
Approximation S
hemes for Metri
 MinimumBise
tion and PartitioningW. Fernandez de la Vega� Marek Karpinskiy Claire KenyonzAbstra
t. We design polynomial time approximation s
hemes (PTASs) for Metri
 MIN-BISECTION, i.e. dividing a given �nite metri
 spa
e into two halves so as to minimize thesum of distan
es a
ross the 
ut. The method extends to partitioning problems with arbitrary size
onstraints. Our approximation s
hemes depend on a hybrid pla
ement method and on a newappli
ation of linearized quadrati
 programs.1 Introdu
tionMIN-BISECTION 
onsists in dividing a graph into two equal halves so as to minimize the number ofedges a
ross the partition, and belongs to the most intriguing problems in the area of 
ombinatorialoptimization and statisti
al physi
s [H97℄. The reason is that we do not know at the moment howto deal with minimization global 
onstraints su
h as partitioning the sets of verti
es into twohalves. Although there is 
urrently no approximation hardness result for MIN-BISECTION (
f.[BK01, K02℄, see however [F02℄), the best known approximation fa
tor is O(log2 n) [FK00℄.Here we 
onsider the metri
 version of that problem: given a �nite set V of points together witha metri
, we ask for a partition of V into two equal parts su
h that the sum of the distan
es fromthe points of one part to the points of the other part is minimized. It is easy to see that metri
MIN-BISECTION is NP-hard even if restri
ted to distan
es 1 and 2 (
f. [FK98℄). In this paper wegive a polynomial time approximation s
heme (PTAS) for metri
 MIN-BISECTION and its k-arysize 
onstraint generalizations. (This answers the open problems of [FK98℄.)We draw on two lines of resear
h to develop our algorithm. One is the method of \exhaustivesampling" for additive approximation for various optimization problems su
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MAX-kSAT [AKK95, F96, GGR96, FK96, FK97, AFKK02℄. The other 
onne
ts to previous paperson approximation algorithms for metri
 problems and weighted dense problems [FK98, FVK00℄.The rest of the paper is organized as follows. In Se
tion 2, we formulate some metri
 and samplinglemmas. In Se
tion 3, we 
onstru
t our �rst PTAS for the metri
 MIN-BISECTION problem, whi
his purely 
ombinatorial and extends [GGR96℄. In se
tion 4, we use a non-smooth extension of alinear programming relaxation of [AKK95℄. Note that it is straightforward to adapt our algorithmsto the Maximum Bise
tion problem. In se
tion 6, we give an extension to partitioning into twoparts with size 
onstraints (k; n� k) (instead of (n=2; n=2) for bise
tion), and a further extensionto partitioning into a �xed number K of parts of prespe
i�ed sizes (n1; n2; : : : ; nK).In the rest of the paper, we use the following notations. (V; d) denotes a �nite metri
 spa
e.For a subset U of V , and a vertex v 2 V , we write d(v; U) = Pu2U d(u; v). For A;B � V ,d(A;B) =Pu2A;v2B d(u; v). Let wu = d(u; V ), WU =Pu2U wu, and W = WV .Our metri
 algorithms are partially inspired by existing algorithms for dense graphs, and 
an alsobe adapted to the dense graphs setting. What are the di�eren
es between the metri
 
ase and thedense graph 
ase?� In the metri
 setting, some verti
es 
an have overwhelming importan
e (the ones whi
h arevery far from the rest and have weight 
lose to W ), and so we need to set those verti
es asideand treat them separately. This 
annot happen in dense graphs.� In the metri
 setting, instead of doing a straightforward uniform sample, we need to perform abiased sample, where we give higher probability to verti
es with high weight; this is ne
essaryin order to get reliable estimates.� In the metri
 setting, the estimate 
an be (with low probability) una

eptably large, thus weneed to 
ap it to wv. This does not happen in dense graphs.� In the metri
 setting, the partition (Vj) must be done at random, whereas in dense graphs,one 
an take an arbitrary partition.� In the metri
 setting the analysis no longer deals with sums of f0; 1g variables (whi
h des
ribethe presen
e or absen
e of an edge in a graph); instead the terms in the sums 
an be quite large(sin
e they des
ribe distan
es); this makes the analysis of the varian
e mu
h more deli
ate.� Finally, in the metri
 setting our lower bound on OPT means that an additive error of O(�W )implies a PTAS for the problem; that is not true for dense graphs.2 Preliminary Results2.1 First attemptOne natural approa
h is to use random (suitably biased) sampling to estimate, for ea
h point v,the sum of distan
es from v to ea
h side of the optimal bise
tion, d(v; L) and d(v; R). For pointswhi
h have about the same sum of distan
es to either side of the partition, it would intuitivelyseem that it does not matter on whi
h side they are pla
ed.Unfortunately, this intuition is misleading, as the example in Figure 1 shows: we have four sets ofverti
es, A, B, C, D, ea
h 
ontaining n verti
es. All distan
es inside A, inside D, between A andB, and between C and D are equal to 1. All other distan
es are equal to 2.2
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CFigure 1: An example showing why, even if we have a reliable estimate of d(v; L) and of d(v; R) forevery v, that is not suÆ
ient to 
onstru
t a near-optimal partition in the natural manner.It is not hard to 
he
k that on that input, the minimum bise
tion 
onsists of the partition (L =A [ C;R = B [D) and has value OPT = 6n2.For v 2 B, d(v; L) = 3n while d(v; R) = 4n� 2. Similarly for v 2 C. Thus an estimator will easilybe able to 
lassify 
orre
tly the verti
es of B and of C.Noti
e that for v 2 A, d(v; L) = 3n � 1 ' 3n = d(v; R). Similarly, for v 2 D, d(v; R) = 3n � 1 '3n = d(v; L). Hen
e our sampling and estimating approa
h will 
onsider all of these verti
es to beequivalent and therefore pla
e half of them on the left side and half of them on the right side, atrandom. This 
reates the bise
tion on the right hand side of Figure 1. The value of that bise
tionis: 13n2=2, whi
h is a 
onstant fa
tor more than OPT.This shows that, even if a vertex u is su
h that d(u; L) ' d(u;R), it still matters where u goes.2.2 Metri
 lemmasWe now state lower bounds on the value of the optimal solution in the metri
 setting. First, anelementary metri
 lemma.Proposition 1 ([FKKR03℄) Let X; Y; Z � V . Then jZjd(X; Y ) � jX jd(Y; Z)+ jY jd(Z;X):In the (k; n � k) Metri
 MIN-PARTITIONING problem, we are given a metri
 spa
e (V; d) on npoints and an integer k < n. The goal is to partition V into two sets of sizes k and n � k so asto minimize the sum of distan
es a
ross the partition. (Thus, MIN-BISECTION is the parti
ular
ase of k = n=2.)Lemma 1 The optimal value of (k; n� k) Metri
 MIN-PARTITIONING satis�esOPT � W2(1 + kn�k + n�kk ) :Proof: Apply Proposition 1 to X = Y = L; Z = R and to X = Y = R;Z = L to get� d(L; L) � 2 kn�kd(L;R)d(R;R) � 2n�kk d(L;R)3



Now, W = d(L; L)+ d(R;R)+ 2d(L;R), and sin
e OPT = d(L;R), we obtain the statement of theLemma.Lemma 1 extends to Metri
 MIN-BISECTION as follows, simply by setting k = n=2. It implies that,in order to get a PTAS for metri
 MIN-BISECTION, it suÆ
es to obtain an additive approximationto within �W .Lemma 2 The optimal value of Metri
 MIN-BISECTION satis�es OPT � W=6.Let K be a �xed integer. De�ne the K-ary metri
 MIN-PARTITIONING problem as follows.Given a sequen
e of sizes (n1; n2; : : : ; nK) su
h that Pi ni = n, and given a �nite metri
 spa
e(V; d), �nd a partition of V into K parts of sizes (n1; n2; : : : ; nK) so as to minimize the sum ofdistan
es between parts, Xu;v in di�erent partsd(u; v):Lemma 3 Let ` be su
h that (n1 + � � � + n`) � n=2. The optimal value of K-ary Metri
 MIN-PARTITIONING for sizes (n1; n2; : : : ; nK) satis�esOPT � W4 (n1 + � � �+ n`)n :Proof: Apply Lemma 1 to (n1 + � � �+ n`; n� n1� � � �n�N`) Metri
 MIN-PARTITIONING.Finally, the following metri
 Lemma will be useful in our analyses.Lemma 4 ([FK98℄) d(v; u) � 4wvwu=W for every u; v.2.3 Probabilisti
 lemmasWe re
all, in the Lemma below, an inequality of Hoe�ding (see also [HM98℄, Theorem 2.5, page202).Lemma 5 ([H63℄) Let (Yi) be a sequen
e of independent random variables su
h that 0 � Yi � bifor every i. Let Z =P1�i�n Yi. Then, for any a > 0, we havePr(jZ �EZj � a) � 2e�2a2=(P b2i ):Lemma 6 Let (Yi) be a sequen
e of independent random variables and Z =P1�i�n Yi. Then:E(jZ �EZj) �sXi �2(Yi):Proof: E(jZ �EZj)2 � E((Z � EZ)2) = �2(Z) =Pi �2(Yi):For U � V , the following lemma shows how to estimate d(v; U) from a small biased sample of U .Lemma 7 (Metri
 Sampling) Let t be given and U � V . Let T be a random samplefu1; u2; :::utg of U with repla
ement, where ea
h ui is obtained by pi
king a point u 2 U withprobability wu=WU . Consider a �xed vertex v 2 V . Then:Pr �����d(v; U)� WUt Xu2T d(v; u)wu ����� � �d(v; U) ! � 1� 2e�t�2=84



E(jd(v; U)� WUt Xu2T d(v; u)wu j) � 2ptd(v; U):Proof: Consider the random variable Z =Pu2T d(v; u)=wu. We have:Z = tXi=1 Yi;where the Yis are i.i.d.r.v.'s with8u 2 U; Pr�Yi = d(v; u)wu � = wuWU :Yi has average value d(v; U)=WU and maximum possible value at most bi = 4d(v; U)=WU (byLemma 4 applied to U [ fvg). Applying Lemma 5 and s
aling by WU=t gives the �rst part of thelemma. The se
ond part follows from Lemma 6, observing that any variable Yi with range [0; bi℄must have varian
e at most b2i =4.Lemma 8 Let s = 3=�2 be given and U � V . Let T be a random sample fu1; u2; :::usg of U withrepla
ement, where ea
h ui is obtained by pi
king a point u 2 U with probability wu=WU . and
onsider a partition of U = (UL; UR). Assume that WUL � WUR. Then, with probability at least1� �, we have jS \ ULj � 1=�2.Proof: Note that the probability that any �xed point of S falls in UL is at least 1=2 and that theseevents are independent. Thus, the probability distribution of t dominates the Binomial distributionB(s; 1=2). The assertion of the lemma then follows from Lemma 5.We will use the Metri
 Sampling Lemma jointly with exhaustive sampling. In our algorithms, thetarget UL will be unknown; we will take a random biased sample S of a set whi
h is larger thanUL, and try every possible subset T of S, so that, when we happen to try T = S \ UL, our subsetT will be a biased sample of UL.3 A Combinatorial PTASIn this se
tion we design and analyze a 
ombinatorial PTAS for metri
 MIN-BISECTION. Themethod builds on the known metri
 sampling of [FK98℄ and hybrid pla
ement te
hniques of[GGR96℄.The algorithm 
an be found in Figure 2. It takes as input a �nite metri
 spa
e (V; d). It makesa series of guesses and returns, when all these guesses are 
orre
t, a bise
tion of V whose 
ost is,with probability at least 3=4, at most (1+O(�))OPT. The algorithm assumes that n is larger thansome 
onstant value, sin
e for n small enough, one 
an just solve the problem by exhaustive sear
hon V .Theorem 1 With probability at least 3=4, the algorithm of Figure 2 
omputes a (1+O(�)) approx-imation to Metri
 MIN-BISECTION. Its running time is n2 � 2O(1=�2).5



1. Large weight verti
es. Let B denote the set of verti
es with weight > �2W=10 and letU = V nB.2. Sampling. Let s = 3=�2. Take a random sample S of U of size s obtained by independentlydrawing s points u1; u2; :::us a

ording to: Pr(u1 = u) = wu=WU for u 2 U .3. Exhaustive sear
h. Let P0 = (L;R) be an (unknown) near-optimal bise
tion. Byexhaustive sear
h, guess BL = B \ L and BR = B \ R. Let UL = U \ L and UR = U \R(UL and UR are not known). Assume that WUL � WUR . By exhaustive sear
h, guessT = S \UL. Let t = jT j. Moreover, by exhaustive sear
h, guess[WUL , the power of (1+ �)whi
h is 
losest to WUL .4. Estimation. 8v 2 V; let ev = minf[WULt Xu2T d(v; u)wu + d(v; BL); wvg: (1)5. Partition. Let ` = 1=� and de�ne a partition V1; V2; :::; V` of U by pla
ing ea
h vertex in aVj 
hosen uniformly at random (possibly moving one vertex from ea
h Vj to B if ne
essaryso that the 
ardinality of Vj is even).6. Constru
tion. Let A0 = L0 and B0 = R0.For ea
h j = 1; 2; : : : ; `, do the following:(a) Estimation. For ea
h v 2 Vj , letfv =Xk<j d(v; Ak) + `� (j � 1)` ev; (2)bb(v) = fv � (wv � fv):(b) Constru
t a bise
tion (Aj ; Bj) of Vj by pla
ing the jVjj=2 verti
es with smallest valueof bb(v) in Bj and pla
ing the other jVj j=2 verti
es in Aj .Let A = [jAj and B = [jBj .7. Output. Output the best of the bise
tions (A;B) thus 
onstru
ted.Figure 2: A 
ombinatorial algorithm for metri
 Minimum Bise
tion.6
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ombinatorial algorithm. fv is an estimate ofd(v;Left(Pj)) for v 2 Vj .3.1 A Preliminary PropertyWe start with the following Lemma.Lemma 9 Consider the partition 
onstru
ted by the algorithm, (B; V1; : : : ; V`). Consider the min-imum partition of V , subje
t to the further 
onstraint that it must be a bise
tion of every Vj. Thenits expe
ted value is at most OPT+Wp`=n.Proof: The optimal bise
tion (L�; R�) indu
es a partition (L�j ; R�j) of Vj . For ea
h j, if jL�j j > jR�j j,we move (jL�j j � jR�j j)=2 random verti
es from L�j to R�j (or vi
e-versa if jL�j j < jR�j j). This de�nesa bise
tion (L;R) satisfying the 
onditions of the lemma.Using Xu = 1I(u 2 Vj), the 
ardinality of L�j 
an be written asPu2L� Xu, and Lemma 6 shows thatE(jL�j � �2 jU jj) �pn=`:Similarly for R�j . Thus the expe
ted number of points moved is p`n.The 
hange in value when going from (L�; R�) to (L;R) is at most the weight of the points whi
hare moved. The points moved have random weights, hen
e the expe
ted weight of the points movedis at most Wp`=n.3.2 Proof of Theorem 1The �rst part of the analysis is purely deterministi
 and, ex
ept for the last inequality, quite similarto the analysis in [GGR96℄. 7



3.2.1 Fa
t 1: Deterministi
 analysisLet Pj be the following hybrid bise
tion:Pj = ([k<jAj [ [k�j Lj ;[k<jBj [ [k�j Rj) = (Left(Pj);Right(Pj)):The output is P`: COST(P`)� COST(P0) � X1�j�`[COST(Pj)� COST(Pj�1)℄:Consider the verti
es whi
h are 
lassi�ed di�erently in Pj�1 and in Pj : there is a subset X =fx1; : : : ; xmg of Lj and a subset Y = fy1; : : : ; ymg ofRj , of the same 
ardinality, su
h thatAj = Lj�X+Y and Bj = Rj�Y +X . For ea
h vertex u, let b(u) = d(u;Left(Pj�1))�(wu�d(u;Left(Pj�1))):We have: COST(Pj)� COST(Pj�1) � Xxi2X b(xi)� Xyi2Y b(yi) + 2 XX�Y d(x; y)� X1�i�m(b(xi)� b(yi)) + 2d(Vj; Vj):Now, here is the 
entral part of the proof:b(xi)� b(yi) = (b(xi)�bb(xi)) + (bb(xi)�bb(yi)) + (bb(yi)� b(yi)) � (b(xi)�bb(xi)) + (bb(yi)� b(yi));sin
e xi is pla
ed to the right and yi is pla
ed to the left, and so by de�nition of the algorithm itmust be that bb(xi) � bb(yi). ThusCOST(Pj)� COST(Pj�1) � Xu2Vj jb(u)�bb(u)j+ 2d(Vj; Vj) (3)� 2Xu2Vj jXk�j d(u; Lk)� `� (j � 1)` (eu � d(u;BL))j+ 2d(Vj; Vj):(4)Now, jXk�j d(u; Lk)� `� (j � 1)` (eu � d(u;BL))j �jXk�j d(u; Lk)� ` � (j � 1)` d(u; UL)j+ `� (j � 1)` jd(u; UL)� (eu � d(u;BL))j: (5)We must now use probabilisti
 tools to analyze this equation.3.2.2 Part 2: Probabilisti
 analysisLet us analyze the �rst term of the right hand side of Equation 5.Fix v 2 Vj and let Zv = Pk�j d(v; Lk). The expe
tation of Zv is d(v; UL)(ell � j + 1)=ell, and sowe must analyze jZv � EZvj. We have: Zv =Pu2UL d(v; u)Xu, where the Xu are i.i.d.r.v.'s, withXu equal to 1 with probability (`� (j � 1))=` and to 0 with the 
omplementary probability.8



We split Zv into two parts, Zv = Av + Bv, with( Av = Pu:d(u;v)�wv�=pn d(u; v)XuBv = Pu:d(u;v)>wv�=pn d(u; v)Xu:The �rst of these two parts is straightforward: applying Lemma 6 to Av , with bi = wv�=pn, yieldsE(jAv � EAvj) � �wv=2:For the se
ond part, from Proposition 1 for X = fug; Y = fvg, Z = V , we get nd(u; v)� wu +wv,so d(u; v) > wv�=pn implies that wu > (�pn � 1)wv. Thus d(u; v) � (wu + wv)=n � 2wu=n.Applying Lemma 6 to Bv, with bu = 2wu=n, now yieldsE(jBv � EBvj) � pPu w2un :Sin
e Pwu � W and maxwu � �2W , we havePw2u � �2W 2, and soE(jBv �EBvj) � �Wn :Summing gives E(jZv � EZvj) � �wv2 + �Wn :As for the se
ond term of Equation 5, we �rst lete0v = minfWULt Xu2T d(v; u)wu + d(v; BL); wvg:From Lemma 7 applied to UL, we have:E(jd(v; UL)� (e0u � d(u;BL))j) � 2pt d(v; UL) � 2ptwv:Sin
e our estimate for WUL is within a (1 + �) fa
tor of the a
tual value, we moreover have:E(je0u � euj) � �wu:The rest of the proof is easy and entirely deterministi
 again.3.2.3 Part 3: Deterministi
 analysisPlugging these bounds into Equation 4, we obtain:E(COST(Pj)� COST(Pj�1)) � 2Xu2Vj(�wu2 + �Wn + 2ptwu + �wu) + 2E(d(Vj; Vj)):Summing over j, we get:E(COST(P`)� COST(P0)) � 2[52�W + 2ptW ℄ + 2E(Xj d(Vj; Vj)):9



The last term is easy to deal with: its expe
tation is bounded by W=`.From Lemma 8, t � 1=�2 with probability at least 1� �, and then, with Lemma 9 we obtain:E(COST(P`)� OPT) � 2W [5�+ 1̀ +rǹ ℄:Using Markov's inequality, remembering that ` = 1=� and 
omparing with the lower bound fromLemma 2 then 
on
ludes the proof of the Theorem.Remarks.1. It is not ne
essary to take the number of parts Vj exa
tly ` = 1=�. The algorithm 
ould beadapted to work for any number ` 2 [1=�; n�2℄. Indeed, going ba
k to previous work on densegraphs, one may have been intrigued to noti
e that [GGR96℄ used a partition of the verti
esinto ` = 1=� parts, while [F96℄ used a partition of the verti
es into ` = n�2 parts. Indeed,we now see from the above analysis that, with our algorithm, the number of parts is largelyirrelevant: this may serve as an explanation. Perhaps the algorithm is ni
er to think aboutin the 
ase when ` = n�2, sin
e it is then very 
lose to a natural greedy algorithm: take theverti
es by groups of 1=�2 at a time, and bise
t ea
h group in the best possible way, takinginto a

ount the 
hoi
es made so far (and adding an estimate to take into a

ount the verti
esnot yet 
onsidered.)2. The running time 
ould be improved in a manner similar to [GGR96℄: �rst, in Equation 2,instead of 
al
ulating d(v; Ai) exa
tly, we 
ould estimate it via sampling, thus gaining afa
tor of n. Se
ond, instead of running the algorithm on the whole graph, we 
ould run it ona (larger) sample of the point set.3. Ex
ept for biased sampling, whi
h is spe
i�
 to the metri
 situation, the additional ideas usedhere to modify the hybrid pla
ement te
hnique from [GGR96℄ 
an be applied to the densegraphs setting as well. We 
onje
ture that in dense graphs, it might be possible to use ideasfrom our 
ombinatorial algorithm so as to improve the query 
omplexity from [GGR96℄ by afa
tor of O(1=�).4. Fo
using on the dense graphs setting, let us 
ompare the dense graph analog of our 
ombi-natorial algorithm to the 
ombinatorial algorithm from [GGR96℄:� We sample O(1=�2) points in total, as opposed to 
(1=�3 ln(1=�)).� The partition (Vj) is random instead of arbitrary (ne
essary for this smaller sampling towork).� Our estimator is slightly di�erent, sin
e we do not re-sample the hybrid partitions, butinstead use an estimator whi
h 
ombines the distan
es to verti
es already 
lassi�ed witha s
aled version of the original estimate. This is ne
essary for the smaller sampling towork.� For partitioning into two parts, we only use sampling to estimate for the distan
e fromv to the left side of the partition; sin
e the sum of its distan
es to the left and to theright side is equal to its degree, this immediately implies an estimate for the distan
efrom v to the right side of the partition. (This is a detail).10



� In the analysis, instead of separating the point set into \normal" and \ex
eptional"verti
es, we just use the varian
e dire
tly to 
ompute the expe
ted deviation from themean. (It would however still have been possible to prove the result with a slightly worse
onstant by using a separation into normal and ex
eptional verti
es).4 A PTAS Based on Linear ProgrammingIn this part we 
ombine exhaustive sear
h on the points with highest weights, biased sampling,and give a new non-smooth extension of the linearization approa
h of [AKK95℄. In addition, wemodify the LP approa
h slightly (by introdu
ing n new variables zv) in su
h a way that one 
an
ompute estimates by taking samples of size O�(1) only (instead of O(logn)). (We believe that thisimprovement 
ould also be applied to the algorithms of [AKK95℄.)We represent a bipartition (S; T ) of V by the ve
tor (xv) where xv = 0 if v 2 S, and xv = 1 ifv 2 T . We denote by (L;R) an optimum bise
tion. For ea
h vertex v, ev will be an estimator ford(v; L).If n is smaller than some 
onstant depending on � (see proof of lemma 13), we solve by exhaustivesear
h. Otherwise, we run the algorithm presented on Figure 4 at the end of the paper. Throughtthis se
tion we will refer to the notation used in the des
ription of this algorithm.Theorem 2 With probability at least 3=4, the algorithm in Figure 4 
omputes a (1+O(�)) approx-imation to metri
 MIN-BISECTION. Its running time is LP (n)2O(1=�2), where LP (n) denotes therunning time to solve a linear program with O(n) underlying variables and 
onstraints.4.1 Proof of Theorem 2Let (xv) be the optimal bise
tion and (x�v ; z�v) the optimal fra
tional solution of the linear program.Lemma 10 With probability at least 89=100, the optimal bise
tion (xv) is feasible, and moreoverOPT = COST(xv) � COST(x�v)� 20�W:Proof: Let Æv be the di�eren
e between ev and its expe
tation. By Lemma 7, we have thatE XU jÆvj! � 2r1t W:Using Lemma 8, we 
an assume that t � 1=�2, and use Markov's Inequality to get thatPr XU jÆvj � 20�W! � 9=10for suÆ
iently small �. This shows the feasibility of (xv) with probability 89=100 and proves alsothe se
ond part of the lemma sin
e COST(xv) di�ers from COST(x�v) by at most PU jÆvj.Let (yv) denote the partition obtained by the randomized rounding.11



1. Large weight verti
es. Let B denote the set of verti
es v with wv � �2W=100, and letU = V nB.2. Sampling. Let s = 3=�2. Take a random sample S of U of size s obtained by independentlydrawing s points u1; u2; :::us a

ording to: Pr(u1 = u) = wu=WU for u 2 U .3. Exhaustive sear
h. Let (L;R) be the (unknown) optimal bise
tion. By exhaustivesear
h, guess BL = B \ L and BR = B \ R. Let � = PBL�BR d(u; v). Let UL = U \ Land UR = U \ R (UL and UR are not known). Assume that WUL � WUR . By exhaustivesear
h, guess T = S \ UL. Let t = jT j. Moreover, by exhaustive sear
h, guess [WUL , thepower of (1 + �) whi
h is 
losest to WUL .4. Estimation. 8v 2 V; let ev = minf[WULt Xu2T d(v; u)wu + d(v; BL); wvg: (6)5. Constru
tion.(a) Let 
(x) =Pv2U xvev+Pv2U(1�xv)d(v; BR)+�. Solve the following linear programLP (n) with variables xv and zv , v 2 U ,Minimize 
(x) s.t.8>>>><>>>>: 8v; 0 � xv � 18v; d(v; BL) +Pu2U(1� xu)d(u; v) � ev + zv8v; d(v; BL) +Pu2U(1� xu)d(u; v) � ev � zvPv zv � 20�WPv xv + jBLj = n=2:Let (x�v; z�v) denote the optimal fra
tional solution.(b) Use randomized rounding to obtain an integer ve
tor (yv): for every v independently,yv is set to 1 with probability x�v and to 0 with the 
omplementary probability.Together with (BL; BR), this de�nes a partition of V .(
) Repair the unbalan
e by moving from the side with the larger size to the other sidethe required number of verti
es with smallest weights.6. Output. Output the best of the bise
tions thus 
onstru
ted.Figure 4: A linear programming algorithm for metri
 Minimum Bise
tion.12
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(L,R)Figure 5: The partition used by the linear programming algorithm. ev is an estimate of d(v; L) =d(v; UL) + d(v; BL).Lemma 11 With probability at least 1� 1=100, we have: 
(x�) + 2�W � 
(y):Proof: We must bound above the sum S = PU zvav , where zv = x�v � yv ; and av = ev �d(v; BR) v 2 U . Note that the absolute values of the av are all bounded above by �2W=100.Sin
e their sum is at most W we have that the varian
e of S is bounded above �2W 2=100. UsingCheby
hev's inequality we get that S is bounded above by �W=10 with probability 1� 1=100.Lemma 12 With probability at least 1� 1=10, we have:� j
(y)� COST(y)j � 40�Wj
(x�)� COST(x�)j � 40�WProof: We havejCOST(y)� 
(y)j == jXv yv [d(v; BL) +Xu (1� yu)d(u; v)℄�Xv yvev= jXv yv [Xu [(1� yu)� (1� x�u)℄d(u; v)℄+Xv yv[d(v; BL) +Xu (1� x�u)d(u; v)� ev ℄j� Xu jyu � x�ujwu +Xv yvz�v� 20�W + 20�W;from the LP 
onstraint and from the proof of Lemma 11, followed by Markov's inequality.Let (y0v) denote the bise
tion output by the algorithm.Lemma 13 With probability at least 1� 1=100, we have COST(y0v) � COST(yv) + �W:13



Proof: Note that the yv have expe
tation x�v and varian
e bounded above by 1=4. The sumZ =PV yv has expe
tation n=2 and varian
e at most n=4. Cheby
hev's Inequality gives us thatPr(jZ � n=2j � �n) � 1� 4�2 � 1� 1=100for suÆ
iently small �. The lemma follows now from the fa
t that the sum of the �n smallestweights does not ex
eed �W .To prove Theorem 2, it now suÆ
es to 
ombine Lemmas 13, 12, 11 and 10 so as to prove that thevalue of the partition output is at most OPT+O(�W ). By Lemma 2, this is at most (1+O(�))OPT.The running time follows by inspe
tion.Remarks.1. Ex
ept for biased sampling, whi
h is spe
i�
 to the metri
 situation, the additional ideas usedhere to modify the algorithm from [AKK95℄ 
an be applied to the dense graphs setting aswell.2. Fo
using on dense graphs, let us 
ompare the dense graph analog of our 
ombinatorial algo-rithm to the 
ombinatorial algorithm from [AKK95℄:� We sample O(1=�2) points in total, as opposed to 
(1= logn).� We modify the LP slightly by introdu
ing n new variables zv , to make the 
onstraintsmore 
exible. This is ne
essary for the smaller sample to work.5 Metri
 MAX-CUT RevisitedWe note that both algorithms in se
tions 3 and 4 
an be adapted to 
onstru
t mu
h more eÆ
ientalgorithms for the problem of Metri
 MAX-CUT [FK98℄.Theorem 3 There is a PTAS for Metri
 MAX-CUT with running time O(n2 � 2O(1=�2)).6 Extensions6.1 Extension to (k; n � k) Metri
 MIN-PARTITIONINGWe re
all from se
tion 2.2 the following de�nition of the (k; n� k) Metri
 MIN-PARTITIONINGproblem: we are given a metri
 spa
e (V; d) on n points and an integer k < n. The goal is topartition V into two sets with sizes k and n� k so as to minimize the sum of distan
es a
ross thatpartition.Theorem 4 The problem of (k; n� k) Metri
 MIN-PARTITIONING has a PTAS.Proof: There are two 
ases a

ording to the values of the ratio k=n and of the a

ura
y require-ment �.(i) Suppose �rst that k=n � �=2. Then we apply one of the above algorithms, say the se
ond one,with �0 = �2 and the ne
essary modi�
ations 
on
erning the sizes 
onstraints: we run two distin
t14



LPs, one with jLj = k and the other one with jLj = n � k. This ensures that in one of theseprograms we have WUL � WUR .(ii) Suppose now that k=n < �=2. We 
laim that in this 
ase a solution with approximation ratio1 + � is obtained just by separating the k points with smallest weights from the rest. In order toprove this 
laim, �x attention �rst on 2 verti
es x1; x2. Let wi be the weight of xi. For any othervertex x3 we have of 
ourse d(x1; x2) � d(x1; x3) + d(x3; x2)Summing over all 
hoi
es for x3, this gives:w1 + w2 � nd(x1; x2)Take now k verti
es x1; x2; :::xk. The pre
eding inequality gives(k � 1) kX1 wi � nXi<j d(xi; xj) (7)Let U � V . The value of the partition (U; V nU) isVal(U; V nU) = Xxi2U wi � 2 Xxi;xj2U d(xi; xj)Thus, OPT � minjSj=k0�Xxi2S wi � 2 Xxi;xj2S d(xi; xj)1A� �1� 2(k� 1)n � minjSj=k Xxi2Swi;the last by using equation (7).6.2 Extension to Size Constraint Metri
 MIN-PARTITIONINGLet K be a �xed integer. De�ne the K-ary metri
 MIN-PARTITIONING as follows. Given asequen
e of sizes (n1; n2; : : : ; nK) su
h thatPi ni = n, and given a �nite metri
 spa
e (V; d), �nd apartition of V into K parts of sizes (n1; n2; : : : ; nK) so as to minimize the sum of distan
es betweenparts, Xu;v in di�erent partsd(u; v):Theorem 5 There is a PTAS for K-ary metri
 MIN-PARTITIONING.Proof: We use the following extension of our linear programming algorithm for (k; n� k) MIN-PARTITIONING.1. If n is less than a 
ertain 
onstant, use exhaustive sear
h. Otherwise do the following.15



2. Let n1 + n2:::n` be the sizes smaller or equal to �2n=K and s = n1 + n2:::n`: Fill these partswith the set S of the s verti
es with smallest weights.3. Guess by exhaustive sear
h the 
ardinalities of the 
lasses with index � `+1 and with weight� �2W=K in an optimum solution. Assume by renaming that these 
ardinalities are the hlast 
lasses, say. Let r = nK�h+1 + nK�h+2 :::+ nK and �ll up these 
lasses arbitrarily withthe r remaining verti
es with smallest weights.4. In what follows, we solve approximately the metri
 MIN-PARTITIONING problem with
onstrain n`+1; n`+2; :::; nK�h+1; nKWe rename the 
onstrain as (n1; n2; :::nK) with a new K (whi
h is equal to the old minus(`+ h).) We refer to this problem as the redu
ed problem.5. Let B denote the verti
es with weight � �2W=100 and U = V nB.6. Take a random biased sample S of U of size s = O(1=�4). (Note the 
hange in the valueof s 
omparatively to its value of s in algorithm of �gure 2. This is due to the fa
t thatthe lower bound of OPT that we have for OPT is only 
(�W ) instead of 
(W ) for theMIN-BISECTION algorithm.7. Guess the partition (B1; B2; : : :BK) of B indu
ed by the optimal solution. Let � =Pi 6=j d(Bi; Bj): For ea
h i 2 f1; : : : ; Kg, guess the interse
tion Ti of S with the ith partof the optimal partition, of size ti. Also guess the approximate weight ~Wi of that part. Notethat the number of samples needed for a 
orre
t guess has order nO(1=�2).8. For ea
h v 2 U and for ea
h i, letev;i = minf ~Witi Xu2Ti d(u; v)wu + d(v; Bi); wvg:9. Let 
(x) = Pv2UPi xv;i(Pk 6=i ev;k +Pv;i(1 � xv;i)d(v; Bi) + �. Solve the following linearprogram: min 
(x)subje
t to the 
onstraints8>>>>>><>>>>>>: 8v; i xv;i � 08v; Pi xv;i = 18v; i d(v; Bi) +Pu2U xu;id(u; v) � ev;i + zv;i8v; i zv;i � 0PiPv zv;i � 3�W8i; jBij+Pv2U xv;i = niLet (x�v;i; z�v;i) denote the optimal fra
tional solution.10. Use randomized rounding to obtain an integer ve
tor (yv;i): for every v independently, 
hoosean i a

ording to the distribution de�ned by (x�v;i)i, and set that yv;i to 1 and the others to0. Together with (B1; : : : ; BK), this de�nes a partition P = C`+1; C`+2; :::CK�h+1; CK; CK+1of V 16



11. Ajust the sizes analogously to the last step of the linear programming MIN-BISECTIONalgorithm to get a partition P 0 with part sizes jC 0̀+1j = n`+1; jC 0̀+2j = n`+2; :::jC 0K+1 = nK+112. Complete P 0 by the parts de�ned in items 1 and 2 to get the output partition P".This ends the des
ription of the algorithm. We now prove the 
orre
tness.Let ` = #fi : ni � �n=Kg A key observation is the following. With a partition A1; A2; :::AK withpart sizes n1; n2; :::nK we asso
iate the (n; n � n1) partition (A1; B) whith B = A2 [ A3::: [ AK .By Lemma 1 we have that the value of this partition is at leastW n1(n� n1)2((n� 1)(n� n1) + n1(n1 � 1)) :We distinguish between two 
ases (i) and (ii):Case (i) If n � n1 � �n, then the 
orre
tness follows from the 
orre
tness of the (k; n � k) MIN-PARTITIONING algorithm,Case (ii) In this 
ase, the above formula gives us that the value of the partition (A1; B) is at leastW (1� �):�n2((n2(1� �) + �2n2) � �W3We show below that our algorithm gives in this 
ase an additive approximation O(�2W ), whi
hby what as just been proved guarantees an approximation ratio 1 + O(�). Observe that the totalweight of the "small weight" 
lasses is at most �2W . So we 
an, with loss at most �2W , pla
e theother verti
es �rst and then pla
e the remaining verti
es anyway in the remaining free pla
es. Letus now �x attention on the 
lasses with small sizes. Let C = C1 [ C2; :::[ C` be the union of the"small" 
lasses in some partition P .Now what is the loss that we su�er by pla
ing in C the verti
es with smallest weight? This problemis just the (k; n� k) problem where k � �n. By the proof of Theorem 3, the maximum loss in theobje
tive fun
tion is bounded above by 2�2W . Adding to this loss the loss due to the pla
ementof the verti
es of the small weight parts, we get thatOPT �\OPT + d(S; V ) + 3�2W; (8)where\OPT is the optimum for the redu
ed problem. Thus the optimum of the redu
ed problemapproximates well the di�eren
e OPT�d(S; V ):The proof that our MIN-PARTITIONING linear programming algorithm provides a partition P 0whose value approximates well\OPT is similar to the proof of 
orre
tness of our linear programmingalgorithm for metri
 MIN-BISECTION. We only mention that having ea
h size at least �n=K inthe redu
ed problem makes the rounding pro
edure su

essfull with high probability. (This is infa
t the motivation for the spe
ial treatment of the small sizes. The motivation for the spe
ialtreatment of the 
lasses with small weight is that sampling is not eÆ
ient in these 
lasses.)This ends the proof of Theorem 5. 17



6.3 Metri
 MIN-k-CUT and MIN-MULTIWAY-CUTWe 
onsider now another appli
ations towards the problems of MIN-k-CUT, and MIN-MULTIWAY-CUT (
f. [SV91℄), [DJP+94℄) embedded in a metri
 spa
e.Metri
 MIN-k-CUT is the problem of partitioning a given �nite (V; d) spa
e metri
 into k partsas to minimize the sums of distan
es between di�erent parts. Metri
 MIN-MULTIWAY-k-CUT isthe problem, given a �nite metri
 (V; d) and a set of k terminals T � V; to partition (V; d) as todis
onne
t every terminal from ea
h other and to minimize the sums fo distan
es between di�erentparts.Se
tion 6.2 methods 
an be easily adopted to yield the followingTheorem 6 There are PTASs for Metri
 MIN-k-CUT and Metri
 MIN-MULTIWAY-k-CUT.7 Further resear
hAn interesting open problem is to improve running times of our PTASs as well as their sample
omplexity (also in the sense of random \sub-problem" sample 
omplexity of [AFKK02℄). OurLinear Program PTAS is based on an extension of the notion of a smooth polynomial program (
f.[AKK95℄). An interesting open problem is how far su
h an extension 
an be 
arried out. Anotherquestion would be to shed some light on the size-
onstraint (in the general sense of this paper)MIN-SUM-K-CLUSTERING problems (
f. [FKKR03℄).A
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