 7-11.Available at theory.ls.mit.edu/ rivest/RivestShamir-mpay.ps[S03℄ M. Szydlo, Merkle Tree Traversal in Log Spae andTime, to appear in Eurorypt 2004 Available athttp://www.szydlo.om/logspaetime.ps.gz15

