
Approximation Shemes for Metri MinimumBisetion and PartitioningW. Fernandez de la Vega� Marek Karpinskiy Claire KenyonzAbstrat. We design polynomial time approximation shemes (PTASs) for Metri MIN-BISECTION, i.e. dividing a given �nite metri spae into two halves so as to minimize thesum of distanes aross the ut. The method extends to partitioning problems with arbitrary sizeonstraints. Our approximation shemes depend on a hybrid plaement method and on a newappliation of linearized quadrati programs.1 IntrodutionMIN-BISECTION onsists in dividing a graph into two equal halves so as to minimize the number ofedges aross the partition, and belongs to the most intriguing problems in the area of ombinatorialoptimization and statistial physis [H97℄. The reason is that we do not know at the moment howto deal with minimization global onstraints suh as partitioning the sets of verties into twohalves. Although there is urrently no approximation hardness result for MIN-BISECTION (f.[BK01, K02℄, see however [F02℄), the best known approximation fator is O(log2 n) [FK00℄.Here we onsider the metri version of that problem: given a �nite set V of points together witha metri, we ask for a partition of V into two equal parts suh that the sum of the distanes fromthe points of one part to the points of the other part is minimized. It is easy to see that metriMIN-BISECTION is NP-hard even if restrited to distanes 1 and 2 (f. [FK98℄). In this paper wegive a polynomial time approximation sheme (PTAS) for metri MIN-BISECTION and its k-arysize onstraint generalizations. (This answers the open problems of [FK98℄.)We draw on two lines of researh to develop our algorithm. One is the method of \exhaustivesampling" for additive approximation for various optimization problems suh as MAX-CUT or�LRI, CNRS, Universit�e de Paris-Sud, 91405 Orsay. Researh partially supported by the IST grant 14036 (RAND-APX), and by IST APPOL2 and by the PROCOPE projet. Email: lalo�lri.lri.fryDept. of Computer Siene, University of Bonn, 53117 Bonn. Researh partially supported by DFG grants,DIMACS, PROCOPE grant 31022, IST grant 14036 (RAND-APX), and Max-Plank Researh Prize. Researhpartially done while visiting Yale University, and IH�ES Institute, Bures-sur-Yvette. Email: marek�s.bonn.eduzLIX, Eole Polytehnique. Researh partially supported by the IST APPOL2 projet. Email:kenyon�lix.polytehnique.fr 1



MAX-kSAT [AKK95, F96, GGR96, FK96, FK97, AFKK02℄. The other onnets to previous paperson approximation algorithms for metri problems and weighted dense problems [FK98, FVK00℄.The rest of the paper is organized as follows. In Setion 2, we formulate some metri and samplinglemmas. In Setion 3, we onstrut our �rst PTAS for the metri MIN-BISECTION problem, whihis purely ombinatorial and extends [GGR96℄. In setion 4, we use a non-smooth extension of alinear programming relaxation of [AKK95℄. Note that it is straightforward to adapt our algorithmsto the Maximum Bisetion problem. In setion 6, we give an extension to partitioning into twoparts with size onstraints (k; n� k) (instead of (n=2; n=2) for bisetion), and a further extensionto partitioning into a �xed number K of parts of prespei�ed sizes (n1; n2; : : : ; nK).In the rest of the paper, we use the following notations. (V; d) denotes a �nite metri spae.For a subset U of V , and a vertex v 2 V , we write d(v; U) = Pu2U d(u; v). For A;B � V ,d(A;B) =Pu2A;v2B d(u; v). Let wu = d(u; V ), WU =Pu2U wu, and W = WV .Our metri algorithms are partially inspired by existing algorithms for dense graphs, and an alsobe adapted to the dense graphs setting. What are the di�erenes between the metri ase and thedense graph ase?� In the metri setting, some verties an have overwhelming importane (the ones whih arevery far from the rest and have weight lose to W ), and so we need to set those verties asideand treat them separately. This annot happen in dense graphs.� In the metri setting, instead of doing a straightforward uniform sample, we need to perform abiased sample, where we give higher probability to verties with high weight; this is neessaryin order to get reliable estimates.� In the metri setting, the estimate an be (with low probability) unaeptably large, thus weneed to ap it to wv. This does not happen in dense graphs.� In the metri setting, the partition (Vj) must be done at random, whereas in dense graphs,one an take an arbitrary partition.� In the metri setting the analysis no longer deals with sums of f0; 1g variables (whih desribethe presene or absene of an edge in a graph); instead the terms in the sums an be quite large(sine they desribe distanes); this makes the analysis of the variane muh more deliate.� Finally, in the metri setting our lower bound on OPT means that an additive error of O(�W )implies a PTAS for the problem; that is not true for dense graphs.2 Preliminary Results2.1 First attemptOne natural approah is to use random (suitably biased) sampling to estimate, for eah point v,the sum of distanes from v to eah side of the optimal bisetion, d(v; L) and d(v; R). For pointswhih have about the same sum of distanes to either side of the partition, it would intuitivelyseem that it does not matter on whih side they are plaed.Unfortunately, this intuition is misleading, as the example in Figure 1 shows: we have four sets ofverties, A, B, C, D, eah ontaining n verties. All distanes inside A, inside D, between A andB, and between C and D are equal to 1. All other distanes are equal to 2.2
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CFigure 1: An example showing why, even if we have a reliable estimate of d(v; L) and of d(v; R) forevery v, that is not suÆient to onstrut a near-optimal partition in the natural manner.It is not hard to hek that on that input, the minimum bisetion onsists of the partition (L =A [ C;R = B [D) and has value OPT = 6n2.For v 2 B, d(v; L) = 3n while d(v; R) = 4n� 2. Similarly for v 2 C. Thus an estimator will easilybe able to lassify orretly the verties of B and of C.Notie that for v 2 A, d(v; L) = 3n � 1 ' 3n = d(v; R). Similarly, for v 2 D, d(v; R) = 3n � 1 '3n = d(v; L). Hene our sampling and estimating approah will onsider all of these verties to beequivalent and therefore plae half of them on the left side and half of them on the right side, atrandom. This reates the bisetion on the right hand side of Figure 1. The value of that bisetionis: 13n2=2, whih is a onstant fator more than OPT.This shows that, even if a vertex u is suh that d(u; L) ' d(u;R), it still matters where u goes.2.2 Metri lemmasWe now state lower bounds on the value of the optimal solution in the metri setting. First, anelementary metri lemma.Proposition 1 ([FKKR03℄) Let X; Y; Z � V . Then jZjd(X; Y ) � jX jd(Y; Z)+ jY jd(Z;X):In the (k; n � k) Metri MIN-PARTITIONING problem, we are given a metri spae (V; d) on npoints and an integer k < n. The goal is to partition V into two sets of sizes k and n � k so asto minimize the sum of distanes aross the partition. (Thus, MIN-BISECTION is the partiularase of k = n=2.)Lemma 1 The optimal value of (k; n� k) Metri MIN-PARTITIONING satis�esOPT � W2(1 + kn�k + n�kk ) :Proof: Apply Proposition 1 to X = Y = L; Z = R and to X = Y = R;Z = L to get� d(L; L) � 2 kn�kd(L;R)d(R;R) � 2n�kk d(L;R)3



Now, W = d(L; L)+ d(R;R)+ 2d(L;R), and sine OPT = d(L;R), we obtain the statement of theLemma.Lemma 1 extends to Metri MIN-BISECTION as follows, simply by setting k = n=2. It implies that,in order to get a PTAS for metri MIN-BISECTION, it suÆes to obtain an additive approximationto within �W .Lemma 2 The optimal value of Metri MIN-BISECTION satis�es OPT � W=6.Let K be a �xed integer. De�ne the K-ary metri MIN-PARTITIONING problem as follows.Given a sequene of sizes (n1; n2; : : : ; nK) suh that Pi ni = n, and given a �nite metri spae(V; d), �nd a partition of V into K parts of sizes (n1; n2; : : : ; nK) so as to minimize the sum ofdistanes between parts, Xu;v in di�erent partsd(u; v):Lemma 3 Let ` be suh that (n1 + � � � + n`) � n=2. The optimal value of K-ary Metri MIN-PARTITIONING for sizes (n1; n2; : : : ; nK) satis�esOPT � W4 (n1 + � � �+ n`)n :Proof: Apply Lemma 1 to (n1 + � � �+ n`; n� n1� � � �n�N`) Metri MIN-PARTITIONING.Finally, the following metri Lemma will be useful in our analyses.Lemma 4 ([FK98℄) d(v; u) � 4wvwu=W for every u; v.2.3 Probabilisti lemmasWe reall, in the Lemma below, an inequality of Hoe�ding (see also [HM98℄, Theorem 2.5, page202).Lemma 5 ([H63℄) Let (Yi) be a sequene of independent random variables suh that 0 � Yi � bifor every i. Let Z =P1�i�n Yi. Then, for any a > 0, we havePr(jZ �EZj � a) � 2e�2a2=(P b2i ):Lemma 6 Let (Yi) be a sequene of independent random variables and Z =P1�i�n Yi. Then:E(jZ �EZj) �sXi �2(Yi):Proof: E(jZ �EZj)2 � E((Z � EZ)2) = �2(Z) =Pi �2(Yi):For U � V , the following lemma shows how to estimate d(v; U) from a small biased sample of U .Lemma 7 (Metri Sampling) Let t be given and U � V . Let T be a random samplefu1; u2; :::utg of U with replaement, where eah ui is obtained by piking a point u 2 U withprobability wu=WU . Consider a �xed vertex v 2 V . Then:Pr �����d(v; U)� WUt Xu2T d(v; u)wu ����� � �d(v; U) ! � 1� 2e�t�2=84



E(jd(v; U)� WUt Xu2T d(v; u)wu j) � 2ptd(v; U):Proof: Consider the random variable Z =Pu2T d(v; u)=wu. We have:Z = tXi=1 Yi;where the Yis are i.i.d.r.v.'s with8u 2 U; Pr�Yi = d(v; u)wu � = wuWU :Yi has average value d(v; U)=WU and maximum possible value at most bi = 4d(v; U)=WU (byLemma 4 applied to U [ fvg). Applying Lemma 5 and saling by WU=t gives the �rst part of thelemma. The seond part follows from Lemma 6, observing that any variable Yi with range [0; bi℄must have variane at most b2i =4.Lemma 8 Let s = 3=�2 be given and U � V . Let T be a random sample fu1; u2; :::usg of U withreplaement, where eah ui is obtained by piking a point u 2 U with probability wu=WU . andonsider a partition of U = (UL; UR). Assume that WUL � WUR. Then, with probability at least1� �, we have jS \ ULj � 1=�2.Proof: Note that the probability that any �xed point of S falls in UL is at least 1=2 and that theseevents are independent. Thus, the probability distribution of t dominates the Binomial distributionB(s; 1=2). The assertion of the lemma then follows from Lemma 5.We will use the Metri Sampling Lemma jointly with exhaustive sampling. In our algorithms, thetarget UL will be unknown; we will take a random biased sample S of a set whih is larger thanUL, and try every possible subset T of S, so that, when we happen to try T = S \ UL, our subsetT will be a biased sample of UL.3 A Combinatorial PTASIn this setion we design and analyze a ombinatorial PTAS for metri MIN-BISECTION. Themethod builds on the known metri sampling of [FK98℄ and hybrid plaement tehniques of[GGR96℄.The algorithm an be found in Figure 2. It takes as input a �nite metri spae (V; d). It makesa series of guesses and returns, when all these guesses are orret, a bisetion of V whose ost is,with probability at least 3=4, at most (1+O(�))OPT. The algorithm assumes that n is larger thansome onstant value, sine for n small enough, one an just solve the problem by exhaustive searhon V .Theorem 1 With probability at least 3=4, the algorithm of Figure 2 omputes a (1+O(�)) approx-imation to Metri MIN-BISECTION. Its running time is n2 � 2O(1=�2).5



1. Large weight verties. Let B denote the set of verties with weight > �2W=10 and letU = V nB.2. Sampling. Let s = 3=�2. Take a random sample S of U of size s obtained by independentlydrawing s points u1; u2; :::us aording to: Pr(u1 = u) = wu=WU for u 2 U .3. Exhaustive searh. Let P0 = (L;R) be an (unknown) near-optimal bisetion. Byexhaustive searh, guess BL = B \ L and BR = B \ R. Let UL = U \ L and UR = U \R(UL and UR are not known). Assume that WUL � WUR . By exhaustive searh, guessT = S \UL. Let t = jT j. Moreover, by exhaustive searh, guess[WUL , the power of (1+ �)whih is losest to WUL .4. Estimation. 8v 2 V; let ev = minf[WULt Xu2T d(v; u)wu + d(v; BL); wvg: (1)5. Partition. Let ` = 1=� and de�ne a partition V1; V2; :::; V` of U by plaing eah vertex in aVj hosen uniformly at random (possibly moving one vertex from eah Vj to B if neessaryso that the ardinality of Vj is even).6. Constrution. Let A0 = L0 and B0 = R0.For eah j = 1; 2; : : : ; `, do the following:(a) Estimation. For eah v 2 Vj , letfv =Xk<j d(v; Ak) + `� (j � 1)` ev; (2)bb(v) = fv � (wv � fv):(b) Construt a bisetion (Aj ; Bj) of Vj by plaing the jVjj=2 verties with smallest valueof bb(v) in Bj and plaing the other jVj j=2 verties in Aj .Let A = [jAj and B = [jBj .7. Output. Output the best of the bisetions (A;B) thus onstruted.Figure 2: A ombinatorial algorithm for metri Minimum Bisetion.6
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AlFigure 3: The hybrid partitions used by the ombinatorial algorithm. fv is an estimate ofd(v;Left(Pj)) for v 2 Vj .3.1 A Preliminary PropertyWe start with the following Lemma.Lemma 9 Consider the partition onstruted by the algorithm, (B; V1; : : : ; V`). Consider the min-imum partition of V , subjet to the further onstraint that it must be a bisetion of every Vj. Thenits expeted value is at most OPT+Wp`=n.Proof: The optimal bisetion (L�; R�) indues a partition (L�j ; R�j) of Vj . For eah j, if jL�j j > jR�j j,we move (jL�j j � jR�j j)=2 random verties from L�j to R�j (or vie-versa if jL�j j < jR�j j). This de�nesa bisetion (L;R) satisfying the onditions of the lemma.Using Xu = 1I(u 2 Vj), the ardinality of L�j an be written asPu2L� Xu, and Lemma 6 shows thatE(jL�j � �2 jU jj) �pn=`:Similarly for R�j . Thus the expeted number of points moved is p`n.The hange in value when going from (L�; R�) to (L;R) is at most the weight of the points whihare moved. The points moved have random weights, hene the expeted weight of the points movedis at most Wp`=n.3.2 Proof of Theorem 1The �rst part of the analysis is purely deterministi and, exept for the last inequality, quite similarto the analysis in [GGR96℄. 7



3.2.1 Fat 1: Deterministi analysisLet Pj be the following hybrid bisetion:Pj = ([k<jAj [ [k�j Lj ;[k<jBj [ [k�j Rj) = (Left(Pj);Right(Pj)):The output is P`: COST(P`)� COST(P0) � X1�j�`[COST(Pj)� COST(Pj�1)℄:Consider the verties whih are lassi�ed di�erently in Pj�1 and in Pj : there is a subset X =fx1; : : : ; xmg of Lj and a subset Y = fy1; : : : ; ymg ofRj , of the same ardinality, suh thatAj = Lj�X+Y and Bj = Rj�Y +X . For eah vertex u, let b(u) = d(u;Left(Pj�1))�(wu�d(u;Left(Pj�1))):We have: COST(Pj)� COST(Pj�1) � Xxi2X b(xi)� Xyi2Y b(yi) + 2 XX�Y d(x; y)� X1�i�m(b(xi)� b(yi)) + 2d(Vj; Vj):Now, here is the entral part of the proof:b(xi)� b(yi) = (b(xi)�bb(xi)) + (bb(xi)�bb(yi)) + (bb(yi)� b(yi)) � (b(xi)�bb(xi)) + (bb(yi)� b(yi));sine xi is plaed to the right and yi is plaed to the left, and so by de�nition of the algorithm itmust be that bb(xi) � bb(yi). ThusCOST(Pj)� COST(Pj�1) � Xu2Vj jb(u)�bb(u)j+ 2d(Vj; Vj) (3)� 2Xu2Vj jXk�j d(u; Lk)� `� (j � 1)` (eu � d(u;BL))j+ 2d(Vj; Vj):(4)Now, jXk�j d(u; Lk)� `� (j � 1)` (eu � d(u;BL))j �jXk�j d(u; Lk)� ` � (j � 1)` d(u; UL)j+ `� (j � 1)` jd(u; UL)� (eu � d(u;BL))j: (5)We must now use probabilisti tools to analyze this equation.3.2.2 Part 2: Probabilisti analysisLet us analyze the �rst term of the right hand side of Equation 5.Fix v 2 Vj and let Zv = Pk�j d(v; Lk). The expetation of Zv is d(v; UL)(ell � j + 1)=ell, and sowe must analyze jZv � EZvj. We have: Zv =Pu2UL d(v; u)Xu, where the Xu are i.i.d.r.v.'s, withXu equal to 1 with probability (`� (j � 1))=` and to 0 with the omplementary probability.8



We split Zv into two parts, Zv = Av + Bv, with( Av = Pu:d(u;v)�wv�=pn d(u; v)XuBv = Pu:d(u;v)>wv�=pn d(u; v)Xu:The �rst of these two parts is straightforward: applying Lemma 6 to Av , with bi = wv�=pn, yieldsE(jAv � EAvj) � �wv=2:For the seond part, from Proposition 1 for X = fug; Y = fvg, Z = V , we get nd(u; v)� wu +wv,so d(u; v) > wv�=pn implies that wu > (�pn � 1)wv. Thus d(u; v) � (wu + wv)=n � 2wu=n.Applying Lemma 6 to Bv, with bu = 2wu=n, now yieldsE(jBv � EBvj) � pPu w2un :Sine Pwu � W and maxwu � �2W , we havePw2u � �2W 2, and soE(jBv �EBvj) � �Wn :Summing gives E(jZv � EZvj) � �wv2 + �Wn :As for the seond term of Equation 5, we �rst lete0v = minfWULt Xu2T d(v; u)wu + d(v; BL); wvg:From Lemma 7 applied to UL, we have:E(jd(v; UL)� (e0u � d(u;BL))j) � 2pt d(v; UL) � 2ptwv:Sine our estimate for WUL is within a (1 + �) fator of the atual value, we moreover have:E(je0u � euj) � �wu:The rest of the proof is easy and entirely deterministi again.3.2.3 Part 3: Deterministi analysisPlugging these bounds into Equation 4, we obtain:E(COST(Pj)� COST(Pj�1)) � 2Xu2Vj(�wu2 + �Wn + 2ptwu + �wu) + 2E(d(Vj; Vj)):Summing over j, we get:E(COST(P`)� COST(P0)) � 2[52�W + 2ptW ℄ + 2E(Xj d(Vj; Vj)):9



The last term is easy to deal with: its expetation is bounded by W=`.From Lemma 8, t � 1=�2 with probability at least 1� �, and then, with Lemma 9 we obtain:E(COST(P`)� OPT) � 2W [5�+ 1̀ +rǹ ℄:Using Markov's inequality, remembering that ` = 1=� and omparing with the lower bound fromLemma 2 then onludes the proof of the Theorem.Remarks.1. It is not neessary to take the number of parts Vj exatly ` = 1=�. The algorithm ould beadapted to work for any number ` 2 [1=�; n�2℄. Indeed, going bak to previous work on densegraphs, one may have been intrigued to notie that [GGR96℄ used a partition of the vertiesinto ` = 1=� parts, while [F96℄ used a partition of the verties into ` = n�2 parts. Indeed,we now see from the above analysis that, with our algorithm, the number of parts is largelyirrelevant: this may serve as an explanation. Perhaps the algorithm is nier to think aboutin the ase when ` = n�2, sine it is then very lose to a natural greedy algorithm: take theverties by groups of 1=�2 at a time, and biset eah group in the best possible way, takinginto aount the hoies made so far (and adding an estimate to take into aount the vertiesnot yet onsidered.)2. The running time ould be improved in a manner similar to [GGR96℄: �rst, in Equation 2,instead of alulating d(v; Ai) exatly, we ould estimate it via sampling, thus gaining afator of n. Seond, instead of running the algorithm on the whole graph, we ould run it ona (larger) sample of the point set.3. Exept for biased sampling, whih is spei� to the metri situation, the additional ideas usedhere to modify the hybrid plaement tehnique from [GGR96℄ an be applied to the densegraphs setting as well. We onjeture that in dense graphs, it might be possible to use ideasfrom our ombinatorial algorithm so as to improve the query omplexity from [GGR96℄ by afator of O(1=�).4. Fousing on the dense graphs setting, let us ompare the dense graph analog of our ombi-natorial algorithm to the ombinatorial algorithm from [GGR96℄:� We sample O(1=�2) points in total, as opposed to 
(1=�3 ln(1=�)).� The partition (Vj) is random instead of arbitrary (neessary for this smaller sampling towork).� Our estimator is slightly di�erent, sine we do not re-sample the hybrid partitions, butinstead use an estimator whih ombines the distanes to verties already lassi�ed witha saled version of the original estimate. This is neessary for the smaller sampling towork.� For partitioning into two parts, we only use sampling to estimate for the distane fromv to the left side of the partition; sine the sum of its distanes to the left and to theright side is equal to its degree, this immediately implies an estimate for the distanefrom v to the right side of the partition. (This is a detail).10



� In the analysis, instead of separating the point set into \normal" and \exeptional"verties, we just use the variane diretly to ompute the expeted deviation from themean. (It would however still have been possible to prove the result with a slightly worseonstant by using a separation into normal and exeptional verties).4 A PTAS Based on Linear ProgrammingIn this part we ombine exhaustive searh on the points with highest weights, biased sampling,and give a new non-smooth extension of the linearization approah of [AKK95℄. In addition, wemodify the LP approah slightly (by introduing n new variables zv) in suh a way that one anompute estimates by taking samples of size O�(1) only (instead of O(logn)). (We believe that thisimprovement ould also be applied to the algorithms of [AKK95℄.)We represent a bipartition (S; T ) of V by the vetor (xv) where xv = 0 if v 2 S, and xv = 1 ifv 2 T . We denote by (L;R) an optimum bisetion. For eah vertex v, ev will be an estimator ford(v; L).If n is smaller than some onstant depending on � (see proof of lemma 13), we solve by exhaustivesearh. Otherwise, we run the algorithm presented on Figure 4 at the end of the paper. Throughtthis setion we will refer to the notation used in the desription of this algorithm.Theorem 2 With probability at least 3=4, the algorithm in Figure 4 omputes a (1+O(�)) approx-imation to metri MIN-BISECTION. Its running time is LP (n)2O(1=�2), where LP (n) denotes therunning time to solve a linear program with O(n) underlying variables and onstraints.4.1 Proof of Theorem 2Let (xv) be the optimal bisetion and (x�v ; z�v) the optimal frational solution of the linear program.Lemma 10 With probability at least 89=100, the optimal bisetion (xv) is feasible, and moreoverOPT = COST(xv) � COST(x�v)� 20�W:Proof: Let Æv be the di�erene between ev and its expetation. By Lemma 7, we have thatE XU jÆvj! � 2r1t W:Using Lemma 8, we an assume that t � 1=�2, and use Markov's Inequality to get thatPr XU jÆvj � 20�W! � 9=10for suÆiently small �. This shows the feasibility of (xv) with probability 89=100 and proves alsothe seond part of the lemma sine COST(xv) di�ers from COST(x�v) by at most PU jÆvj.Let (yv) denote the partition obtained by the randomized rounding.11



1. Large weight verties. Let B denote the set of verties v with wv � �2W=100, and letU = V nB.2. Sampling. Let s = 3=�2. Take a random sample S of U of size s obtained by independentlydrawing s points u1; u2; :::us aording to: Pr(u1 = u) = wu=WU for u 2 U .3. Exhaustive searh. Let (L;R) be the (unknown) optimal bisetion. By exhaustivesearh, guess BL = B \ L and BR = B \ R. Let � = PBL�BR d(u; v). Let UL = U \ Land UR = U \ R (UL and UR are not known). Assume that WUL � WUR . By exhaustivesearh, guess T = S \ UL. Let t = jT j. Moreover, by exhaustive searh, guess [WUL , thepower of (1 + �) whih is losest to WUL .4. Estimation. 8v 2 V; let ev = minf[WULt Xu2T d(v; u)wu + d(v; BL); wvg: (6)5. Constrution.(a) Let (x) =Pv2U xvev+Pv2U(1�xv)d(v; BR)+�. Solve the following linear programLP (n) with variables xv and zv , v 2 U ,Minimize (x) s.t.8>>>><>>>>: 8v; 0 � xv � 18v; d(v; BL) +Pu2U(1� xu)d(u; v) � ev + zv8v; d(v; BL) +Pu2U(1� xu)d(u; v) � ev � zvPv zv � 20�WPv xv + jBLj = n=2:Let (x�v; z�v) denote the optimal frational solution.(b) Use randomized rounding to obtain an integer vetor (yv): for every v independently,yv is set to 1 with probability x�v and to 0 with the omplementary probability.Together with (BL; BR), this de�nes a partition of V .() Repair the unbalane by moving from the side with the larger size to the other sidethe required number of verties with smallest weights.6. Output. Output the best of the bisetions thus onstruted.Figure 4: A linear programming algorithm for metri Minimum Bisetion.12
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(L,R)Figure 5: The partition used by the linear programming algorithm. ev is an estimate of d(v; L) =d(v; UL) + d(v; BL).Lemma 11 With probability at least 1� 1=100, we have: (x�) + 2�W � (y):Proof: We must bound above the sum S = PU zvav , where zv = x�v � yv ; and av = ev �d(v; BR) v 2 U . Note that the absolute values of the av are all bounded above by �2W=100.Sine their sum is at most W we have that the variane of S is bounded above �2W 2=100. UsingChebyhev's inequality we get that S is bounded above by �W=10 with probability 1� 1=100.Lemma 12 With probability at least 1� 1=10, we have:� j(y)� COST(y)j � 40�Wj(x�)� COST(x�)j � 40�WProof: We havejCOST(y)� (y)j == jXv yv [d(v; BL) +Xu (1� yu)d(u; v)℄�Xv yvev= jXv yv [Xu [(1� yu)� (1� x�u)℄d(u; v)℄+Xv yv[d(v; BL) +Xu (1� x�u)d(u; v)� ev ℄j� Xu jyu � x�ujwu +Xv yvz�v� 20�W + 20�W;from the LP onstraint and from the proof of Lemma 11, followed by Markov's inequality.Let (y0v) denote the bisetion output by the algorithm.Lemma 13 With probability at least 1� 1=100, we have COST(y0v) � COST(yv) + �W:13



Proof: Note that the yv have expetation x�v and variane bounded above by 1=4. The sumZ =PV yv has expetation n=2 and variane at most n=4. Chebyhev's Inequality gives us thatPr(jZ � n=2j � �n) � 1� 4�2 � 1� 1=100for suÆiently small �. The lemma follows now from the fat that the sum of the �n smallestweights does not exeed �W .To prove Theorem 2, it now suÆes to ombine Lemmas 13, 12, 11 and 10 so as to prove that thevalue of the partition output is at most OPT+O(�W ). By Lemma 2, this is at most (1+O(�))OPT.The running time follows by inspetion.Remarks.1. Exept for biased sampling, whih is spei� to the metri situation, the additional ideas usedhere to modify the algorithm from [AKK95℄ an be applied to the dense graphs setting aswell.2. Fousing on dense graphs, let us ompare the dense graph analog of our ombinatorial algo-rithm to the ombinatorial algorithm from [AKK95℄:� We sample O(1=�2) points in total, as opposed to 
(1= logn).� We modify the LP slightly by introduing n new variables zv , to make the onstraintsmore exible. This is neessary for the smaller sample to work.5 Metri MAX-CUT RevisitedWe note that both algorithms in setions 3 and 4 an be adapted to onstrut muh more eÆientalgorithms for the problem of Metri MAX-CUT [FK98℄.Theorem 3 There is a PTAS for Metri MAX-CUT with running time O(n2 � 2O(1=�2)).6 Extensions6.1 Extension to (k; n � k) Metri MIN-PARTITIONINGWe reall from setion 2.2 the following de�nition of the (k; n� k) Metri MIN-PARTITIONINGproblem: we are given a metri spae (V; d) on n points and an integer k < n. The goal is topartition V into two sets with sizes k and n� k so as to minimize the sum of distanes aross thatpartition.Theorem 4 The problem of (k; n� k) Metri MIN-PARTITIONING has a PTAS.Proof: There are two ases aording to the values of the ratio k=n and of the auray require-ment �.(i) Suppose �rst that k=n � �=2. Then we apply one of the above algorithms, say the seond one,with �0 = �2 and the neessary modi�ations onerning the sizes onstraints: we run two distint14



LPs, one with jLj = k and the other one with jLj = n � k. This ensures that in one of theseprograms we have WUL � WUR .(ii) Suppose now that k=n < �=2. We laim that in this ase a solution with approximation ratio1 + � is obtained just by separating the k points with smallest weights from the rest. In order toprove this laim, �x attention �rst on 2 verties x1; x2. Let wi be the weight of xi. For any othervertex x3 we have of ourse d(x1; x2) � d(x1; x3) + d(x3; x2)Summing over all hoies for x3, this gives:w1 + w2 � nd(x1; x2)Take now k verties x1; x2; :::xk. The preeding inequality gives(k � 1) kX1 wi � nXi<j d(xi; xj) (7)Let U � V . The value of the partition (U; V nU) isVal(U; V nU) = Xxi2U wi � 2 Xxi;xj2U d(xi; xj)Thus, OPT � minjSj=k0�Xxi2S wi � 2 Xxi;xj2S d(xi; xj)1A� �1� 2(k� 1)n � minjSj=k Xxi2Swi;the last by using equation (7).6.2 Extension to Size Constraint Metri MIN-PARTITIONINGLet K be a �xed integer. De�ne the K-ary metri MIN-PARTITIONING as follows. Given asequene of sizes (n1; n2; : : : ; nK) suh thatPi ni = n, and given a �nite metri spae (V; d), �nd apartition of V into K parts of sizes (n1; n2; : : : ; nK) so as to minimize the sum of distanes betweenparts, Xu;v in di�erent partsd(u; v):Theorem 5 There is a PTAS for K-ary metri MIN-PARTITIONING.Proof: We use the following extension of our linear programming algorithm for (k; n� k) MIN-PARTITIONING.1. If n is less than a ertain onstant, use exhaustive searh. Otherwise do the following.15



2. Let n1 + n2:::n` be the sizes smaller or equal to �2n=K and s = n1 + n2:::n`: Fill these partswith the set S of the s verties with smallest weights.3. Guess by exhaustive searh the ardinalities of the lasses with index � `+1 and with weight� �2W=K in an optimum solution. Assume by renaming that these ardinalities are the hlast lasses, say. Let r = nK�h+1 + nK�h+2 :::+ nK and �ll up these lasses arbitrarily withthe r remaining verties with smallest weights.4. In what follows, we solve approximately the metri MIN-PARTITIONING problem withonstrain n`+1; n`+2; :::; nK�h+1; nKWe rename the onstrain as (n1; n2; :::nK) with a new K (whih is equal to the old minus(`+ h).) We refer to this problem as the redued problem.5. Let B denote the verties with weight � �2W=100 and U = V nB.6. Take a random biased sample S of U of size s = O(1=�4). (Note the hange in the valueof s omparatively to its value of s in algorithm of �gure 2. This is due to the fat thatthe lower bound of OPT that we have for OPT is only 
(�W ) instead of 
(W ) for theMIN-BISECTION algorithm.7. Guess the partition (B1; B2; : : :BK) of B indued by the optimal solution. Let � =Pi 6=j d(Bi; Bj): For eah i 2 f1; : : : ; Kg, guess the intersetion Ti of S with the ith partof the optimal partition, of size ti. Also guess the approximate weight ~Wi of that part. Notethat the number of samples needed for a orret guess has order nO(1=�2).8. For eah v 2 U and for eah i, letev;i = minf ~Witi Xu2Ti d(u; v)wu + d(v; Bi); wvg:9. Let (x) = Pv2UPi xv;i(Pk 6=i ev;k +Pv;i(1 � xv;i)d(v; Bi) + �. Solve the following linearprogram: min (x)subjet to the onstraints8>>>>>><>>>>>>: 8v; i xv;i � 08v; Pi xv;i = 18v; i d(v; Bi) +Pu2U xu;id(u; v) � ev;i + zv;i8v; i zv;i � 0PiPv zv;i � 3�W8i; jBij+Pv2U xv;i = niLet (x�v;i; z�v;i) denote the optimal frational solution.10. Use randomized rounding to obtain an integer vetor (yv;i): for every v independently, hoosean i aording to the distribution de�ned by (x�v;i)i, and set that yv;i to 1 and the others to0. Together with (B1; : : : ; BK), this de�nes a partition P = C`+1; C`+2; :::CK�h+1; CK; CK+1of V 16



11. Ajust the sizes analogously to the last step of the linear programming MIN-BISECTIONalgorithm to get a partition P 0 with part sizes jC 0̀+1j = n`+1; jC 0̀+2j = n`+2; :::jC 0K+1 = nK+112. Complete P 0 by the parts de�ned in items 1 and 2 to get the output partition P".This ends the desription of the algorithm. We now prove the orretness.Let ` = #fi : ni � �n=Kg A key observation is the following. With a partition A1; A2; :::AK withpart sizes n1; n2; :::nK we assoiate the (n; n � n1) partition (A1; B) whith B = A2 [ A3::: [ AK .By Lemma 1 we have that the value of this partition is at leastW n1(n� n1)2((n� 1)(n� n1) + n1(n1 � 1)) :We distinguish between two ases (i) and (ii):Case (i) If n � n1 � �n, then the orretness follows from the orretness of the (k; n � k) MIN-PARTITIONING algorithm,Case (ii) In this ase, the above formula gives us that the value of the partition (A1; B) is at leastW (1� �):�n2((n2(1� �) + �2n2) � �W3We show below that our algorithm gives in this ase an additive approximation O(�2W ), whihby what as just been proved guarantees an approximation ratio 1 + O(�). Observe that the totalweight of the "small weight" lasses is at most �2W . So we an, with loss at most �2W , plae theother verties �rst and then plae the remaining verties anyway in the remaining free plaes. Letus now �x attention on the lasses with small sizes. Let C = C1 [ C2; :::[ C` be the union of the"small" lasses in some partition P .Now what is the loss that we su�er by plaing in C the verties with smallest weight? This problemis just the (k; n� k) problem where k � �n. By the proof of Theorem 3, the maximum loss in theobjetive funtion is bounded above by 2�2W . Adding to this loss the loss due to the plaementof the verties of the small weight parts, we get thatOPT �\OPT + d(S; V ) + 3�2W; (8)where\OPT is the optimum for the redued problem. Thus the optimum of the redued problemapproximates well the di�erene OPT�d(S; V ):The proof that our MIN-PARTITIONING linear programming algorithm provides a partition P 0whose value approximates well\OPT is similar to the proof of orretness of our linear programmingalgorithm for metri MIN-BISECTION. We only mention that having eah size at least �n=K inthe redued problem makes the rounding proedure suessfull with high probability. (This is infat the motivation for the speial treatment of the small sizes. The motivation for the speialtreatment of the lasses with small weight is that sampling is not eÆient in these lasses.)This ends the proof of Theorem 5. 17



6.3 Metri MIN-k-CUT and MIN-MULTIWAY-CUTWe onsider now another appliations towards the problems of MIN-k-CUT, and MIN-MULTIWAY-CUT (f. [SV91℄), [DJP+94℄) embedded in a metri spae.Metri MIN-k-CUT is the problem of partitioning a given �nite (V; d) spae metri into k partsas to minimize the sums of distanes between di�erent parts. Metri MIN-MULTIWAY-k-CUT isthe problem, given a �nite metri (V; d) and a set of k terminals T � V; to partition (V; d) as todisonnet every terminal from eah other and to minimize the sums fo distanes between di�erentparts.Setion 6.2 methods an be easily adopted to yield the followingTheorem 6 There are PTASs for Metri MIN-k-CUT and Metri MIN-MULTIWAY-k-CUT.7 Further researhAn interesting open problem is to improve running times of our PTASs as well as their sampleomplexity (also in the sense of random \sub-problem" sample omplexity of [AFKK02℄). OurLinear Program PTAS is based on an extension of the notion of a smooth polynomial program (f.[AKK95℄). An interesting open problem is how far suh an extension an be arried out. Anotherquestion would be to shed some light on the size-onstraint (in the general sense of this paper)MIN-SUM-K-CLUSTERING problems (f. [FKKR03℄).Aknowledgments.We thank Mark Jerrum, Uri Feige, Alan Frieze, and Ravi Kannan for stimulating disussions. Wethank also Yuval Peres for pointing out to us Lemma 6.Referenes[AFKK02℄ N. Alon, W. Fernandez de la Vega, R. Kannan, and M. Karpinski, Random Samplingand MAX-CSP Problems, Pro. 34th ACM STOC (2002), pp. 232-239.[AKK95℄ S. Arora, D. Karger, and M. Karpinski, Polynomial Time Approximation Shemes forDense Instanes of NP-Hard Problems, Pro. 27th STOC (1995), pp. 284-293; J. Comput.System Sienes 58 (1999) 193-210.[B62℄ G. Bennet,Probability inequalities for sums of independent random variables, Journal of theAmerian Statistial Assoiation 57 (1962) 33-45[BK01℄ P. Berman and M. Karpinski, Approximation Hardness of Bounded Degree MIN-CSP andMIN-BISECTION, ECCC Tehnial Report, TR01-026, 2001, also in Pro. 29th ICALP(2002), LNCS 2380, Springer, 2002, pp. 623-632.[DJP+94℄ E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour and M. Yannakakis, TheComplexity of Multiterminal Cuts, SIAM J. Comput 23 (1994), pp. 864-894.18
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