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tionHypergraph minimum partitioning and bise
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2little is known about their approximation 
omplexity status, and in parti
-ular, about an existen
e of a

eptable approximation algorithms within theprovable approximation ratios.The problem of approximation hardness of minimumbise
tion on uniformhypergraphs was raised in [H02℄ (see also [HK03℄), in a 
ontext of somegeneralizations of the problem of minimumbise
tion on graphs. The resear
hin [H02℄ and [HK03℄ was also motivated by our 
urrent inability of provinglower approximation bounds for that latter problem, see also [K02℄.In this paper we tie for the �rst time the approximation 
omplexity ofminimum bise
tion of k-uniform hypergraphs, for every �xed integer k, tothe approximation 
omplexity of minimum bise
tion on graphs, showing theexisten
e of approximation algorithms for the later problem of a 
omparablequality with approximation algorithms for the minimum graph bise
tion.2 PreliminariesGiven a k-uniform hypergraph G = (V;E) with a set of hyperedges E �fhjh � V and jhj = kg. For a set U � V we denote by Cut(U) = fhjh 2E; h \ U 6= ? and h n U 6= ?g the set of hyperedges whi
h are 
ut by U ;we also de�ne 
ut (U) = jCut(U)j, and if jU j = jV j=2 we say that U is abise
tion of G.The minimum bise
tion problem on a k-uniform hypergraph G is theproblem of 
onstru
ting a bise
tion B of G so as to minimize the numberof hyperedges whi
h are 
ut by B, i.e. the number 
ut (B). For a giveninteger k, we will denote this problem by MIN-Hk-BISECTION. The min-imum bise
tion problem on graphs (MIN-H2-BISECTION) will be denotedby MIN-BISECTION. We will also 
onsider a weighted version of MIN-BISECTION, where the edges of the input graph have arbitrary nonnegativeweights w : E ! IR+ and we minimize the sum of the weights of edgesw(Cut(B)) whi
h are 
ut by B.It is well known that for every k, MIN-Hk-BISECTION problem is NP-hard in exa
t setting (
f. [L73℄). The approximation status of MIN-Hk-BISECTION remained open for all k � 3. For the 
ase of k = 2, althoughno approximation hardness results are 
urrently known (
f. [BK01℄, [K02℄),an O(log2 n) approximation algorithm was re
ently designed by Feige andKrauthgamer [FK00℄. Re
ently, Feige [F02℄ also proved a relative approxi-mation lower bound of 4=3 for that problem under a hypothesis that 3SAT



3is hard to approximate on average. Spe
ial 
ases of minimum bise
tion ondense as well as metri
 graphs are known to have PTASs [AKK95℄, [FKK02℄.This paper is 
on
erned with the approximation hardness of MIN-Hk-BISECTION problems relative to the MIN-BISECTION problem.For a given two fun
tions r : IN ! IR+, t : IN ! IN, we 
all an ap-proximation algorithm A for an optimization problem P , an (r(n); t(n))-approximation algorithm for P , if A approximates P to within an approxi-mation ratio r(n) and A runs in O (t(n)) time for n an instan
e size.3 Main ResultWe are going to prove now our main result 
onne
ting 
losely approximation
omplexity of MIN-Hk-BISECTION to that of MIN-BISECTION for everyinteger k � 3.Theorem 1 If there exists an (r(n); t(n))-approximation algorithm for MIN-BISECTION, then there exists a �k3r(n2 log n); t(n2 log n)�-approximation al-gorithm for MIN-Hk-BISECTION for any k � 3.Proof. Given a hypergraph G = (V;E) we 
onstru
t a 
omplete weightedgraph G0 = (V;E 0) where the weight of an edge e = fu; vg is the number ofhyperedges in whi
h e is 
ontained. Consider a possible bise
tion B � V . Ahyperedge of G that is 
ut by B has k nodes and thus it 
ontributes betweenk � 1 and bk=2
dk=2e to the value of the 
ut B in G0. Therefore, if we �nda bise
tion B in G0 that has 
ut value r times larger than the optimum,this B has 
ut value in G that is at most bk=2
dk=2ek�1 r times larger then theoptimum. If k is odd then bk=2
dk=2ek�1 = k+14 � k3 , and if k is even, thenbk=2
dk=2ek�1 = k+14 + 14(k�1) � k3 .We will redu
e now the problem of MIN-BISECTION in a weighted graphwith n nodes to a similar problem in an unweighted graph with O(n2 log n)nodes using a similar approa
h to that of Feige and Krauthgamer [FK00℄.In the latter paper the redu
tion produ
es about n6 nodes, so we des
ribe amore eÆ
ient redu
tion in some detail.Feige and Krauthgammer [FK00℄ have 
onstru
ted an approximation al-gorithm for MIN-BISECTION without edge weights with approximation ra-tio (
 log n)2 for some 
onstant 
. Our redu
tion will use this algorithm as asubroutine.



4We �rst obtain a very rough estimate of the value of minimum bise
tion.To do it, we start with an empty edge set E0 and then we insert to it edgesof E in an order of non-in
reasing weights. After ea
h edge insertion we 
an
he
k if the 
onne
ted 
omponents of (V;E0) 
an be grouped into two sets,ea
h with n=2 nodes. Suppose that it be
omes impossible after an insertionof an edge with weight �. Then ea
h bise
tion is 
ut by an edge with a weight� or more, and there exists a bise
tion that is 
ut only by edges of 
ost � orless. Thus the minimum 
ut of a bise
tion, say ��, satis�es � � �� < �n2=4.Therefore we 
an try 2 log n di�erent values for � and one of them will satisfy� � �� < 2�. Our later analysis will be based on the assumption that wedeal with a \
orre
t" �.We res
ale the weights so that � = n2. Next, we round down all theweights. The latter does not in
rease the 
ost of the optimum solution, andif an algorithm �nds a solution with 
ost 
, the true 
ost of this solution isbelow 
+n2=4. Therefore the rounding 
an in
rease the approximation ratioby a fa
tor less than 5=4. (We 
an res
ale weights so that � = kn2 for somek > 1; this would make this fa
tor very 
lose to 1.) Now we may assumethat n2 � ��2n2.Let g � 9
n log n.We translate our instan
e of weighted MIN-BISECTION with n nodesand integer weights into an instan
e of unweighted MIN-BISECTION withgn nodes. We repla
e ea
h node u with a 
lique of g nodes, say Gu. Theedges between Gu and Gv depend on the weight of the edge fu; vg, w(u; v).If w(u; v) � 2n2, we say that the edge fu; vg is heavy, in this 
ase the
onne
tion between Gu and Gv will be a full bipartite graph. Otherwise, forsome integers a � 2n2=g; b < g we will have w(u; v) = ag � b. We 
reatea disjoint mat
hings between Gu and Gv, and from the last mat
hing weremove b edges.Suppose that A � V is an optimum bise
tion of the original instan
e, i.e.jAj = n=2 and 
ut(A) = ��. One 
an see that Cut(A) does not 
ontain anyheavy edges, as the 
ost of a heave edge is larger then 2n2. We 
an transformA into GA = Su2AGu, it is easy to see that the values of 
orresponding 
utsare equal, i.e. 
ut(GA) = 
ut(A).Conversely, suppose that we have a bise
tion B for the new instan
ethat is found by an approximation algorithm. Be
ause we assume that thisalgorithm is at least as good as the one of Feige and Krauthgammer [FK00℄,



5we know that it produ
es a bise
tion with 
ut not larger then(
 log(gn))2 � 2n2 < (be
ause g < n2)(3
 log n)2 � 2n2 = 29g2:Assuming that 
ut(B) � 29g2 we will �nd a solution A for the original instan
esu
h that 
ut(A) � 
ut(B). It suÆ
es to show that we 
an modify B to abise
tion B0 su
h 
ut(B0) � 
ut (B) and for every group Gu, either Gu � B0or Gu � B0, where B0 is the 
omplement of B0.To de�ne B0, for every u 2 V we 
ompare the sizes of jGu \ Bj andjGu \ Bj, the larger of these sets is 
alled a majority of Gu, and the smallerits minority. Every element of a minority is 
onne
ted to at least g=2 edgesthat go to the respe
tive majority, and thus belong to Cut(B). Be
ause
ut(B) < 29g2, all minorities have together less than 49g nodes. We de�ne B 0as the union of Gu's su
h that the majority of Gu is in B. We 
an show thatB0 is a bise
tion and 
ut(B0) � 
ut(B).B0 is a bise
tion be
ause ng=2 � 49g < jB0j < ng=2 + 49g and jB0j is amultiple of g, thus jB0j = ng=2.It remains to show that 
ut(B0) � 
ut(B).Be
ause the joint size of the minorities in B is equal to the joint size ofminorities in the 
omplement of B, no minority is larger than 29g.For someGu � B0 let k be the number of 
ompletemat
hings that 
onne
tGu with groups that are 
ontained in B0. In su
h a mat
hing, edges frommajority to majority belong to Cut(B), so the mat
hing 
ontains at least 59gedges of Cut(B). Therefore 59gk < 29g2, and thus k � 25g.We 
hange B into B0 by moving minority nodes to the respe
tive ma-jorities. Consider moving of the minority node x 2 Gu � B0; x is in
identto at least 79g edges with the other end in the majority of Gu, these edgesbelong to Cut(B) � Cut(B0). For every edge in Cut(B0) that is in
ident tox we have a mat
hing that 
onne
t Gu with a group 
ontained in B0, thereare at most 25g + n=2 < 12g su
h mat
hings. Consequently, moving x to themajority de
reased the 
ut. �Theorem 1, 
ombined with an approximation algorithm of [FK00℄ forminimum bise
tion on graphs entails



6Theorem 2 For every integer k, there exists a polynomial time approxima-tion algorithm for MIN-Hk-BISECTION with approximation ratio k�
(log n)2for 
 a 
onstant independent on k.Theorem 1 entails also the following MIN-BISECTION approximationhardness result relative to the hardness of MIN-Hk-BISECTION problems.Theorem 3 If MIN-Hk-BISECTION, for arbitrary k � 3, is hard to approx-imate to within an approximation ratio r(n) > k3 , then MIN-BISECTION ishard to approximate to within a ratio 3r( 3pn)=k.4 Approximation Hardness of Very SparseInstan
es of MIN-Hk-BISECTIONWe study now approximation hardness of very sparse and regular instan
esof MIN-Hk-BISECTION for k � 3. We des
ribe a translation from MIN-BISECTION problem to 2-MIN-Hk-BISECTION, whi
h we de�ne as a re-stri
tion of MIN-Hk-BISECTIONproblem to the 2-regular instan
es in whi
hea
h vertex belongs to exa
tly two hyperedges. We refer to [BK01℄ for the
orresponding hardness results for MIN-BISECTION as well as the 
onstru
-tions used in the proofs.Theorem 4 Assume k � 3. If there exists an (r(n); t(n))-approximationalgorithm for 2-MIN-Hk-BISECTION, then there exists an (r(n3); t(n3))-approximation algorithm for MIN-BISECTION.Proof. Hypergraphs that are instan
es of 2-MIN-Hk-BISECTION are insome sense dual to k-regular graphs. Thus we 
an rephrase the 2-MIN-Hk-BISECTION as an equivalent problem for su
h k-regular graphs:k-DUAL-BISECTION: Given a k-regular graph with 4n nodesand 2kn edges, 
olor kn edges white and kn edges bla
k, whileminimizing the number of mixed nodes i.e. nodes adja
ent toedges of di�erent 
olors.



7We present here only the proof for k = 3, sin
e it is easy to generalizeit for arbitrary k. We will redu
e graph minimum bise
tion to 3-DUAL-BISECTION, so that a graph G with 2n nodes is translated into a 3-regulargraph G0 with 4n(3n � 1)2n nodes.We 
onstru
t an instan
e G0 of 3-DUAL BISECTION as follows. Forea
h node u of G we 
reate a subset of edges Eu of G0: it has 2n � 1 rowsnumbered 1 to 2n� 1, ea
h row 
onsists of 6n nodes and 6n edges 
onne
tedinto a ring, and nodes of row i alternate between those 
onne
ted to row i�1and those 
onne
ted to row i+ 1.In rows 1 and 2n � 1 we have 6n nodes not 
onne
ted to other rows,instead they are in
ident to 6n new distin
t edges of Eu that are viewed asas 2n triples. To ea
h neighbor of u, say v, we assign endpoints of one ofthese triples and we 
all them avu; bvu; 
vu. For a triple that is not assigned toa neighbor we 
reate a new node 
onne
ted to the elements of this triple.If fu; vg is an edge of G, then we 
reate a pair of nodes Pfu;vg = fd; eg, we
onne
t d to avu; buv and 
vu and e to auv ; bvu and 
uv as shown in Fig. refgadget1.One 
an see that Eu 
ontains 2n � 1 rings of 6n edges ea
h, 3n edgesbetween ea
h pair of rings and 6n edges that are grouped in triples, so jEuj =(2n�1)�6n+(2n�2)�3n+6n= 6n(3n�1) edges, thus we 
reated 4n(3n�1)nodes per node in G.Now, given an edge 
oloring of G0, we normalize it so that ea
h Eu is
olored with one 
olor. Su
h a 
oloring is equivalent to a bise
tion of nodesin G; an edge fu; vg belongs to this bise
tion if and only if both elementsof Pfu;vg are mixed; 
onsequently the ratio between the number of mixednodes in a normalized 
oloring and the number of edges in the 
ut of theequivalent bise
tion is always 2. To show that �nding a good 
oloring leadsto an equally good bise
tion we need to show that we 
an normalize withoutin
reasing the number of mixed nodes.Consider Eu su
h that at least n rows 
onsist of edges of two 
olors. Su
hrows 
ontain at least two mixed nodes, so the rings of Eu 
ontain at least2n mixed nodes. We move su
h Eu into the reserve; on
e we are done withre-
oloring of other edge sets we set the 
olor of Eu in su
h a way as to 
reatethe bise
tion; as a result it may happen that nodes of up to n pairs of theform Pfu;vg will be
ome mixed (only n be
ause we know that v belongs tothe other part in the bise
tion). This is amortized by 2n or more nodes fromthe rows of Eu that 
eased to be mixed.Similarly, suppose that Eu 
ontains one purely white ring and one purelybla
k ring. There exist 3n node disjoint paths 
onne
ting these two rings,



8

vubvuavu 
uvbuvauv e d Ev

EuFigure 1: Edge sets Eu and Ev and the translation of edge fu; vg. The edgesets are 
ompletely depi
ted if n = 3 and we identify the leftmost edges(without left endpoints) with the rightmost edges (without right endpoints).and ea
h path must 
ontain a mixed node. Again, we 
an move Eu into thereserve.It remains to 
onsider Eu su
h that at least n rows are 
ompletely white(bla
k). Then we 
onvert all edges of Eu to white (bla
k).The nodes of Eu 
an be partitioned into 3n disjoint 
onne
ted paths,
alled 
olumns that 
over all the nodes in the rings, su
h paths are shown ingray in Fig. refgadget1. A 
olumn has exa
tly 2 nodes in ea
h ring, and thus4n � 3 edges. We extend this path with edges adja
ent to the �rst and thelast node and whi
h belong to the triples). We insert edges that 
onne
t two
olumn to the 
olumn on the left, now ea
h 
olumn has 6n � 2 edges. We



9remove from ea
h 
olumn edges that belong to purely white rings, this splitsa 
olumn into 
onne
ted 
omponents whi
h we 
all sub-
olumns. Be
ause asub-
olumn may have edges in at most n � 1 rings, it may 
ontain at most3(n� 1) + 1 = 3n� 2 edges. We 
onsider sub-
olumns in whi
h at least oneedge was bla
k before the 
onversion to white. In ea
h su
h sub-
olumn atleast one node 
eases to be mixed after the 
onversion.If a sub-
olumn is not adja
ent to a pair of the form Pfu;vg we eliminateone mixed node after 
onverting at most 3n� 2 edges.Now 
onsider a pair of the form Pfu;vg; in Eu it is adja
ent to three sub-
olumns. If in ea
h of these sub-
olumns we 
onverted an edge, we eliminateat least 3 mixed nodes, but now the nodes of Pfu;vg may be
ome mixed, sothe net gain is the elimination of at least 1 mixed node, while we 
onverted atmost 3(3n�2) edges. Suppose that we have 
onverted an edge in two of thesethree 
olumns. Then one of these 
olumns was pure white, and the node ofPfu;vg adja
ent to this 
olumn was mixed or pure white. Thus we eliminate 2mixed nodes in two 
olumns and we get at most 1 new mixed node in Pfu;vg,for the net gain of 1 node, while we 
onverted at most 2(3n � 2) edges. Itremains to 
onsider the 
ase when we 
onverted an edge in only one of the 3
olumns.If this 
olumn 
ontains avu or 
vu, then both nodes of Pfu;vg are mixedor white, the 
onversion does not add any new mixed nodes and eliminatesone. In the remaining 
ase, 
olumns of avu and 
vu are purely white. Supposethat the 4-edge path from avu to 
vu is not purely white, then our 
onversionremoves two mixed nodes from this path while adding at most one new mixednode, e. In the remaining 
ase we 
onvert only edge fbvu; eg without 
hangingthe number of mixed nodes.Summarizing, either we gain at least 1 node while 
onverting at most3n(3n � 2) edges, or we have a spe
ial 
ase in whi
h we have no loss or gainand we 
onvert at most one edge.Suppose that not 
ounting the spe
ial 
ases we have 
onverted K edges.To have a bise
tion, we may need to re-
onvert up toK edges | if there existsthe reserve, or if we have 
onverted both white and bla
k edges then we needto re-
onvert fewer edges. Thus it suÆ
es to re-
onvert at most b K6n(3n�1)
sets of the form Eu, whi
h may 
reate up to 2nb K6n(3n�1)
 � b K3(3n�1)
 newmixed nodes. But when we 
onvertedK edges we eliminated at least K3n(3n�2)mixed nodes, so there is no net loss. At this point we have a balan
e of thebise
tion ex
ept for the impa
t of spe
ial 
ases, However, there 
an be at



10most 2n(2n � 1)=2 = n(2n � 1) spe
ial 
ases, so we need to re-
onvert atmost n(2n�1) edges. This would be less than the size of a single Eu, whi
h isnot possible, therefore we already have a
hieved the balan
e of the bise
tion.To adapt the above proof to k-DUAL-BISECTION, we would have to
onstru
t a k-regular graph rather than 3-regular one. We 
an do it byadding more edges inside node gadgets. The new edges will make it even lesspro�table to bise
t the edge 
olorings that split node gadgets.Thus, we get under assumption that there exists an (r(n); t(n))-approximation algorithm for 2-MIN-Hk-BISECTION for every integer k �3, the existen
e of an (r(n3); t(n3))-approximation algorithm for MIN-BISECTION for arbitrary graphs. �We are going to prove now, using Theorem 4, approximation lower boundsfor 2-MIN-Hk-BISECTION problems under average 
omplexity assumptionof [F02℄.We refer to [F02℄ for the ba
kground on the average 
ase 
omplexity andits 
onne
tion to the approximation 
omplexity.We will say that the optimization problem P is R3SAT-hard to approxi-mate to within approximation ratio �, if the existen
e of a polynomial timealgorithm for P within an approximation ratio � 
ontradi
ts Hypothesis 2 of[F02℄.Theorem 5 ([F02℄). MIN-BISECTION is R3SAT-hard to approximate towithin a ratio below 43 .We have the following result on sparse hypergraphs:Theorem 6 For every integer k � 3, 2-MIN-Hk-BISECTION is R3SAT-hard to approximate to within a ratio below 43 .Proof. By 
ombining Theorems 4 and 5. �



115 Further Resear
hAn interesting open question remains whether the dependen
e on the dimen-sion k in Theorem 1 
an be somehow redu
ed. This will require a new sparserredu
tion in a dimension of a hypergraph than the one used in Theorem 1.Holmerin and Khot in [H02℄, [HK03℄ prove approximation hardness of 4-and 3-dimensional equational extension of MIN-BISECTION (this extensionhowever does not de�ne valid hypergraph bise
tions). A very interestingquestion is whether there is any meaningful 
onne
tion between the hard-ness of the 3-dimensional or higher dimensional equational extension and theproblem of MIN-Hk-BISECTION. Su
h a 
onne
tion might ultimately shedsome light on approximation hardness of the minimum graph bise
tion.A
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