
Approximation Hardness of ShortSymmetri
 Instan
es of MAX-3SATPiotr Berman � Marek Karpinski y Alexander D. S
ott zAbstra
tWe prove approximation hardness of short symmetri
 instan
es of MAX-3SAT in whi
h ea
h literal o

urs exa
tly twi
e, and ea
h 
lause is exa
tly ofsize 3. We display also an expli
it approximation lower bound for that problem.The bound two on the number of o

urren
es of literals in symmetri
 MAX-3SAT is thus the smallest possible one whi
h makes the instan
es hard toapproximate.1 Introdu
tionWe de�ne a symmetri
 (balan
ed) MAX-(3,Bk)-SAT instan
e of themaximizingMAX-3SAT problem as a set of 
lauses of size exa
tly 3, in whi
h every literal o

urs exa
tlyk times. MAX-(3,k)-SAT stands for the set of relaxed (possibly unbalan
ed) instan
esof MAX-3SAT in whi
h every variable o

urs exa
tly k times and ea
h 
lause is ofsize exa
tly 3. We will also denote by (3,Bk)-SAT and (3,k)-SAT the 
orrespondingsets of formulas.It was proven in [BKS03℄ that MAX-(3,4)-SAT is hard to approximate to withina 
ertain 
onstant. It was also shown that the balan
ed MAX-(3,B3)-SAT is hard toapproximate [F98℄, [FLT02℄. It remained an open question on whether, in fa
t, thebalan
ed 
lass MAX-(3,B2)-SAT remains hard to approximate. Be
ause MAX-(3,4)-SAT is the smallest, with respe
t to the o

urren
e number, 
lass of instan
es whi
hare still inapproximable, the balan
ed bound 2 (B2), would be then the best possible.In this paper we answer this question, and prove somewhat surprisingly thatMAX-(3,B2)-SAT is, in fa
t, hard to approximate to within a 
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2display also an expli
it fa
tor for the approximation hardness of that problem. Thebound 2 for the number of o

urren
es of literals is thus the smallest bound forsymmetri
 MAX-3SAT for whi
h the approximation gap property is still NP-hard(see for the appli
ations of regular and symmetri
 3SAT gap properties towards otherlower approximation bounds in [ALMSS98℄, [F98℄, and [FLT02℄).We note also, that, interestingly, a dual version of this balan
ed satis�abilityproblem leads to a 
ertain natural problem studied in graph theory. Let C be theset of 
lauses and V = fv1; : : : ; vng the set of boolean variables. For ea
h vi 2 V ,let ei be the pair of 
lauses in whi
h vi o

urs without negation, and let fi be thepair of 
lauses in whi
h v o

urs negated. Thus if we set vi true then we satisfyboth 
lauses in ei and if we set vi false we satisfy both 
lauses in fi. Now 
onsiderthe graph GV;C with vertex set C and edges e1; f1; : : : ; en; fn. Finding a satisfyingassignment for (V;C) is equivalent to 
hoosing one edge from ea
h pair fei; fig su
hthat the resulting subgraph of GV;C has no isolated verti
es (or, equivalently, �ndinga spanning forest of GV;C with no isolated verti
es and at most one edge from ea
hpair). We remark that a problem of similar type, where the edges 
ome in pairsbut we instead attempt to 
hoose one edge from ea
h pair without 
reating a giant
omponent, has been 
onsidered by Bohman, Frieze and Wormald [BFW03℄ (see also[BF01℄).We follow in this paper a line of [BKS03℄ of 
onstru
ting eÆ
ient enfor
ers forthe boolean variables; however, in our present setting we have to produ
e resultingbalan
ed unsatis�able (3,B2)-SAT formulas. In fa
t, at that time the existen
e of su
hbalan
ed and unsatis�able formulas was an open question in the area.In Se
tion 2 we give the �rst 
onstru
tion of balan
ed enfor
es, and a resultingbalan
ed unsati�able (3,B2)-SAT formula. In Se
tion 3 we show how to transformthe existen
e of balan
ed enfor
ers and unsatis�able (3,B2)-SAT formulas into theNP-hardness result in exa
t setting. In Se
tion 4 we prove our main result on ap-proximation hardness of MAX-(3,2B)-SAT and give an expli
it approximation lowerbound and a gap property.2 Balan
ed Enfor
ersWe refer to [BKS03℄ for a general ba
kground on a 
on
ept of small enfor
es of booleanvariables. The 
onstru
tions given in [BKS03℄ however do not give balan
ed enfor
ersof boolean variables, and existen
e of su
h balan
ed enfor
ers for (3,B2)-SAT formulaswas at the time an open problem.Here we give a 
onstru
tion of a balan
ed enfor
er of literals, and display also the�rst unsatis�able (3,B2)-SAT formula.To make our 
onstru
tions easier to follow, we denote a CNF formula by a matrixwith ea
h row listing literals of one 
lause. We use 
olumns to help 
ount the numberof o

urren
es of variables.



3For given literals l0, l1 and l2, we 
onstru
t the set S(l0; l1; l2) of 5 
lauses (or morepre
isely the 
onjun
tion of 5 
lauses) as follows:S(l0; l1; l2) � l0 :a bl1 :b 
l2 a :
a b 
:a :b :
for a; b; 
 new variables. We 
all S(l0; l1; l2) the enfor
er for (l0 _ l1 _ l2). It is easyto see that there are boolean values for a,b and 
 su
h that S(l0; l1; l2) is equivalentto the 
lause (l0 _ l1 _ l2). The advantage of an enfor
er S(l0; l1; l2) over the 
lause(l0_l1_l2) lies in the fa
t ea
h literal o

urs in S(l0; l1; l2) in a di�erent 
lause, and 
anbe used more than on
e independent on other literals. For a given boolean variablex we de�ne the enfor
er x(3) for x to bex(3) = S(x; x; x);and another enfor
er x(2) = S(x; y; y)[ S(x;:y;:y)for a new variable y. In either 
ase we need to 
reate 5 
lauses per one for
edo

urren
e of x.We now 
onstru
t an unsatis�able (3,B2)-SAT-formula f of 20 
lauses and 15variables as f � x(2) [ :x(2):In this formula ea
h variable o

urs exa
tly twi
e in its negated and unnegated form.This yields the following lemma.Lemma 1. There exists an unsatis�able (3,B2)-SAT formula f with 20 
lauses and15 variables.We noti
e also that if we relax the property of being balan
ed for a formula f ,and 
onstru
t it as f � x(3)0 [ x(3)1 [ x(3)2 [ f:x0 _ :x1 _ :x2g,we get an unsatis�able formula f with 16 
lauses and 14 variables (an improvementover an unbalan
ed formula with 20 
lauses and 15 variables of [BKS03℄).Lemma 2. There exists an unsatis�able (3,4)-SAT formula f with 16 
lauses and 12variables.



4We are going to use the 
onstru
tions of the expli
it enfor
ers of this se
tionto obtain NP-hardness and approximation hardness results on balan
ed (3,B2)-SATformulas.3 NP-Hardness in Exa
t SettingThe te
hnique of turning expli
it balan
ed enfor
ers into NP-hardness result for(3,B2)-SAT formula is more evolved than the 
orresponding te
hnique for unbal-an
ed (3,4)-SAT formulas, 
f. [BKS03℄. We start here with the NAE-3SAT problem,of de
iding for a given set of 
lauses C of size exa
tly equal to 3 whether there isan assignment making in ea
h 
lause at least one literal true and at least one literalfalse. The problem NAE-3SAT is known to be NP-
omplete (
.f. [S78℄).We 
onstru
t now in �ve stages a (3,2B)-SAT formula g.In the �rst stage we repla
e ea
h variable o

urren
e with a di�erent variable. Inthe se
ond stage, we repla
e a NOT-ALL-EQUAL 
lause NAE (l1; l2; l3) by (l0 _ l1 _l2) ^ (:l0 _ :l1 _ :l2); note that now ea
h variable x o

urs exa
tly twi
e, on
e as aliteral x, and on
e as a literal :x.In the third stage, we 
reate a "wheel of impli
ations": x0 ! x1; x1 ! x2; � � � ; xk !x0 for the variables x0; � � � ; xk whi
h has repla
ed one original variable. In the fourthstage, we repla
e ea
h impli
ation x ! y with a 3-
lause :x _ y _ :a for a a newvariable. Noti
e that we use ea
h new variable exa
tly twi
e. Finally, for ea
h newvariable a we add the enfor
er a(2). The resulting (3,2B)-SAT formula g is satis�ablei� NAE-formula f is satis�able. This proves the NP-
ompleteness of (3,2B)-SAT.Theorem 1. The problem (3,B2)-SAT is NP-
omplete. �4 Approximation HardnessWe prove now approximation hardness result on MAX-(3,2B)-SAT problem. Theresulting lower approximation bound improves also on a lower bound of [BKS03℄proven for more general problem of MAX-(3,4)-SAT.Theorem 2. For every 0 < " < 1, it is NP-hard to approximate MAX-(3,2B)-SATto within an approximation ratio smaller than (1016 � ")=1015.Proof. We will use H�astad's theorem that for every 0 < " < 1=4 it is NP-hard todistinguish between E3-LIN-2 instan
es in whi
h one 
an satisfy at least 1 � " of allequations from those when one 
an satisfy at most 1=2+ " of all equations [H97℄. Wewill refer also a general reader to the bounded o

urren
e te
hniques of [BK01℄ and[BK03℄.



5The general strategy will be to translate a system S of n equations over Z2, ea
hwith 3 variables, in two stages. In the �rst, we repli
ate ea
h equation k times, wherek is \suÆ
iently large" (k = n is suÆ
iently large, and the exa
t minimal suÆ
ientvalue of k is not important). Afterwards we may assume that ea
h variable in So

urs at least k times. Next, we will de�ne a (3,2B)-SAT formula B(S) with 508n
lauses su
h that1. Let T be the set of truth assignments for B(S); we have a normalization fun
tion� : T! T su
h that �(~x) satis�es at least as many 
lauses as ~x for every truthassignment ~x.2. Let V be the set of value assignments to variables of S, we have a bije
tion� : V ! �(T) su
h that if i is the number of equation that ~x does not satisfy,then �(~x) does not satisfy i 
lauses.We 
onstru
t B(S) in stages. First, we repla
e ea
h equation of S with the equiv-alent formula in disjun
tive normal form, and in that formula, we repla
e o

urren
esof a variable, say x, with two new variables. E.g. x+y+ z = 1 mod 2 is transformedinto (x1 _ y1 _ z1) ^ (x2 _ :y1 _ :z1) ^ (:x1 _ y2 _ :z1) ^ (:x2 _ :y2 _ z1):Note that ea
h new variable o

urs on
e negated and on
e non-negated.Se
ondly, for ea
h pair of variables that repla
e the same o

urren
e of a variablein S, we introdu
e 13 new variables and we \
onne
t" them with the impli
ation intoa gadget des
ribed in Figure 1.Before des
ribing the way these gadgets are 
onne
ted, we may show how a truthassignment 
an be normalized without de
reasing the number of satis�ed 
lauses.Suppose that a pair of o

urren
es of a variable is assigned di�erent values. Then inits gadget we 
an 
hange this assignment to either of the two values without 
hangingthe number of satis�ed impli
ations. Thus, if we have three pairs of o

urren
es ofa variable from the same formula that repla
ed an equation, if even one of the pairshas two values assigned, we 
an 
hange the assignment so ea
h pair is assigned onevalue, the equation is satis�ed and the number of satis�ed impli
ation is not smaller.From now on, we 
an view this pair of variables as one.As a result, in a formula that repla
ed an equation we have all 4 
lauses satis�edif the formula is satis�ed, or 3 
lauses are satis�ed.Now suppose that not all variables in a gadget are assigned the same value. We
onvert all variables to the majority value of the \solid dot" variables|we 
ount 7 ofthem. If the minority 
onsisted of 1 variable, we gain at least 1 impli
ation amongthese variables, while loosing at most 1 
lause outside the gadget. A short inspe
tionshows that if the minority 
onsisted of 2 variables, we gain at least 2 impli
ations,and if it 
onsisted of 3 variables, we gain at least 3 impli
ations, so in no 
ase wede
rease the number of the satis�ed 
lauses.
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Figure 1:Gadget for the 
opies of a variable. Arrows des
ribe impli
ations. Non-arrows
orrespond to the o

urren
es in the 
lauses that are not the part of this gad-get: the two 
opies have two o

urren
e ea
h in the repla
ement of an equa-tion, six other gadget variables parti
ipate in one equivalen
e ea
h|a pair ofimpli
ations|with a similar variable of another gadget.Next, given a variable of S withm o

urren
es, we getm gadgets with 6m variablesthat should be 
onne
ted with others using equivalen
es (pairs of impli
ations); we
onne
t them using a random mat
hing; by B�ollobas [B88℄ the resulting multigraphof gadgets has, with high probability, isoperimetri
 number equal at least 1 (thisprobability grows with the number of nodes, thus we assured that we have at least knodes/gadgets). This in turn means that if a minority of i gadgets has a truth valuedi�erent from the majority, we 
an 
onvert all these gadgets to the majority valueand at least i of the equivalen
es will be
ome true. Thus this is a good normalizationeven if all i equations 
onne
ted with these gadgets be
ome false.To �nish, we group impli
ations into \
onse
utive pairs", i.e. pairs of the formx ! y ^ y ! z. In su
h a pair at least one impli
ation is true. Equivalen
es 
learlyform su
h pairs, and inside a gadget, impli
ations form an Eulerian graph, so they
an form a single 
hain of 22 impli
ations. A 
onse
utive pair of impli
ations 
an be
onverted to a pair of 3-
lauses by adding a new variable: x! y ^ y ! z 
onverts to(:x _ y _ :a) ^ (:y _ z _ :a); to this we add the enfor
er a(2). If one or more 
lausein the enfor
er is false, we normalize the assignment so that all of them are true, andas a result we loose the truth of only one impli
ation.One 
an see that an equation of S was repla
ed with 4 
lauses of its normal form,these 
lauses have o

urren
es of 3 pairs of variables, and for ea
h pair we have builda gadget. Inside a gadget we have 22 impli
ations, and a gadget parti
ipates in 6equivalen
es with other gadgets, so we 
an say that ea
h gadget has 28 impli
ations.For ea
h impli
ation we use 6 
lauses (the impli
ation itself and a half of an



7enfor
er). Thus B(S) repla
es an equation with 4 + 3(28 � 6) = 508 
lauses. In thepro
ess, a variable is repla
ed with a set of variables, but the normalization makesall these variables equivalent and this de�nes an obvious bije
tion between valueassignments for S, and the normalized truth assignments for B(S). For a normalizedtruth assignment all 
lauses in the enfor
ers and gadgets are true; if an equation of Sis satis�ed, all 4 
lauses of its normal form are true, otherwise all but 1 are true.Now by result of H�astad [H97℄, it is NP-hard to distinguish between the goodsystems of 2n equations in whi
h at least (2� �)n equations 
an be satis�ed, and thebad systems in whi
h at most (1 + �)n equations 
an be satis�ed. For a system S of2n equation, B(S), is a (3; B2)-SAT formula with 2 � 508n 
lauses. If S is a goodsystem, we 
an satisfy at least (1016 � �)n 
lauses of B(S), and if S is a bad systemwe 
an satisfy at most (1015 + �)n 
lauses of B(S). This 
ompletes the proof. �A
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