Approximation Schemes for Metric Minimum
Bisection and Partitioning

W. Fernandez de la Vega~ Marek Karpinskit Claire Kenyon?

Abstract. We design polynomial time approzimation schemes (PTASs) for Metric MIN-
BISECTION, i.e. dividing a given finite metric space into two halves so as to minimize the
sum of distances across the cut. The method extends to partitioning problems with arbitrary size
constraints. Our approximation schemes depend on a hybrid placement method and on a new
application of linearized quadratic programs.

1 Introduction

MIN-BISECTION consists in dividing a graph into two equal halves so as to minimize the number of
edges across the partition, and belongs to the most intriguing problems in the area of combinatorial
optimization and statistical physics [H97]. The reason is that we do not know at the moment how
to deal with minimization global constraints such as partitioning the sets of vertices into two
halves. Although there is currently no approximation hardness result for MIN-BISECTION (cf.
[BKO1, K02], see however [FF02]), the best known approximation factor is O(log? n) [FKO00].

Here we consider the metric version of that problem: given a finite set V' of points together with
a metric, we ask for a partition of V into two equal parts such that the sum of the distances from
the points of one part to the points of the other part is minimized. It is easy to see that metric
MIN-BISECTION is NP-hard even if restricted to distances 1 and 2 (cf. [FK98]). In this paper we
give a polynomial time approximation scheme (PTAS) for metric MIN-BISECTION and its k-ary
size constraint generalizations. (This answers the open problems of [FK98].)

We draw on two lines of research to develop our algorithm. One is the method of “exhaustive
sampling” for additive approximation for various optimization problems such as MAX-CUT or
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MAX-kSAT [AKK95, F96, GGR96, FK96, FK97, AFKIKO02]. The other connects to previous papers
on approximation algorithms for metric problems and weighted dense problems [FK98, FVIKO00].
The rest of the paper is organized as follows. In Section 2, we formulate some metric and sampling
lemmas. In Section 3, we construct our first PTAS for the metric MIN-BISECTION problem, which
is purely combinatorial and extends [GGR96]. In section 4, we use a non-smooth extension of a
linear programming relaxation of [AKK95]. Note that it is straightforward to adapt our algorithms
to the Maximum Bisection problem. In section 6, we give an extension to partitioning into two
parts with size constraints (k,n — k) (instead of (n/2,n/2) for bisection), and a further extension
to partitioning into a fixed number K of parts of prespecified sizes (nq,ng,...,nx).

In the rest of the paper, we use the following notations. (V,d) denotes a finite metric space.
For a subset U of V, and a vertex v € V, we write d(v,U) = > ;d(u,v). For A,B C V,
d(A,B) =3 caven d(u,v). Let wy, = d(u, V), Wg =3 oy 0y, and W = Wy

Our metric algorithms are partially inspired by existing algorithms for dense graphs, and can also
be adapted to the dense graphs setting. What are the differences between the metric case and the
dense graph case?

e In the metric setting, some vertices can have overwhelming importance (the ones which are
very far from the rest and have weight close to W), and so we need to set those vertices aside
and treat them separately. This cannot happen in dense graphs.

o In the metric setting, instead of doing a straightforward uniform sample, we need to perform a
biased sample, where we give higher probability to vertices with high weight; this is necessary
in order to get reliable estimates.

e In the metric setting, the estimate can be (with low probability) unacceptably large, thus we
need to cap it to w,. This does not happen in dense graphs.

e In the metric setting, the partition (V;) must be done at random, whereas in dense graphs,
one can take an arbitrary partition.

e In the metric setting the analysis no longer deals with sums of {0, 1} variables (which describe
the presence or absence of an edge in a graph); instead the terms in the sums can be quite large
(since they describe distances); this makes the analysis of the variance much more delicate.

e Finally, in the metric setting our lower bound on OPT means that an additive error of O(elV)
implies a PTAS for the problem; that is not true for dense graphs.

2 Preliminary Results

2.1 First attempt

One natural approach is to use random (suitably biased) sampling to estimate, for each point v,
the sum of distances from v to each side of the optimal bisection, d(v, L) and d(v, R). For points
which have about the same sum of distances to either side of the partition, it would intuitively
seem that it does not matter on which side they are placed.

Unfortunately, this intuition is misleading, as the example in Figure 1 shows: we have four sets of
vertices, A, B, (', D, each containing n vertices. All distances inside A, inside D, between A and
B, and between C' and D are equal to 1. All other distances are equal to 2.
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Figure 1: An example showing why, even if we have a reliable estimate of d(v, L) and of d(v, R) for

every v, that is not sufficient to construct a near-optimal partition in the natural manner.

It is not hard to check that on that input, the minimum bisection consists of the partition (L =
AUC,R= BUD) and has value OPT = 6n?.

For v € B, d(v, L) = 3n while d(v, R) = 4n — 2. Similarly for v € C'. Thus an estimator will easily
be able to classify correctly the vertices of B and of C'.

Notice that for v € A, d(v,L) = 3n — 1 ~ 3n = d(v, R). Similarly, for v € D, d(v,R) =3n — 1 ~
3n =d(v, L). Hence our sampling and estimating approach will consider all of these vertices to be
equivalent and therefore place half of them on the left side and half of them on the right side, at
random. This creates the bisection on the right hand side of Figure 1. The value of that bisection
is: 13n%/2, which is a constant factor more than OPT.

This shows that, even if a vertex u is such that d(u, L) ~ d(u, R), it still matters where u goes.

2.2 Metric lemmas

We now state lower bounds on the value of the optimal solution in the metric setting. First, an
elementary metric lemma.

Proposition 1 ([FKKRO03]) Let X,Y,Z CV. Then |Z|d(X,Y) < |X|d(Y,Z)+ |Y|d(Z, X).

In the (k,n — k) Metric MIN-PARTITIONING problem, we are given a metric space (V,d) on n
points and an integer k < n. The goal is to partition V into two sets of sizes k and n — k so as
to minimize the sum of distances across the partition. (Thus, MIN-BISECTION is the particular
case of k =n/2.)

Lemma 1 The optimal value of (k,n — k) Metric MIN-PARTITIONING satisfies

OPT > ZV —
200+ 2+ 550)

Proof: Apply Proposition 1lto X =Y =L, Z=Randto X =Y =R, Z =L to get

d(L,L) < 2-2.d(L,R)
{d(RvR) < 2%7Rd(L, R)




Now, W =d(L,L)+ d(R, R)+2d(L, R), and since OPT = d(L, R), we obtain the statement of the
Lemma. [ |
Lemma 1 extends to Metric MIN-BISECTION as follows, simply by setting & = n/2. It implies that,
in order to get a PTAS for metric MIN-BISECTION, it suffices to obtain an additive approximation
to within eW.

Lemma 2 The optimal value of Metric MIN-BISECTION satisfies OPT > W/6.

Let K be a fixed integer. Define the K-ary metric MIN-PARTITIONING problem as follows.
Given a sequence of sizes (ny,ng,...,nk) such that >, n; = n, and given a finite metric space
(V,d), find a partition of V into K parts of sizes (n1,n2,...,nx) so as to minimize the sum of
distances between parts,

Z d(u,v).

ww in different parts

Lemma 3 Let { be such that (ny + --- 4 n¢) < n/2. The optimal value of K-ary Metric MIN-
PARTITIONING for sizes (ny,na,...,ni) satisfies

opT > W (it - +n)
- 4 n

Proof: Apply Lemma 1 to (ny+---+ng,n—ny —---n — N{) Metric MIN-PARTITIONING. m
Finally, the following metric Lemma will be useful in our analyses.

Lemma 4 ([FK98]) d(v,u) < dw,w,/W for every u,v.

2.3 Probabilistic lemmas
We recall, in the Lemma below, an inequality of Hoeffding (see also [HM98], Theorem 2.5, page
202).

Lemma 5 ([H63]) Let (Y;) be a sequence of independent random variables such that 0 <'Y; < b;
for every i. Let Z =% ..., Yi. Then, for any a > 0, we have

Pr(|Z — EZ| > a) < 2¢72°/(Z0),

Lemma 6 Let (Y;) be a sequence of independent random variables and Z =5 .., Yi. Then:

B(Z-EZ) <[> o).

Proof: E(|Z-EZ)* < E((Z-EZ)*)=0%Z)=Y,0%(Y)). |

For U C V, the following lemma shows how to estimate d(v,U) from a small biased sample of U.

Lemma 7 (Metric Sampling) Let ¢ be given and U C V. Let T be a random sample
{uy, ug, ...ur} of U with replacement, where each w; is obtained by picking a point w € U with
probability w, /Wyr. Consider a fived vertex v € V.. Then:

.

d(v,U) - @ 3 dv, v)

Wy,

< ed(v,U) ) >1-— 2et’ /8
uweT



B, 0) - 52 5 ) < Zoage,v)
eT U

e

Proof: Consider the random variable Z =} rd(v,u)/w,. We have:

where the Y;s are i.i.d.r.v.’s with

d(v, u) Wy,
P = — = —.
Yue U, Pr ( " ) Wo

Y; has average value d(v,U)/Wy and maximum possible value at most b; = 4d(v,U)/Wy (by
Lemma 4 applied to U U{v}). Applying Lemma 5 and scaling by W/t gives the first part of the
lemma. The second part follows from Lemma 6, observing that any variable Y; with range [0, b;]
must have variance at most b?/4. ]

Lemma 8 Let s = 3/¢? be given and U C V. Let T be a random sample {u1, ua, ...us} of U with
replacement, where each wu; is obtained by picking a point w € U with probability w,/Wy. and
consider a partition of U = (Ur,,Ur). Assume that Wy, > Wy, Then, with probability at least
1 — ¢, we have |[SNUL| > 1/€%.

Proof: Note that the probability that any fixed point of S falls in Uy, is at least 1/2 and that these
events are independent. Thus, the probability distribution of ¢ dominates the Binomial distribution
B(s,1/2). The assertion of the lemma then follows from Lemma 5. |

We will use the Metric Sampling Lemma jointly with exhaustive sampling. In our algorithms, the
target Ur, will be unknown; we will take a random biased sample S of a set which is larger than
Ur, and try every possible subset T of S, so that, when we happen to try T'= 5 N Up, our subset
T will be a biased sample of Uy,.

3 A Combinatorial PTAS

In this section we design and analyze a combinatorial PTAS for metric MIN-BISECTION. The
method builds on the known metric sampling of [FK98] and hybrid placement techniques of
[GGRI6].

The algorithm can be found in Figure 2. It takes as input a finite metric space (V,d). It makes
a series of guesses and returns, when all these guesses are correct, a bisection of V whose cost is,
with probability at least 3/4, at most (1 +O(€))OPT. The algorithm assumes that n is larger than
some constant value, since for » small enough, one can just solve the problem by exhaustive search

on V.

Theorem 1 With probability at least 3/4, the algorithm of Figure 2 computes a (1+O(€)) approz-
imation to Metric MIN-BISECTION. Its running time is n® - 2001/



1. Large weight vertices. Let B denote the set of vertices with weight > ¢2W/10 and let
U=V\B.

2. Sampling. Let s = 3/¢2. Take a random sample S of U of size s obtained by independently
drawing s points uq, ug, ...us according to: Pr(u; = u) = w, /Wy for u € U.

3. Exhaustive search. Let Iy = (L,R) be an (unknown) near-optimal bisection. By
exhaustive search, guess By = BN L and Bp=BNR. Let Uy =UNLand Up=UNR
(Ur, and Ug are not known). Assume that Wi, > Wy,,. By exhaustive search, guess

T =5SNUg. Let t = |T|. Moreover, by exhaustive search, guess W;L, the power of (1+¢)
which is closest to Wy, .

4. Estimation.
W,

Vv e V, let e, = min{ ;

3 d(z)’uu) +d(v, B),w,}. (1)

5. Partition. Let { = 1/¢ and define a partition Vi, Vs, ..., Vy of U by placing each vertex in a
V; chosen uniformly at random (possibly moving one vertex from each V; to B if necessary
so that the cardinality of V; is even).

6. Construction. Let Ag = Ly and By = Rp.
For each j =1,2,...,(, do the following:

(a) Estimation. For each v € V}, let

fo=> d(v, Ap) + K_(i%l)e (2)

k<j

b(v) = fo — (w, — f,)-

(b) Construct a bisection (A;, B;) of V; by placing the |V;|/2 vertices with smallest value
of b(v) in B; and placing the other |V;|/2 vertices in A;.

Let A = U]‘AJ‘ and B = U]‘B]‘.

7. Output. Output the best of the bisections (A, B) thus constructed.

Figure 2: A combinatorial algorithm for metric Minimum Bisection.
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Figure 3: The hybrid partitions used by the combinatorial algorithm. f, is an estimate of
d(v, Left(P;)) for v € V;.

3.1 A Preliminary Property
We start with the following Lemma.

Lemma 9 Consider the partition constructed by the algorithm, (B, V1, ..., V). Consider the min-
imum partition of V, subject to the further constraint that it must be a bisection of every V;. Then

its expected value is at most OPT+ W\/{/n.

Proof: The optimal bisection (L*, R*) induces a partition (L%, R¥) of V;. For each j,if |[LY[ > |R}],
we move (|L7| — |R7[)/2 random vertices from L7 to R} (or vice-versa if [L7| < [R}|). This defines
a bisection (L, R) satisfying the conditions of the lemma.

Using X, = I(u € Vj;), the cardinality of L7 can be written as }_ .y« Xy, and Lemma 6 shows that

B(L; = 5IU1) < v/n/t.

Similarly for R}. Thus the expected number of points moved is v{n.
The change in value when going from (L*, R*) to (L, R) is at most the weight of the points which
are moved. The points moved have random weights, hence the expected weight of the points moved

is at most W+/{/n. ]

3.2 Proof of Theorem 1

The first part of the analysis is purely deterministic and, except for the last inequality, quite similar
to the analysis in [GGR96].



3.2.1 Fact 1: Deterministic analysis
Let P; be the following hybrid bisection:
Pi=(JA;ul L JBiju | Ry) = (Left(P;), Right( ;).
k<j k> k<j k>j
The output is F:
COST(P;) — COST(Py) < ) [COST(F;) — COST(P;_1)].
1<5<¢

Consider the vertices which are classified differently in P;_; and in P;: there is a subset X =
{z1,...,2}of L; and asubset Y = {y,...,yn} of R;, of the same cardinality, such that A; = L, —
X+Y and B; = R;—Y +X. For each vertex u, let b(u) = d(u, Left(P;_1)) — (w, —d(u, Left(P;_1))).
We have:

COST(P;) = COST(P;1) < > bl = > blya)+2 ) dlz,y)

zi€X 4 XxY
<) (0w = b)) +2d(V;, Vi),
1<i<m

Now, here is the central part of the proof:

o~ o~ o~ o~ o~ o~

b(x:) = b(yi) = (b(wi) = b(xi)) + (b(wi) — b(yi)) + (b(yi) — blyi)) < (b(2s) = b(xi)) + (b(yi) — b(y:)),

since ; is placed to the right and y; is placed to the left, and so by definition of the algorithm it
must be that b(z;) < b(y;). Thus

COST(P;) = COST(P;1) < Y |b(u w)| + 2d(V;, V) (3)
wev,
<2y |;d<u7Lk> U D B 20005,V )
Now, o
|];duLk (i_l)(eu—d(u,BL)ﬂg
| gd u, L) — (‘2 — 1)d(u, Up)| + #M(u, Ur) — (ey — d(u, B))|. (5)

We must now use probabilistic tools to analyze this equation.

3.2.2 Part 2: Probabilistic analysis

Let us analyze the first term of the right hand side of Equation 5.

Fix v € Vj and let Z, = >, d(v, Lg). The expectation of Z, is d(v,UL)(ell — j+ 1)/ell, and so
we must analyze |7, — FZ,|. We have: Z, = ZuEUL d(v,u)X,, where the X, are i.i.d.r.v.’s, with
X, equal to 1 with probability (¢ — (j — 1))/¢ and to 0 with the complementary probability.



We split Z, into two parts, Z, = A, + B, with
{ Ay, = Zu:d(u,v)gwa/ﬁd(u7 0) Xy
By = Y d(uysune/ym 4t ) X
The first of these two parts is straightforward: applying Lemma 6 to A,, with b; = w,e/\/n, yields
E(|A, — FA)|) < ew, /2.

For the second part, from Proposition 1 for X ={u},Y ={v}, Z =V, we get nd(u,v) < wy + wy,
so d(u,v) > wye//n implies that w, > (e/n — L)w,. Thus d(u,v) < (wy, + w,)/n < 2w, /n.
Applying Lemma 6 to B,, with b, = 2w, /n, now yields

2
E(|B, — EB,|) < V2 i
n

Since Y w, < W and maxw, < W, we have Y w2 < W2, and so

E(|B, - EB)) < 2.
n

Summing gives

qu_l_GW
2 n

E(|Zv - EZUD S

As for the second term of Equation 5, we first let

N % d(v,u
el = min{ tULZ ( )—I—d(v,BL),wU}.

uweT Wu
From Lemma 7 applied to Ur, we have:

E(d(0,Ur) — (¢}, — d(u, BL))]) < %dm Ur) < %w

Since our estimate for Wy, is within a (1 + €) factor of the actual value, we moreover have:
E(|€], — ey]) < ew,.

The rest of the proof is easy and entirely deterministic again.

3.2.3 Part 3: Deterministic analysis
Plugging these bounds into Equation 4, we obtain:
€Wy, w

2
E(COST(P)) — COST(P;—1)) <2 3 _( y e Tt cw,) 4+ 2E(d(V;, V;)).
u€Vj

Summing over j, we get:

2
E(COST(P,) — COST(Py)) < Q[gGW +

Ak 2E(Y d(V;, V).

J



The last term is easy to deal with: its expectation is bounded by W/(.
From Lemma 8, ¢ > 1/¢? with probability at least 1 — ¢, and then, with Lemma 9 we obtain:

1 l
E(COST(F;) — OPT) < 2W(5e + 7T \/;].
Using Markov’s inequality, remembering that ¢ = 1/¢ and comparing with the lower bound from
Lemma 2 then concludes the proof of the Theorem.
|

Remarks.

1. It is not necessary to take the number of parts V; exactly { = 1/e. The algorithm could be
adapted to work for any number £ € [1/¢, ne?]. Indeed, going back to previous work on dense
graphs, one may have been intrigued to notice that [GGR96] used a partition of the vertices
into £ = 1/¢ parts, while [F96] used a partition of the vertices into £ = ne? parts. Indeed,
we now see from the above analysis that, with our algorithm, the number of parts is largely
irrelevant: this may serve as an explanation. Perhaps the algorithm is nicer to think about
in the case when { = ne?, since it is then very close to a natural greedy algorithm: take the
vertices by groups of 1/¢? at a time, and bisect each group in the best possible way, taking
into account the choices made so far (and adding an estimate to take into account the vertices
not yet considered.)

2. The running time could be improved in a manner similar to [GGR96]: first, in Equation 2,
instead of calculating d(v, A;) exactly, we could estimate it via sampling, thus gaining a
factor of n. Second, instead of running the algorithm on the whole graph, we could run it on
a (larger) sample of the point set.

3. Except for biased sampling, which is specific to the metric situation, the additional ideas used
here to modify the hybrid placement technique from [GGR96] can be applied to the dense
graphs setting as well. We conjecture that in dense graphs, it might be possible to use ideas
from our combinatorial algorithm so as to improve the query complexity from [GGR96] by a

factor of O(1/e).

4. Focusing on the dense graphs setting, let us compare the dense graph analog of our combi-
natorial algorithm to the combinatorial algorithm from [GGR96]:

e We sample O(1/€?) points in total, as opposed to Q(1/€In(1/e)).

e The partition (V;) is random instead of arbitrary (necessary for this smaller sampling to
work).

e Our estimator is slightly different, since we do not re-sample the hybrid partitions, but
instead use an estimator which combines the distances to vertices already classified with
a scaled version of the original estimate. This is necessary for the smaller sampling to
work.

e For partitioning into two parts, we only use sampling to estimate for the distance from
v to the left side of the partition; since the sum of its distances to the left and to the
right side is equal to its degree, this immediately implies an estimate for the distance
from v to the right side of the partition. (This is a detail).

10



e In the analysis, instead of separating the point set into “normal” and “exceptional”
vertices, we just use the variance directly to compute the expected deviation from the
mean. (It would however still have been possible to prove the result with a slightly worse
constant by using a separation into normal and exceptional vertices).

4 A PTAS Based on Linear Programming

In this part we combine exhaustive search on the points with highest weights, biased sampling,
and give a new non-smooth extension of the linearization approach of [AKK95]. In addition, we
modify the LP approach slightly (by introducing n new variables z,) in such a way that one can
compute estimates by taking samples of size O(1) only (instead of O(logn)). (We believe that this
improvement could also be applied to the algorithms of [AKK95].)

We represent a bipartition (S,7") of V' by the vector (2,) where 2, = 0if v € S, and 2, = 1 if
v € T. We denote by (L, R) an optimum bisection. For each vertex v, e, will be an estimator for
d(v, L).

If n is smaller than some constant depending on € (see proof of lemma 13), we solve by exhaustive
search. Otherwise, we run the algorithm presented on Figure 4 at the end of the paper. Throught
this section we will refer to the notation used in the description of this algorithm.

Theorem 2 With probability at least 3/4, the algorithm in Figure 4 computes a (14 O(€)) approz-
imation to metric MIN-BISECTION. Its running time is LP(n)2°0/<) where LP(n) denotes the
running time to solve a linear program with O(n) underlying variables and constraints.

4.1 Proof of Theorem 2

Let (z,) be the optimal bisection and (2}, ) the optimal fractional solution of the linear program.
Lemma 10 With probability at least 89/100, the optimal bisection (z,) is feasible, and moreover

OPT = COST(z,) > COST(2) — 20€W.

Proof: Let §, be the difference between e, and its expectation. By Lemma 7, we have that

E (%:m) < 2\/;/1/.

Using Lemma 8, we can assume that ¢ > 1/¢2, and use Markov’s Inequality to get that

Pr (Z |6,] < QOeW) > 9/10

U

for sufficiently small e. This shows the feasibility of (x,) with probability 89/100 and proves also
the second part of the lemma since COST (z,,) differs from COST(2}) by at most Y ;;|d,]. |
Let (y,) denote the partition obtained by the randomized rounding.

11



1. Large weight vertices. Let B denote the set of vertices v with w, > ¢21¥/100, and let
U=V\B.

2. Sampling. Let s = 3/¢. Take a random sample S of U of size s obtained by independently
drawing s points uq, ug, ...us according to: Pr(u; = u) = w, /Wy for u € U.

3. Exhaustive search. Let (L, R) be the (unknown) optimal bisection. By exhaustive
search, guess B, = BN L and B = BNR. Let A=3%"p p d(u,v). Let U, =UNL
and Ur = UN R (Ur, and Ug are not known). Assume that Wy, > Wyr,,. By exhaustive
search, guess T'= SN Up. Let t = |T|. Moreover, by exhaustive search, guess W;L, the
power of (1 + €) which is closest to Wy, .

4. Estimation.

W, ~— d
VoeV, lete, = min{VVtUL Z (v, u) + d(v, Br,), wy}. (6)

w
ueT v

5. Construction.

(a) Let c(z) = > cpy Tveut) e (1—2,)d(v, BR)+A. Solve the following linear program
LP(n) with variables z, and z,, v € U,

Minimize ¢(z) s.t.

Yo, 0<z, < 1

Vo, d(v, Bp)+ 3 co(l =2 )d(u,v) < e, + 2z,

Yo, d(v,Br)+ > el =z )d(u,v) > e, — 2,
Doy Zu < 20eW
> %y +|Br = n/2.

Let (27, z) denote the optimal fractional solution.

(b) Use randomized rounding to obtain an integer vector (y,): for every v independently,
Yy is set to 1 with probability 2} and to 0 with the complementary probability.
Together with (Bp, Br), this defines a partition of V.

(c) Repair the unbalance by moving from the side with the larger size to the other side
the required number of vertices with smallest weights.

6. Output. Output the best of the bisections thus constructed.

Figure 4: A linear programming algorithm for metric Minimum Bisection.
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(L.R)

Figure 5: The partition used by the linear programming algorithm. e, is an estimate of d(v, L) =
d(v, Ur) + d(v, Br).
Lemma 11 With probability at least 1 — 1/100, we have: c(a*) + 2eW > ¢(y).

Proof: = We must bound above the sum S = ) ;; z,a,, where 2z, = 23 — y,, and a, = €, —
d(v, Bg) v € U. Note that the absolute values of the a, are all bounded above by ¢?1¥/100.
Since their sum is at most W we have that the variance of S is bounded above €2W?2/100. Using
Chebychev’s inequality we get that S is bounded above by ¢WW/10 with probability 1 — 1/100. =

Lemma 12 With probability at least 1 — 1/10, we have:

[ - costyl < anay
le(z*) — COST (2*)| < 40eW

Proof: We have
|COST(y) — c(y)| =
= | Zyv[d(vaL) —I_Z(l - yu)d(uvv)]_ Zyvev

= D wD I =) = (L= 2)ld(u, o))+ > puld(v, Br) + Y (1= a%)d(u,v) - &,]]

U

S Z |yu - $Z|wu + Zyvzz
u U

< 20eW 4 20eW,

from the LP constraint and from the proof of Lemma 11, followed by Markov’s inequality. [ |
Let (y.) denote the bisection output by the algorithm.

Lemma 13 With probability at least 1 — 1/100, we have COST (y,) < COST(y,) + eW.

13



Proof: Note that the y, have expectation z} and variance bounded above by 1/4. The sum
Z =)y Yy has expectation n/2 and variance at most n/4. Chebychev’s Inequality gives us that

Pr(|Z —n/2| < en) > 1 —4e* > 1 —1/100

for sufficiently small €. The lemma follows now from the fact that the sum of the en smallest
weights does not exceed elV. |
To prove Theorem 2, it now suffices to combine Lemmas 13, 12, 11 and 10 so as to prove that the
value of the partition output is at most OPT+O(eW). By Lemma 2, this is at most (14+O(¢))OPT.
The running time follows by inspection. [ |

Remarks.

1. Except for biased sampling, which is specific to the metric situation, the additional ideas used
here to modify the algorithm from [AKK95] can be applied to the dense graphs setting as
well.

2. Focusing on dense graphs, let us compare the dense graph analog of our combinatorial algo-
rithm to the combinatorial algorithm from [AKK95]:

e We sample O(1/€?) points in total, as opposed to Q(1/logn).

e We modify the LP slightly by introducing n new variables z,, to make the constraints
more flexible. This is necessary for the smaller sample to work.

5 Metric MAX-CUT Revisited

We note that both algorithms in sections 3 and 4 can be adapted to construct much more efficient
algorithms for the problem of Metric MAX-CUT [FK98].

Theorem 3 There is a PTAS for Metric MAX-CUT with running time O(n? - 200/)),

6 Extensions

6.1 Extension to (k,n — k) Metric MIN-PARTITIONING

We recall from section 2.2 the following definition of the (k,n — k) Metric MIN-PARTITIONING
problem: we are given a metric space (V,d) on n points and an integer k& < n. The goal is to
partition V into two sets with sizes k and n — k so as to minimize the sum of distances across that
partition.

Theorem 4 The problem of (k,n — k) Metric MIN-PARTITIONING has a PTAS.

Proof: There are two cases according to the values of the ratio k/n and of the accuracy require-
ment e.

(i) Suppose first that k/n > €/2. Then we apply one of the above algorithms, say the second one,
with ¢ = €% and the necessary modifications concerning the sizes constraints: we run two distinct

14



LPs, one with |L| = k and the other one with |L| = n — k. This ensures that in one of these
programs we have Wy, > Wy,.

(i) Suppose now that k/n < €¢/2. We claim that in this case a solution with approximation ratio
1 + € is obtained just by separating the k£ points with smallest weights from the rest. In order to
prove this claim, fix attention first on 2 vertices zy, 5. Let w; be the weight of z;. For any other
vertex z3 we have of course

d(z1,29) < d(xy,23) + d(23, 22)

Summing over all choices for 3, this gives:
wy + wy > nd(zq, z2)
Take now k vertices x1, 2, ...x;. The preceding inequality gives
k
(k — 1)21{)2 > nZd(xi,xj) (7)
1 i<j

Let U C V. The value of the partition (U, V\U) is

Val(U,V\U) = Y wi =2 > d(wi, ;)

z, €U oy €U
Thus,
OPT > min Z w; — 2 Z d(z;, z;)
|S|=k T, €S ;€S
2(k—1
> (1— ( )> min Zw“
n |Sl=k =,
the last by using equation (7). |

6.2 Extension to Size Constraint Metric MIN-PARTITIONING
Let K be a fixed integer. Define the K-ary metric MIN-PARTITIONING as follows. Given a

sequence of sizes (11, ng,...,nx) such that > n; = n, and given a finite metric space (V,d), find a
partition of V' into K parts of sizes (n1, ng,...,nk) so as to minimize the sum of distances between
parts,

Z d(u,v).

ww in different parts

Theorem 5 There is a PTAS for K-ary metric MIN-PARTITIONING.

Proof: We use the following extension of our linear programming algorithm for (k, n — k) MIN-

PARTITIONING.

1. If n is less than a certain constant, use exhaustive search. Otherwise do the following.
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10.

. Let nq + na...ng be the sizes smaller or equal to ezn/K and s = nq + ng...ne. Fill these parts

with the set S of the s vertices with smallest weights.

. Guess by exhaustive search the cardinalities of the classes with index > £4 1 and with weight

< W/K in an optimum solution. Assume by renaming that these cardinalities are the A
last classes, say. Let r = ng_p41 + Rr—pt2... + nx and fill up these classes arbitrarily with
the r remaining vertices with smallest weights.

. In what follows, we solve approximately the metric MIN-PARTITIONING problem with

constrain

T4 T4 25 ooy TK—h41, MK
We rename the constrain as (n, ng,...nx) with a new K (which is equal to the old minus
({+ h).) We refer to this problem as the reduced problem.

. Let B denote the vertices with weight > €2W/100 and U =V \ B.

Take a random biased sample S of U of size s = O(1/€*). (Note the change in the value
of s comparatively to its value of s in algorithm of figure 2. This is due to the fact that
the lower bound of OPT that we have for OPT is only Q(elV) instead of Q(W) for the
MIN-BISECTION algorithm.

Guess the partition (B, Bz,...Bg) of B induced by the optimal solution. Let A =
> iz; d(Bi, Bj). For each @ € {1,..., K}, guess the intersection 7; of S with the ith part

of the optimal partition, of size t;. Also guess the approximate weight W; of that part. Note

that the number of samples needed for a correct guess has order nO/e),

. For each v € U and for each 1, let

7. p
€vi = min{—t E 7(% v) + d(v, B;), w, }.
7 Wy,
ueT;

cLet c(@) = 30 ep 20 i (D gy ok + 22, (1 — u)d(v, Bi) + A. Solve the following linear

program:
min ¢(z)
subject to the constraints
Vo, iz, > 0
Yo, >y = 1
Vo, i d(v, By) + > cu Tuid(u,v) < i+ Zui
Vo, i 2y >0
D0 Dy Fug < 3W
Vi7 |B2| + ZueU Ly,i - T

Let (27 ;, 2y ;) denote the optimal fractional solution.

Use randomized rounding to obtain an integer vector (y,;): for every v independently, choose
an 7 according to the distribution defined by (27 ;);, and set that y,; to 1 and the others to
0. Together with (By,..., Bx), this defines a partition P = Cyi1,Cry2, ...Ck—pt1,Ck, Crc41
of V
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11. Ajust the sizes analogously to the last step of the linear programming MIN-BISECTION
algorithm to get a partition P’ with part sizes |Cj, [ = nep1, [C),| = nega, | Cley ) = nEt

12. Complete P’ by the parts defined in items 1 and 2 to get the output partition P”.

This ends the description of the algorithm. We now prove the correctness.

Let { = #{i:n; < en/K} A key observation is the following. With a partition Ay, As,...Ax with
part sizes nq, ng,...nx we associate the (n,n — ny) partition (A, B) whith B = A, U As... U Ag.
By Lemma 1 we have that the value of this partition is at least

ni(n —ny)

WQ((n —1)(n—mny)+ni(n — 1))

We distinguish between two cases (i) and (ii):
Case (i) If n — ny < en, then the correctness follows from the correctness of the (k,n — k) MIN-
PARTITIONING algorithm,

Case (ii) In this case, the above formula gives us that the value of the partition (A, B) is at least

W(l—¢€).en 314
=+ end) = 3

We show below that our algorithm gives in this case an additive approximation O(e?W), which
by what as just been proved guarantees an approximation ratio 1 4+ O(e€). Observe that the total
weight of the ”small weight” classes is at most ¢2IW. So we can, with loss at most ¢2W, place the
other vertices first and then place the remaining vertices anyway in the remaining free places. Let
us now fix attention on the classes with small sizes. Let C' = C'; Uy, ...U (% be the union of the
”small” classes in some partition P.

Now what is the loss that we suffer by placing in C the vertices with smallest weight? This problem
is just the (k,n — k) problem where k& < en. By the proof of Theorem 3, the maximum loss in the
objective function is bounded above by 2¢2W . Adding to this loss the loss due to the placement
of the vertices of the small weight parts, we get that

OPT < OPT + d(S, V) + 3&W, (8)

where OPT is the optimum for the reduced problem. Thus the optimum of the reduced problem
approximates well the difference OPT—d(S, V).

The proof that our MIN-PARTITIONING linear programming algorithm provides a partition P’
whose value approximates well OPT is similar to the proof of correctness of our linear programming
algorithm for metric MIN-BISECTION. We only mention that having each size at least en/K in
the reduced problem makes the rounding procedure successfull with high probability. (This is in
fact the motivation for the special treatment of the small sizes. The motivation for the special
treatment of the classes with small weight is that sampling is not efficient in these classes.)

This ends the proof of Theorem 5.
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6.3 Metric MIN-k-CUT and MIN-MULTIWAY-CUT

We consider now another applications towards the problems of MIN-£-CUT, and MIN-
MULTIWAY-CUT (cf. [SV9I1]), [DJP+94]) embedded in a metric space.

Metric MIN-k-CUT is the problem of partitioning a given finite (V,d) space metric into k parts
as to minimize the sums of distances between different parts. Metric MIN-MULTIWAY-k-CUT is
the problem, given a finite metric (V,d) and a set of k terminals 7" C V|, to partition (V,d) as to
disconnect every terminal from each other and to minimize the sums fo distances between different
parts.

Section 6.2 methods can be easily adopted to yield the following

Theorem 6 There are PTASs for Metric MIN-k-CUT and Metric MIN-MULTIWAY-k-CUT.

7 Further research

An interesting open problem is to improve running times of our PTASs as well as their sample
complexity (also in the sense of random “sub-problem” sample complexity of [AFKKO02]). Our
Linear Program PTAS is based on an extension of the notion of a smooth polynomial program (cf.
[AKK95]). An interesting open problem is how far such an extension can be carried out. Another
question would be to shed some light on the size-constraint (in the general sense of this paper)

MIN-SUM-K-CLUSTERING problems (cf. [FKKRO03]).
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