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t. The Quality of Servi
e Steiner Tree Problem is a generaliza-tion of the Steiner problem whi
h appears in the 
ontext of multimediamulti
ast and network design. In this generalization, ea
h node possessesa rate and the 
ost of an edge with length l in a Steiner tree T 
onne
tingthe non-zero rate nodes is l�re, where re is the maximum rate in the 
om-ponent of T �feg that does not 
ontain the sour
e. The best previouslyknown approximation ratios for this problem (based on the best knownapproximation fa
tor of 1.549 for the Steiner tree problem in networks)are 2.066 for the 
ase of two non-zero rates and 4.211 for the 
ase ofunbounded number of rates. We give better approximation algorithmswith ratios of 1.960 and 3.802, respe
tively. When the minimum span-ning tree heuristi
 is used for �nding approximate Steiner trees, then thepreviously best known approximation ratios of 2.667 for two non-zerorates and 5.542 for unbounded number of rates are redu
ed to 2.414 and4.311, respe
tively.1 Introdu
tionThe Quality of Servi
e Steiner Tree (QoSST) problem appears in two di�erent
ontexts: multimedia distribution for users with di�erent bitrate requests [7℄ andthe general design of inter
onne
tion networks with di�erent grade of servi
erequests [6℄. The problem was formulated as a natural generalization of theSteiner problem under the names \Multi-Tier Steiner Tree Problem" [8℄ and\Grade of Servi
e Steiner Tree Problem" [13℄. More re
ently, the problem hasbeen 
onsidered by [5, 7℄ in the 
ontext of multimedia distribution. This problemgeneralizes the Steiner tree problem in that ea
h node possesses a rate andthe 
ost of a link is not 
onstant but depends both on the 
ost per unit oftransmission bandwidth and the maximum rate routed through the link.
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an be stated as follows (see [5℄). Let G =(V;E; l; r) be a graph with two fun
tions, l : E ! R+ representing the lengthof ea
h edge, and r : V ! R+ representing the rate of ea
h node. Let fr0 =0; r1; r2; : : : rNg be the range of r and Si be the set of all nodes with rate ri. TheQuality of Servi
e Steiner Tree Problem asks for a minimum 
ost subtree T ofG spanning a given sour
e node s and nodes in Si�1 Si, all of whi
h are referredto as terminals. The 
ost of an edge e in T is 
ost(e) = l(e)re, where re, 
alledthe rate of edge e, is the maximum rate in the 
omponent of T � feg that doesnot 
ontain the sour
e. Note that the nodes in S0, i.e., zero rate nodes, do notrequire to be 
onne
ted to the sour
e s but may serve as Steiner points for theoutput tree T .The QoSST problem is equivalent to the Grade of Servi
e Steiner Tree Prob-lem (GOSST) [13℄, whi
h has a slightly di�erent formulation. In GOSST thereis no sour
e node and edge rates re should be assigned su
h that the minimumedge rate on the tree path from a terminal with rate ri to a terminal with raterj is at least min(ri; rj). It is not diÆ
ult to see that these two formulations areequivalent. Indeed, an instan
e of QoSST 
an be transformed into an instan
eof GOSST by assigning the highest rate to the sour
e. The 
ost of an edge willremain the same, sin
e ea
h edge e in a tree T will be on the path from thesour
e to the node of the highest rate in the 
omponent of T �feg that does not
ontain the sour
e. Conversely, an instan
e of GOSST 
an be transformed intoa QoSST by giving sour
e status to any node with the highest rate.The problem was studied before in several 
ontexts. Current et al. [6℄ gavean integer programming formulation for the problem and proposed a heuristi
algorithm for its solution. Some results for the 
ase of few rates were obtainedin [1℄ and [2℄. Spe
i�
ally, [2℄ (see also [13℄) suggested an algorithm for the 
aseof two non-zero rates with approximation ratio of 43� � 2:065, where � � 1:549is the best approximation ratio of an algorithm for the Steiner tree problem.Re
ently, [5℄ gave the �rst 
onstant-fa
tor approximation algorithm for an un-bounded number of rates. They a
hieved an approximation ratio of e� � 4:211.In this paper we give algorithms with improved approximation fa
tors. Ouralgorithms have an approximation ratio of 1:960 when there are two non-zerorates and an approximation ratio of 3:802 when there is an unbounded number ofrates. The improvement 
omes from the reuse of higher rate edges in establishing
onne
tivity for lower rate nodes. We give the �rst analysis of the gain resultingfrom su
h reuse, 
riti
ally relying on approximation algorithms for 
omputingk-restri
ted Steiner trees. To improve solution quality, we use di�erent Steinertree algorithms at di�erent stages of the 
omputation. In parti
ular, we use boththe Steiner tree algorithm from [11℄ whi
h has the 
urrently best approximationratio and the algorithm from [10℄ whi
h has the 
urrently best approximationratio among Steiner tree algorithms produ
ing 3-restri
ted trees.Table 1 summarizes the results of this paper. It presents previously known ap-proximation ratios using various Steiner tree algorithms and the approximationratios produ
ed by our method utilizing the same algorithms. Note that alongwith the best approximation ratios resulting from the use of the loss-
ontra
ting



Approximation Algorithms for the QoS Steiner Tree Problem 3Algorithm LCA [11℄ RNS[10℄ BR [14, 3℄ MST [12℄runtime polynomial polynomial O(n3) [15℄ O(n log n +m) [9℄#rates 2 any 2 any 2 any 2 anyprevious ratio 2.066 + � 4.211 + � 2.222 + � 4.531 + � 2.444 4.934 2.667 5.44our ratio 1.960+� 3.802 +� 2.059 +� 3.802 + � 2.237 4.059 2.414 4.311Table 1. Runtime and approximation ratios of previously known algorithms and of thealgorithms given in this paper. In the runtime, n and m denote the number of nodesand edges in the original graph G = (V;E), respe
tively.algorithm from [11℄, Table 1 also gives approximation ratios resulting from theuse of the algorithm in [10℄ and the more pra
ti
al algorithms in [3, 12, 14℄.The rest of the paper is organized as follows. In next se
tion, we tighten theanalysis given in [4℄ for the k-restri
ted Steiner ratio. In Se
tion 3, we introdu
ethe so 
alled �-
onvex Steiner tree approximation algorithms and tighten theirperforman
e bounds. We give approximation algorithms for QoSST problemwith two non-zero rates and unbounded number of rates in Se
tions 4 and 5,respe
tively, and 
on
lude in Se
tion 6.2 A Tighter Analysis of the k-restri
ted Steiner RatioIn this se
tion, we tighten the analysis given in [4℄ for the k-restri
ted Steinerratio. The tightened results will be used later to prove the approximation ratio ofour algorithms. The exposition begins with a 
laim from [4℄ whi
h en
apsulatesseveral of the proofs provided in that paper. This 
laim is then used in a mannerslightly di�erent from [4℄ to arrive at a stronger result.We begin by introdu
ing some de�nitions. A Steiner tree is 
alled full if everyterminal is a leaf. A Steiner tree 
an be de
omposed into 
omponents whi
h arefull by breaking the tree up at the non-leaf terminals. A Steiner tree is 
alledk-restri
ted if every full 
omponent has at most k terminals. Let us denote thelength of the optimum k-restri
ted Steiner tree as optk and length of the op-timum unrestri
ted Steiner tree as opt. By dupli
ating nodes and introdu
ingzero length edges, it 
an be assumed that a Steiner tree T is a 
omplete binarytree (see Figure 1). Furthermore, we may assume that the leftmost and right-most terminals form a diametri
al pair of terminals. The leftmost and rightmostterminals will be 
alled extreme terminals, and the edges on the path betweenthem will be 
alled extreme edges.Let the k-restri
ted Steiner ratio �k be �k = sup optkopt , where the supremum istaken over all instan
es of the Steiner tree problem. It has been shown in [4℄ that�k = (r+1)2r+sr2r+s where r and s are obtained from the de
omposition k = 2r + s,0 � s < 2r .
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u vFig. 1. Optimal Steiner tree T represented as a 
omplete binary tree. Extreme termi-nals u and v form a diametri
al pair of terminals, extreme edges (the path betweenu and v) are shown thi
ker. Ea
h Li represents the total length of a 
olle
tion ofpaths (e.g., dashed paths) 
onne
ting internal nodes of T to non-extreme terminals vianon-extreme edges.Lemma 1. [4℄1 Given a Steiner tree T , there exist k-restri
ted Steiner trees Ti,i = 1; 2; : : : ; r2r + s su
h that l(Ti) = l(T ) + Li, where ea
h Li represents thetotal length of a 
olle
tion of paths 
onne
ting internal nodes of T to non-extremeterminals via non-extreme edges in su
h a way that ea
h non-extreme edge of Tis 
ounted at most 2r times in the sum L1 + L2 + � � �+ Lr2r+s.We now use Lemma1 to produ
e a tighter bound on the length of the optimalk-restri
ted Steiner tree.Theorem 1. For every full Steiner tree T , optk � �k(l�D)+D, where l = l(T )is the length of T and D = D(T ) is the length of the longest path in T .Proof. Lemma 1 implies that L1 + L2 + � � �+ Lr2r+s � 2r(l �D). From this itfollows that there exists Lm su
h that Lm � 2rr2r+s (l�D). Sin
e l(Tm) = l+Lm,it follows that l(Tm) � l + 2rr2r+s (l �D). Therefore,optk � l(Tm)� l + 2rr2r + s (l �D)= �1 + 2rr2r + s� (l �D) +D= �k(l �D) +D1 The 
laim in [4℄ is stated for an optimum Steiner tree T , but optimality is not neededin the proof.



Approximation Algorithms for the QoS Steiner Tree Problem 5We now strengthen this theorem to the 
ase of partitioned trees.Corollary 1. For every Steiner tree T partitioned into edge-disjoint full 
om-ponents T i, optk �Xi ��k(l(T i) �D(T i)) +D(T i)�Proof. Let optik be the length of the optimal k-restri
ted tree for the full 
om-ponent T i. Then,optk �Xi optik �Xi ��k(l(T i)�D(T i)) +D(T i)�3 �-Convex Steiner Tree Approximation AlgorithmsIn this se
tion we introdu
e �-
onvex Steiner tree approximation algorithms andshow tighter upper bounds on their output when applied to the QoSST problem.De�nition 1. An �-approximation Steiner tree algorithm A is 
alled �-
onvexif the length of the tree it produ
es, l(A), is upper bounded by a linear 
ombinationof optimal k-restri
ted Steiner trees, i.e.,l(A) � mXi=2 �ioptiand the approximation ratio is equal to� = mXi=2 �i�iwhere �i � 0, i = 2; : : : ;m and � = mXi=2 �iThe algorithms from [12,3, 10℄ are �-
onvex, while the 
urrently best approx-imation algorithm from [11℄ is not known to be �-
onvex.Given a �-
onvex �-approximation algorithm A, it follows from Theorem 1that l(A) �Xi �iopti �Xi �i�i(opt�D) + �D = �(opt �D) + �D (1)Let OPT be the optimum 
ost QoSST tree T , and let ti be the length of rateri edges in T . Then, 
ost(OPT ) = NXi=1 ritiBelow we formulate the main property that makes �-
onvex Steiner tree approx-imation algorithms useful for QoSST approximation.
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(c)(a) (b)Fig. 2. (a) The subtree OPTk of the optimal QoS Steiner tree OPT indu
ed by edgesof rate ri, i � k. Edges of rate greater than rk (shown as solid lines) form a Steinertree for s [ Sk+1 [ : : : SN (�lled 
ir
les); atta
hed triangles represent edges of rate rk .(b) Partition of OPTk into edge-disjoint 
onne
ted 
omponents OPT ik ea
h 
ontaininga single terminal of rate ri, i > k. (
) A 
onne
ted 
omponent OPT ik whi
h 
onsists ofa path Dik 
ontaining all edges of rate ri, i > k, and atta
hed Steiner trees 
ontainingedges of rate rk.Lemma 2. Given an instan
e of the QoSST problem, let Tk be the Steiner tree
omputed for s and all nodes of rate rk by a �-
onvex �-approximation Steinertree algorithm after 
ollapsing all nodes of rate stri
tly higher than rk into thesour
e s and treating all nodes of rate lower than rk as Steiner points. Then,
ost(Tk) � �rktk + �(rktk+1 + rktk+2 + � � �+ rktN )Proof. We 
an visualize the subtree OPTk of the optimal QoS Steiner tree OPTindu
ed by edges of rate ri, i � k as in Figure 2(a), with nodes of rate rk formingsubtrees atta
hed to the tree OPTk+1 that spans all nodes with rate higherthan rk and the sour
e. We break OPTk+1 into edge disjoint paths 
onne
tingea
h terminal with an appropriately 
hosen non-extreme node as illustrated inFigure 2(b). A proof that this kind of de
omposition is always possible 
an befound in [14℄. We then 
onsider ea
h su
h path along with all nodes of raterk that are atta
hed to it. This results in a de
omposition of OPTk into edge-disjoint 
onne
ted 
omponents OPT ik, where ea
h 
omponent 
onsists of a pathDik = OPT ik \ OPTk+1 and atta
hed Steiner trees with edges of rate rk (seeFigure 2(
)). Furthermore, note that the total length of Dik's is l(OPTk+1) =tk+1 + tk+2 + � � �+ tN .Now we de
ompose the tree Tk along these full 
omponents OPT ik and byCorollary 1 we get: l(Tk) �Xi ��(l(OPT ik)�Dik) + �Dik�= �tk + �(tk+1 + tk+2 + � � �+ tN )



Approximation Algorithms for the QoS Steiner Tree Problem 7Input: Graph G = (V; E; l) with two nonzero rates r1 < r2, sour
e s, terminal sets S1of rate r1 and S2 of rate r2, Steiner tree �1-approximation algorithm A1 and a�-
onvex �2-approximation algorithm A2Output: Low 
ost QoSST spanning all terminals1. Compute an approximate Steiner tree ST1 for sSS1S S2 using algorithm A12. Compute an approximate Steiner tree T2 for sS S2 (treating all other points asSteiner points) using algorithm A1. Next, 
ontra
t T2 into the sour
e s and
ompute the approximate Steiner tree T1 for s and remaining rate r1 points usingalgorithm A2. Let ST2 be T1ST23. Output the minimum 
ost tree among ST1 and ST2Fig. 3. QoSST approximation algorithm for two non-zero ratesThe lemma follows by multiplying the last inequality by rk.4 QoSST Approximation Algorithm for Two Non-ZeroRatesIn this se
tion we give a generi
 approximation algorithm for the QoSST Steinertree problem with two non-zero rates (see Figure 3) and analyze its approxima-tion ratio.Re
all that an edge e has rate ri if the largest rate of a node in the 
omponentof T � feg that does not 
ontain the sour
e is ri. Let the optimal Steiner treein G have 
ost opt = r1t1 + r2t2, with t1 being the total length of the edgesof rate r1 and t2 being the total length of the edges of rate r2. Let �1 be theapproximation ratio of algorithm A1 and let �2 be the approximation ratio ofthe �-
onvex algorithm A2. Then, the following theorem holds:Theorem 2. The approximation ratio of the algorithm from Figure 3 ismax��2; maxr �1 �1 � (�2 � �)r�r2 + �1 � �2r�Proof. We 
an bound the 
ost of ST1 by 
ost(ST1) � �1r2(t1 + t2). To obtaina bound on the 
ost of ST2 note that 
ost(T2) � �1r2t2, and that, by Lemma2, 
ost(T1) � �2r1t1 + �r1t2.Thus, the following two bounds for the 
osts of ST1 and ST2 follow:
ost(ST1) � �1r2t1 + �1r2t2
ost(ST2) � �1r2t2 + �2r1t1 + �r1t2We distinguish between the following two 
ases:Case 1: If �r1 � (�2 � �1)r2 � 0, then 
ost(ST2) � �2(r2t2 + r1t1) = �2opt.



8 M. Karpinski, I.I. M�andoiu, A. Olshevsky, and A. ZelikovskyCase 2: If �r1 � (�2 � �1)r2 � 0, then letx1 = �r21 + (�1 � �2)r1r2�1r2(�1r2 � �2r1 + �r1)x2 = r2 � r1�1r2 � �2r1 + �r1It is easy to 
he
k thatx1
ost(ST1) + x2
ost(ST2) � optwhi
h implies that Approx � 1x1 + x2 optIn turn, this simpli�es toApprox � �1 �1 � (�2 � �)r�r2 � �2r + �1optwhere r = r1r2 .We 
an use Theorem 2 to obtain numeri
al bounds on the approximationratios of our solution. Using �1 = 1+ln 3=2 for the algorithm from [11℄, �2 = 5=3for the algorithm from [10℄, �1 = �2 = 11=6 for the algorithm from [3℄, and�1 = �2 = 2 for the MST heuristi
, and � ! 1 for all of the above algorithms,we maximize the expression in Theorem 2 to obtain the following theorem.Theorem 3. If the algorithm from [11℄ is used as A1 and the algorithm from[10℄ is used as A2, then the approximation ratio of the QoSST algorithm inFigure 3 is 1:960. If the algorithm from [3℄ is used in pla
e of both A1 and A2,then the ratio is 2.237. If the MST heuristi
 is used in pla
e of both A1 and A2,then the ratio is 2.414.5 Approximation Algorithm for QoSST with UnboundedNumber of RatesIn this se
tion, we propose an algorithm for the 
ase of a graph with arbitrarilymany non-zero rates r1 < r2 < � � � < rN . Our algorithm is a modi�
ation of thealgorithm in [5℄. A des
ription of the algorithm is given in Figure 4. As in [5℄, noderates are rounded up to the 
losest power of some number a starting with ay,where y is pi
ked uniformly at random between 0 and 1. In other words, we roundup node rates to numbers in the set fay; ay+1; ay+2; : : :g. The only di�eren
e isthat we 
ontra
t ea
h approximate Steiner tree, Approxk, 
onstru
ted over nodesof rounded rate ay+k, instead of simply taking their union as in [5℄. This allows
ontra
ted edges to be reused at zero 
ost by Steiner trees 
onne
ting lower rate



Approximation Algorithms for the QoS Steiner Tree Problem 9Input: Graph G = (V; E; l), sour
e s, sets Si of terminals with rate ri, positivenumber a, and �-approximation �-
onvex Steiner tree algorithmOutput: Low 
ost QoSST spanning all terminals1. Pi
k y uniformly at random between 0 and 1. Round up ea
h rate to the 
losestpower of some number a starting with ay, i.e. round up to numbers in the setfay; ay+1; ay+2; : : :g. Form new terminal sets S0i whi
h are unions of terminal setswith rates rounded to the same number r0i2. Approx ;3. Repeat until all terminals are 
ontra
ted into the sour
e s:Find an �-approximate Steiner tree Approxi spanning sSS0iApprox Approx [ApproxiContra
t Approxi into sour
e s4. Output ApproxFig. 4. Approximation algorithm for multirate QoSSTnodes. The following analysis of this improvement shows that it de
reases theapproximation ratio from 4:211 to 3:802.Let Topt be the optimal QoS Steiner tree, and let ti be the total length of theedges of Topt with rates rounded to ay+i. First, we prove the following te
hni
allemma:Lemma 3. Let S be the 
ost of Topt after rounding node rates as in Figure 4,i.e., S =Pni=0 tiay+i. Then, S � a� 1ln(a) 
ost(Topt)Proof. First, note that an edge e used at rate r in Topt will be used at the rateay+m, where m is the smallest integer i su
h that ay+i is no less than r. Indeed,e is used at rate r in Topt if and only if the maximum rate of a node 
onne
tingto the sour
e via e is r, and every su
h node will be rounded to ay+m. Next,2let r = ax+m. If x � y then the rounded up 
ost is ay�x times the original 
ost;otherwise, if x > y, is ay+1�x times the original 
ost. Hen
e, the expe
ted fa
torby whi
h the 
ost of ea
h edge in
reases isZ x0 ay+x�1dy + Z 1x ay�xdy = a� 1lnaBy linearity of expe
tation, the expe
ted 
ost after rounding of Topt isS � a� 1ln a 
ost(Topt)2 Our proof follows the proof of Lemma 4 in [5℄



10 M. Karpinski, I.I. M�andoiu, A. Olshevsky, and A. ZelikovskyTheorem 4. The approximation ratio of the algorithm given in Figure 4 ismina �(�� �)a � 1ln a + � alna�Proof. LetApproxk be the tree added when 
onsidering rate rk. Then, by Lemma2, 
ost(Approxk) � �ay+ktk + �ay+k+1tk+1 + �ay+k+2tk+2 + � � �+ �ay+ntnwhere n is the total number of rates after rounding. Thus, we obtain thefollowing upper bound on the total 
ost of our approximate solution.
ost(Approx) � �t1ay + �t2ay + �t3ay + � � �+ �tn�1ay + �tnay+ �t2ay+1 + �t3ay+1 + � � �+ �tn�1ay+1 + �tnay+1. . . + �tn�1ay+n�1 + �tnay+n�1+ �tnay+n= (���)S+��0BBBBB� t1ay + t2ay + t3ay + � � �+ tn�1ay + tnay+ t2ay+1 + t3ay+1 + � � �+ tn�1ay+1 + tnay+1. . .+ tn�1ay+n�1 + tnay+n�1+ tnay+n 1CCCCCA
� (���)S+��0BBBBBBBBBBBBBBBBBBBBBB�

...t1ay�n+1 ...t1ay�n+2 + t2ay�n+2 ...t1ay�n+3 + t2ay�n+3 + t3ay�n+3... ... ... . . . ...t1ay�1 + t2ay�1 + t3ay�1 + � � �+ tn�1ay�1 ...t1ay + t2ay + t3ay + � � �+ tn�1ay + tnay+ t2ay+1 + t3ay+1 + � � �+ tn�1ay+1 + tnay+1. . . + tn�1ay+n�1 + tnay+n�1+ tnay+n
1CCCCCCCCCCCCCCCCCCCCCCA� (���)S+�S �1 + 1a + 1a2 + � � ��� (���)a � 1ln a 
ost(Topt)+� alna
ost(Topt)where the last inequality follows from Lemma 3.



Approximation Algorithms for the QoS Steiner Tree Problem 11Numeri
ally, we obtain approximation ratios of 3.802, 4.059, respe
tively4.311, when the �-approximation �-
onvex Steiner tree algorithm used in Figure4 is the algorithm in [10℄, [3℄, respe
tively the MST heuristi
.Remark. The algorithm in Figure 4 
an be easily derandomized using the samete
hniques as in [5℄6 Con
lusions and Open ProblemsIn this paper we have 
onsidered a generalization of the Steiner problem in whi
hea
h node possesses a rate and the 
ost of an edge with length l in a Steinertree T 
onne
ting the terminals is l � re, where re is the maximum rate in the
omponent of T �feg that does not 
ontain the sour
e. We have given improvedapproximation algorithms �nding trees with a 
ost at most 1.960 (respe
tively3.802) times the minimum 
ost for the 
ase of two (respe
tively unboundednumber of) non-zero rates. Our improvement is based on the analysis of thegain resulting from the reuse of higher rate edges in the 
onne
tivity of thelower rate edges. An interesting open question is to extend this analysis to the
ase of three non-zero rates. The best known approximation fa
tor for this 
ase,is �(5 + 4p2)=7 � 2:358 [2, 13℄.Referen
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