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1 Introdu
tionMerkle trees have found wide appli
ations in 
ryptography mainly due totheir 
on
eptual simpli
ity and appli
ability. Merkle trees were �rst des
ribedby Merkle [M79℄ in 1979 and studied intensively in a number of papers, 
f.,e.g., [JLMS03℄ and [S03℄. In 
ryptographi
 appli
ations, however, Merkletrees were not very useful for small 
omputational devi
es, as the best knownte
hniques for traversal required a relatively large amount of 
omputationand storage. In this paper we address the issue of possible improvements ofMerkle tree traversals.Merkle tree is a 
omplete binary tree su
h that values of internal node,are one-way fun
tions of the values of their 
hildren. Every leaf value inMerkle tree 
an be identi�ed with respe
t to a publi
ly known root and theauthenti
ation path of that leaf. An authenti
ation path of a leaf 
onsists ofthe siblings of all nodes on the path from this leaf to the root.Merkle trees have had many 
ryptographi
 appli
ations, su
h as 
erti�
a-tion refreshal [M97℄, broad
ast authenti
ation proto
ols [PC02℄, third partydata publishing [DG01℄, zero-knowledge sets [MRK03℄ and mi
ro-payments[RS96℄. A frequent problem fa
ed in su
h appli
ations is, so 
alled, Merkletree traversal problem, the problem of outputting the authenti
ation datafor every leaf. In [M87℄ Merkle has proposed a te
hnique for traversal ofMerkle trees, whi
h required O(log2 n) spa
e and O(log n) time per authen-ti
ation path in the worst 
ase. Re
ently two results, improving a te
hniqueof Merkle, have appeared. Jakobsson, Leighton, Mi
ali and Szydlo [JLMS03℄des
ribe a Merkle tree traversal algorithm with O(log2 n= log log n) spa
e andO(log n= log log n) time per output. In [S03℄ Szydlo des
ribes a method, re-quiringO(log n) spa
e and O(log n) time and provides a proof that this boundis optimal, i.e. he proves, that there is no traversal algorithm, that wouldrequire both o(log n) spa
e and o(log n) time.In this paper we investigate further the trade-o� between time and spa
erequirements of Merkle tree traversals. [JLMS03℄ and [S03℄ were the startingpoints of these investigations.First, we present an algorithm, that works in O(log n=h) time andO((log n=h)2h) spa
e per round for arbitrary parameter h. For h = O(1) ourresult is equivalent to the result of Szydlo, however we 
onsider all operations(not just 
omputations of one-way fun
tions ) in our analysis. Our result isalso an extension of that of Jakobsson, Leighton, Mi
ali and Szydlo [JLMS03℄,in that we prove that it 
an be extended for arbitrary values of h. Besidesthat, we a
hieve better 
onstants in the spa
e bound.Se
ondly, we show that the results of [S03℄ and [JLMS03℄ remain true, ifwe 
onsider all operations and not just hash 
omputations. (If h is higher2



than 
onstant we ignore times, that we need to output the values in the last
ase).In parti
ular, we show that an algorithm with 2 log n= log log log n hashfun
tions evaluations and storage requirement of(log n= log log log n+1) log log n+2 log n hash values per output 
an be 
on-stru
ted. This algorithm works with O(log n= log log log n) operations peroutput.At the end, we show that if a tree traversal algorithm works in timeO(log n=h) than required spa
e is O((log n=h)2h). Thus we show that ourtrade-o� is optimal.2 Preliminaries and NotationBelow we denote by a hash (unit) a one-way fun
tion and hash 
omputationwill denote a 
omputation of the value of a one-way fun
tion. In a Merkletree leaf values are hash values of the leaf pre-images. Leaf pre-images 
anbe, for instan
e, generated with a pseudo-random generator. We will de-note by leaf-
al
 a fun
tion, that 
omputes pre-images of the leaves. Let�1=hashÆleaf-
al
 be the fun
tion that 
omputes value of the i-th leaf. Let�2(parent)=hash(left-
hildjjright-
hild) be the fun
tion, that 
omputes thevalue of the parent node from the values of its 
hildren. We will presume,that we need one 
omputation unit to 
ompute �1 or �2.We must generate n outputs, where n is the number of leaves. Everyoutput 
onsists of the leaf pre-image and its authenti
ation path. An authen-ti
ation path 
onsists of the siblings of all nodes on the path to the root.Outputs for the leaves must be generated 
onse
utively left-to-right. Thismakes our task easier, be
ause outputs for 
onse
utive leaves have many
ommon node values.In order to verify the leaf one 
onse
utively 
omputes the values of itsan
estors. Veri�
ation su

eeds only if the 
omputed root value equals tothe known root value.In this paper the following notation will be used. H will denote theMerkle tree height. We will say, that a node is on level A, if its depth isH �A. The i-th node from the left on level A will be denoted by (A; i). Ajob, 
omputing node (A; i) will also be denoted by (A; i). We will say, thatA is the job level and i is the index of the job. Sometimes we will identifya subtree of the Merkle tree by its root node (A; i). We will use a subtreeheight h as a parameter in our algorithm and L will be equal to H=h.We say, that a node N is needed if it is a part of an authenti
ation path.3



3 Main IdeaWe des
ribe here the main idea of our algorithm and give key observationson whi
h the algorithm is based.The following well-known evaluation algorithm is used to 
ompute thevalue of the i-th node at level A and is an important part of all Merkle treetraversal algorithms.Eval (A,i)if(A == 0)return �1(i);elseV = Eval(A� 1; 2i);return �2(V;Eval(A� 1; 2i+ 1))Figure 1: Algorithm EvalThis basi
 version of algorithm Eval requires 2A 
omputational units andA storage units. The last follows from the fa
t, that at most one node valueV for every height i = 0; 1; : : : ; A has to be stored at every stage of thealgorithm. This stored values will be further 
alled tail values.Our algorithm uses pro
edure Eval to estimate the values of nodes, thatwill be needed in the future authenti
ation path. Jobs, that 
ompute thevalues of nodes (A; i) and 
alled by our algorithm (and not by another job )will be 
alled root jobs.The key observation on whi
h our algorithm is based, is that during the
omputation of node (A; i) its 
hildren (A� 1; 2i), (A� 1; 2i + 1) as well asall other des
endants will be 
omputed. Therefore by storing intermediateresults of evaluation some future 
omputations 
an be saved. A
tually forevery 
omputed node N on level ih all its des
endants on levels ih�1; : : : ; in�h (i.e. a 
omplete subtree of height h rooted in N) will be retained to be usedin the future authenti
ation paths. Thus only nodes at height ih i = 1; : : : ; Lwill be 
omputed dire
tly.Another key observation, is that we 
an s
hedule the 
omputations of thenodes, needed in the future in su
h a way, that at most H storage units arene
essary to store all tail values. 4
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Figure 2: Subtrees 
omputed at a round of the algorithm4 Algorithm Des
riptionOur algorithm 
onsists of three phases: root generation, output and ver-i�
ation. During the �rst phase the root of the Merkle tree is generated.Additionally, the initial set of subtrees with roots at (0; 2sh), i = 1; : : : ; L is
omputed and stored.The veri�
ation phase is identi
al to the traditional veri�
ation phase(see, for instan
e, [JLMS03℄).The output phase 
onsists of 2H rounds and during round j an image ofthe j-th leaf and its authenti
ation path are output. In the rest of this se
tionwe will des
ribe an algorithm for the output phase and prove its 
orre
tness.For 
onvenien
e we will measure time in rounds. During ea
h round L
omputation units will be spent on 
omputation of subtrees, needed in thefuture authenti
ation paths. Thus our algorithm will start at time 0 andend at time 2H � 1 and i-th round will start at time i. In the �rst part ofthe algorithm des
ription we will ignore the 
osts of all operations, ex
ept ofthe 
omputations of hash fun
tions. Later we will show, that the number ofother operations, performed during a round, is O(L).During round j we store L already 
omputed subtrees with roots at(sh;ms) with j 2 [ms2sh; (ms+1)2sh), s = 0; 1; : : : ; L. During the same roundwe also spend 2L 
omputation units in order to 
ompute jobs (sh;ms + 1)and 
onstru
t the 
orresponding subtrees. At round (ms+ 1)2sh the subtree5



(sh;ms) will be dis
arded, However the subtree (sh;ms+1) will be retainedfor the next 2sh rounds, while subtree (sh;ms + 2) is 
omputed.During ea
h round there are at most L di�erent jobs 
ompeting for 2L
omputation units. These jobs will be 
alled a
tive. A
tive jobs are s
heduleda

ording to the following rules:1. A root job (2ih; k) k = 1; : : : ;H=2ih be
omes a
tive at time (k � 1)2ih,i.e. during the (k � 1)2ih-th round.2. All re
ursive 
alls for 
omputation of nodes (s; �) performed by rootjobs (s0; �) with s0 > s, that already started when job (s; �) be
omesa
tive, must be 
ompleted, before job (s; �) starts.3. In all other 
ases the jobs with the lower level have priority over thejobs with the higher level.Consider job (sh; i), that starts at time 2shi. Rule 2 guarantees us, that,all jobs with levels s0 > s will �nish their level s 
alls, before 
omputation ofjob (sh; i) starts. Therefore, when job (sh; i) is 
omputed only one tail nodeon ea
h of the levels (s � 1)h; (s � 1)h + 1; : : : ; sh � 1 will be stored. Now
onsider a job, with level s0 > s, 
alling a level s job in ... . All jobs withlevels s00 > s0 do not store any tail nodes at levels 0; 1; : : : s0. All jobs withlevels ~s < s0 do not store any nodes, a

ording to ruled 2 and 3.This s
heduling guarantees us, that at any time only one tail value fora level i = 1; 2; : : : ;H will be stored by all jobs (sh; i). Sin
e only 2L sub-trees (one 
urrently used and one 
urrently 
omputed for ea
h level ih) mustbe stored at ea
h round and subtrees require (2H=h)2h spa
e. Hen
e thememory requirement of our algorithm is (2H=h)2h +H = O((H=h)2h) .This 
onsiderations allow us to formulate the following trade-o� betweentime and spa
e 
omplexity.Theorem 1 Merkle tree 
an be traversed in time O(H=h) with O((H=h)2h)storage units.Corollary 1 Merkle tree 
an be traversed in time O(log n= log(3) n) withO(log n log log n= log(3) n) storage units.In the next subse
tions, we will prove the algorithm 
orre
tness by show-ing, that all the values are 
omputed on time and we prove the time bound,stated in the theorem by analysis of the operations, ne
essary for the jobs
heduling. 6



4.1 Corre
tness ProofIn the se
tion we show, that job (s; k) will be 
ompleted at time k2s.Lemma 1 Suppose, that at time (k�1)2sh for every level i = h; 2h; : : : ; (s�1)h; (s + 1)h; : : : Lh there is at most one un�nished job on level i. Then thejob (sh; k) will 
omplete before k2sh .Proof: Consider the time interval [(2k� 2)2sh; (2k � 1)2sh). Sin
e there areat most (L� s) jobs with un�nished re
ursive 
alls to Eval(s; �) the time to
omplete the re
ursive 
alls is limited by (L � s)2sh+1. Besides that, thereare also jobs with lower indi
es, that must be 
ompleted before (sh; k) 
anbe 
ompleted. There are at most 2(s�s0)h su
h jobs with index s0 < s. Hen
ethe total number of 
omputation units, needed for these jobs is (s� 1)2sh+1.Thus we have 2sh+1 
omputation units left to 
omplete the job (sh; 2k).Lemma 2 At every moment of time there is only one running job on levelsh, s = 1; 2; : : : ; L.Proof: At time 0 we start only one job on level sh. For every level sh andevery index i we 
an easily prove by indu
tion, using Lemma 1, that at timeinterval [2shi; 2sh(i+1)) there is only one running job with index i on level sh.Lemma 3 Computation of job (sh; i) will be �nished before time k2shProof: Easily follows from Lemma 1 and Lemma 2.In our 
omputation only every h-th node on the 
omputation path is
omputed dire
tly. Below we will show whi
h nodes should be retained duringthe 
omputation of (sh; i).All nodes (ih � m; s2m + j), where m = 1; : : : ; h and j = 0; : : : ;m � 1must be retained. In other words, all des
endants of (ih; s) at levels ih �1; : : : ; (i� 1)h must be retained.Proposition 1 Des
endants of a node (2ih;m) are needed during rounds[m2ih; (m+ 1)2ih).Proof: Indeed, 
hildren of (2ih;m) are needed during rounds [m2ih+2h�1; (m+1)2ih) and [2ih; 2ih + 2h�1). For des
endants on other levels, this propositionis proved by the fa
t, that when a node is needed, the sibling of its parent isalso needed.Combining Lemma 3 with the above statement we see, that every nodewill be 
omputed before it is needed the �rst time.7



4.2 Time AnalysisWe have shown above, that our algorithm performs L hash-fun
tion 
om-putations per round. Now we will show, that all other operations will takeO(L) time per round.Lemma 4 Job s
heduling, a

ording to rules 1.-3. 
an be implemented inO(L) time per round.For every level s = ih we store a list Qi of level s jobs, that have to beperformed. When a new job on level ih be
omes a
tive, or when a level sjob is 
alled by another job, it is added to Qi. Lists Qi are implemented asqueues.At round j our algorithm, 
he
ks all queues Qi in as
ending order. If anon-empty Qi is found, we spend L hash 
omputations on 
omputing thelast job l in Qi. If the job l is �nished after k < L hash 
omputations weremove l to the job, that 
alled it. If l is not a root job, we return its resultto the job, that 
alled it. and traverse queues Qi; Qi+1; : : :Ql until anothernon-empty queue is found.When a job (s; i) re
ursively 
alls job (s0; 2s�s0 i) we add this new job tolist Qs0. When a non-root job is 
ompleted it returns its value to the job,that 
alled it.We also have to modify the pro
edure Eval in order to limit the numberof re
ursive 
alls. . In the modi�ed version, the number of re
ursive 
allsper round does not ex
eed L, be
ause a pro
edure on level s 
alls pro
edureson level s � h. In this pro
edure variable Taili stores the value of the tailnode on level i. Note that variables Taili, i = 1; 2; : : : ;H are 
ommon to alljobs. The value of node (s; k) is stored in Tails, if k is even. If k is odd we
ompute the value of parent of (s; k). (This is possible be
ause value of thesibling of (s; k) is stored in Tails). The modi�ed version of Eval is shown onFig. 3.5 The Lower BoundIn this se
tion we prove the lower bound on spa
e and time 
omplexity ofMerkle tree traversals and show that that the algorithm, des
ribed above isasymptoti
ally optimal. We prove the following result:Theorem 2 Any Merkle tree traversal algorithm with average time per roundO(log n=a) requires 
((log n=a)2a) spa
e.8



Eval(A,i)if(A== 0)return(�1(i))elseind := 2hilev := A� hwhile(lev 6= A)V := Eval(lev; ind)while( ind mod 2 = 1)V := �2(Taillev; V )lev := lev + 1ind := ind=2Taillev := Vind := (ind + 1)2lev+L�AFigure 3: Modi�ed pro
edure EvalIn order to prove this theorem we will 
onsider only time required for thehash 
omputations.First we will make a di�eren
e between nodes with even and odd indi
es,further 
alled even and odd nodes respe
tively. Even nodes are needed aftertheir 
hildren. In 
ase of odd non-leaf nodes the situation is opposite: theyare needed before their 
hildren. Namely, (s; 2i+1) is needed during the timeinterval [2i2s; (2i+ 1)2s) and its 
hildren, (s� 1; 4i + 3) and (s � 1; 4i + 2),are needed during [2s�1(4i+ 2); 2s�1(4i+ 3)) and [2s�1(4i+ 3); 2s�1(4i+ 4))respe
tively. We 
an generalize this observation: an odd node is neededbefore all its proper des
endants. We have just proved it for 
hildren; toextend the proof by one more generation, observe that when a node is neededand it is not a 
hild or the root, then the sibling of its parent is needed.During the 
omputation, when we exe
utev = Eval(s; i) = �2(Eval(s� 1; 2i); Eval(s� 1; 2i+ 1))we 
an remove v0 = Eval(s � 1; 2i) and v1 = Eval(s � 1; 2i + 1) or not.Suppose that we are not removing value vj even though we will not keepvj until it is needed (dire
tly). Then we 
an normalize our algorithm byremoving vj and keeping v instead: 
omputing v is the only use for vj otherthan in
luding it in a 
erti�
ate. Clearly, this normalization in
reases neithermemory nor time. 9



Computing Eval(s; i) takes 2s+1 � 1 steps (that evaluate �1 or �2) andin our lower bound reasoning we 
an estimate this as 2s steps. By addings's over all needed odd nodes we obtain the total number of job units. Thenumber of job units for odd nodes on level s is 2s2H�s�1 = 2H�1 = n=2.Therefore the total number of job units for odd nodes of the Merkle tree isHn=2. We do not 
ount the 
osts of 
omputing needed values of even nodesin our lower bound proof.When we de
ide to remember a value that is used to 
ompute another,we do three things: (a) we a

ount for a 
ertain number of steps { steps usedto 
ompute this value that were not a

ounted for by other rememberedvalues, (b) we a

ount for a 
ertain number of memory units (one memoryunit allows to store one value through one round) and (
) we a

ount fora 
ertain number of job units { job units that 
orrespond to the steps that
ould be exe
uted ea
h time that this value is 
omputed.We a

ount for the remembered values in an order in whi
h 
hildrenpre
ede the parents.Suppose that we rememeber the value of node v0 during the 
omputationof node v, but do not remember the value of v1, where v1 is an as
endant ofv0. Then we 
an save more job units by remembering v1 instead of v0. Hen
e,if we remember the value of v0 on level l0 during 
omputation of node v onlevel l, then values of all nodes on levels l0; l0+1; : : : ; l are also remembered.Therefore when a node on level s is 
omputed it is either 
omputed \froms
rat
h" with 2s steps or it is 
omputed with 1 step be
ause its 
hildren werealready 
omputed and remebered.Suppose that we remember the result Eval(s; 2i+1) and we use this valuea times for 
omputation of node values (in
luding node (s; 2i+1)). The lastuse, when Eval(s; 2i+ 1) is needed, requires 2s memory units. If we wantto use this value twi
e, we have to 
ompute it before the parent (or otherodd an
estor is needed), and sin
e the parent (an
estor) is needed for 2s+1rounds (or more), we need at least 2s+1 memory units. By indu
tion, if wewant to use Eval(s; 2i+ 1) for a node values, we need to use at least 2a�12smemory units.Consider a node (s; 2i + 1). Suppose that its value was used in a 
om-putations. As shown above, we need either 2s steps or 1 step to 
ompute it.If we need 1 step, than the total number of job values we a

ounted for is aand the total number of memory units is 2a�12s. Suppose, that we needed2s steps to 
ompute (s; 2i + 1). Then the total number of job units is a2sand the number of memory units is 2a�12s. Now we 
an distribute the stepsand memory units between the job units that we have a

ounted for. Ea
hof them re
eives a�1 steps and at least 2a�1=a memory units.10



If we use z to express the amount of steps a job unit obtains, then theminimal number of obtained memory units is 12z21=z. Note that this is a
onvex fun
tion of z (the se
ond derivative is positive for positive z). Thusif job units re
eive z steps on average then on average they re
eive at least12z21=z memory units.As a result, if the 
omputation takes Hn=2a steps then it uses at least2a=a � Hn=4 memory units, and given that we have n rounds, in averageround we need to remember at least H2a=4a values.6 A Constant ImprovementIn this se
tion we des
ribe an improved version of the algorithm from these
tion 4. In our improved version we do not 
ompute all nodes in thesubtrees. Instead of this only the nodes with even indi
es are 
omputed.This is possible be
ause even nodes will be needed after their 
hildren areneeded. Therefore, if we store both 
hildren of an even node until their parentis needed, we 
an 
ompute its value with one hash 
omputation.Thus in a subtree (ih; k) we only 
ompute nodes (ih � 1; 2k + 1); (ih �2; 4k+1); (ih�3; 8k+1); : : : and only the nodes (ih�1; 2k�1); (ih�2; 4k+1); (ih � 2; 4k + 3); : : : ; (ih� h; k2h + 1); : : : ; (ih � h; k2h + 2h � 1) must bestored.Computation of all odd des
endants of (ih; k) will take time 2ih�1+1�1+2ih�2=1 � 1 + 2ih�h+1 � 1 = Ph�1k=0 2ih�k � h = 2ih+1 � 2(i�1)h+1 � h. We willneed h extra hash 
omputations to 
ompute the even nodes. Therefore thetotal number of 
omputations for subtree (ih; k) is 2ih+1 � 2(i�1)h+1.It is easy to see, that there is at most one \new" even node at everyround. Therefore it takes at most one extra 
omputation per round to dealwith even nodes (if we 
ompute an even node just as it is needed ).To 
ompute the node (s; j) with one hash 
omputation we have to storeits odd 
hild (s� 1; 2j + 1) during rounds [(2j + 1)2s�1; (2j + 2)2s�1). Thusthere are at most h odd nodes, that should be kept \extra time" and atmost h nodes that are a part of an authenti
ation path during ea
h round.Therefore the total memory requirement is (2h � 1 + 2h)L per subtree. Weneed the �rst summand to store the odd nodes in the subtree and we needthe se
ond summand to store the even nodes from the 
urrent authenti
ationpath and odd nodes kept \extra time".The nature of our trade-o� depends on the subtree height h. For a subtreeof height h = 1 this improvement results in almost 3=2-fold in
rease in spa
eand speed-up of almost fa
tor 2. This allows us to formulate the followingresult 11



Figure 4: Example of a subtree. Computed nodes are marked by 
ir
les.Nodes, marked by 
ir
les or squares are stored.Corollary 2 A Merkle tree traversal algorithm 
an be implented with log nhash fun
tion evaluations, 3 log n memory lo
ations for hash values andO(log n) time for other operations per roundFor larger values of h the time improvement be
omes very small but wehave an almost two-fold de
rease of the spa
e used by hash values. In the last
ase we 
an also s
hedule our 
omputation in su
h way that the values in thenext subtree are 
omputed almost exa
tly at the timewhen the 
orrespondingvalues in the 
urrent subtree \expire" and 
an be dis
arded. In the last 
aseat most one extra value per subtree would have to be stored. In our modi�edalgorithm 
omputation of odd nodes of subtree (ih; k), i = 2; 3; ; : : : ; L � 1will be divided into two stages. In the �rst stage level ((i� 1)h des
endantsof (ih; k) (\leaves" of the subtree) will be 
omputed. We will further 
allnodes ((i� 1)h; 2hk + j), j 2 [0; 2h) bottom level nodes of subtree (ih; k). Inthe se
ond stage the odd nodes will be 
omputed from bottom level nodes.Observe that 
omputation of the subtree (ih; k) takes pla
e in the sametime interval [2ih(k � 1); 2ihk) as in our �rst algorithm. The idea of ourmodi�
ation is that nodes ((i � 1)h; 2hk + j), j 2 [0; 2h) i.e. bottom levelnodes of (ih; k), will be 
omputed slower than odd nodes of subtree (ih; k�1)will be dis
arded. Computation of the odd nodes from the bottom tree nodesis performed during the last 2h rounds of the interval [2ih(k � 1); 2ihk). Wewill further 
all the jobs, 
omputing the bottom level nodes se
ondary jobsand the last job, 
omputing the remaining odd nodes of the subtree will be
alled a primary job. 12



In order to reserve 2h rounds for 
omputation of odd nodes we allo
ate2(i�1)h�1 rounds for 
omputation of every se
ondary job. Below we reformu-late the s
heduling rules for job 
omputation. Observe that these modi�edrules are applied for subtrees on levels 2h; 3h; : : : ; (L � 1)h. We also reservetwo 
omputational units per round for the subtrees on level h.1. Anm-th se
ondary job of subtree (ih; k) be
omes a
tive at time 2ih(k�1)+2(i�1)hm�m. Primary job of (2ih; k) be
omes a
tive at time 2ihk�2h2. All re
ursive 
alls for 
omputation of nodes (s; �) performed by rootjobs (s0; �) with s0 > s, that already started when job (s; �) be
omesa
tive, must be 
ompleted, before job (s; �) starts.3. In all other 
ases the jobs with the lower level have priority over thejobs with the higher level.Now we prove the spa
e bound of our modi�ed algorithm. First we show,that a se
ondary job of a node on ih 
an be 
ompleted in 2(i�1)h � 1 rounds.Lemma 5 Suppose, that at time (k�1)2ih+m2((i�1)h�m, m = 0; 1; : : : ; 2h�1 for every level l = h; 2h; : : : ; (i� 1)h; (i + 1)h; : : : Lh there is at most oneun�nished se
ondary job of a job on level l. Then the m-th se
ondary job of(ih; k) will 
omplete before (k � 1)2ih + (m+ 1)2((i�1)h �m� 1 .Proof: Consider the time interval [(k � 1)2ih +m2((i�1)h �m; (k � 1)2ih +(m+ 1)2((i�1)h �m� 1).Sin
e there are at most (L � i) jobs with un�nished re
ursive 
alls toEval(s; �) the time to 
omplete the re
ursive 
alls is limited by (L�i)(2sh+1�1). Besides that, there are also jobs with lower indi
es, that must be 
om-pleted before (sh; k) 
an be 
ompleted. There are at most 2(i�i0)h su
h jobsfor every index i0 < i. Hen
e the total number of 
omputation units, neededfor all su
h jobs is less than (s � 1)(2sh+1 � 1). Another (2h+1 � 1)2(s�1)h
omputation units are 
laimed by subtrees on level h. Thus we have morethan 2sh+1 
omputation units left to 
omplete the job (sh; 2k).Lemma 6 Computation of the m-th se
ondary job of (ih; k), i = 2; 3; : : : ; L�1 will be �nished before time (k � 1)2ih +m+ 1)2((i�1)h �m� 1Proof is analogous to the Proof of Lemma 3It easily follows from Lemma 6 and Rule 1 that m-th bottom node of(sh; k) will be �nished in interval [2sh(k � 1) + tm�1; 2sh(k � 1) + tm).13



It remains to 
ompute how many odd nodes of (ih; k�1) will be dis
ardedbefore 2ih(k � 1) + tm�1.Let w = 2h. After 2h(i�1)m rounds the number of remaining nodes 
an beestimated as (w�m)=2 + (w�m)=4 + : : :+ (w�m)=w � (w�m). We didnot 
ount the nodes of the 
urrent authenti
ation path in this estimation.Therefore the total number of stored nodes in (ih; k) and (ih; k�1) in interval[2sh(k � 1); 2ihk � 2h) is limited by 2h.The primary job for (sh; k) 
an be 
omputed in 2h rounds. This job 
anbe perormed in-pla
e, be
ause when a new node is 
omputed its even 
hild
an be dis
arded.In the modi�ed algorithm we apply the job s
heduling s
heme only tosubtrees on levels ih; i = 2; : : : ; L � 1. Sin
e there is only one subtree fori = L it is not re
omputed. Therefore the total number of tail nodes doesnot ex
eed H � h.During ea
h round we use two reserved 
omputation units to 
omputethe next level h subtree. By the same argument as above we 
an see that thenumber of remaining nodes in the 
urrent level h subtree after m rounds islimited by 2h �m . Therefore the total number of nodes in the 
urrent andfuture subtrees of level h is limited by 2h. This 
omputation would requireup to h additional units for the tail values. Therefore the total number oftail values is H � h+ h = H.The above 
onsiderations allow us to formulate the followingTheorem 3 A Merkle tree traversal 
an be implemented in O(L) time with2L hash operations. This algorithm requires L2h + 2H memory lo
ations tostore hash values.In the last Corollary we have ignored the time ne
essary to output thelog n values per round. The result, des
ribed in the abstra
t follows, if we
hoose h = log(3) n.7 Con
lusionIn this paper we des
ribe the �rst optimal trade-o� between time and spa
e
omplexity of Merkle tree traversals.We believe it is possible to improve further the 
onstants in the des
ribedtrade-o� by di�erentiating between various types of nodes in our pro
edure.14
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