
Approximation Hardness and Satis�abilityof Bounded O

urren
e Instan
es of SATPiotr Berman � Marek Karpinski y Alex D. S
ott zAbstra
tWe study approximation hardness and satis�ability of bounded o

urren
euniform instan
es of SAT. Among other things, we prove the inapproximabilityfor SAT instan
es in whi
h every 
lause has exa
tly 3 literals and ea
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urs exa
tly 4 times, and display an expli
it approximation lower boundfor this problem. We also provide a tighter 
hara
terization of the uniformlybounded o

urren
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lauses that are disjun
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2approximation lower bound for that problem (Theorem 1). The number 4 is easilyseen to be the smallest number of o

urren
es for whi
h the problem is hard toapproximate (by a dire
t bipartite perfe
t mat
hing argument). The best previousresult in this dire
tion was the result of Feige [F98℄ to the e�e
t that (3,5)-SAT ishard to approximate to within a 
ertain 
onstant. We provide similar results for other
ases as well, e.g. for (4,6)-SAT and (5,9)-SAT.We have learned later that Tovey [T84℄ also displayed an unsatis�able (3,4)-SATformula and proved that the de
ision version of (3,4)-SAT is NP-
omplete. Furtherprogress was obtained by Dubois [D90℄ who has shown that (4,6)- and (5,11)-SAT areNP-
omplete. In turn, Krato
hv��l et. al. [KST93℄ de�ned f(k) as the largest s su
hthat (k; s)-SAT has a satis�able formula and have shown the following: (a) if s > f(k)then (k; s)-SAT is NP-
omplete, (b) f(k + 1) � 2f(k) + 1 and (
) f(k) � b2k=ek
.In this paper we improve the results of Dubois [D90℄ and Krato
hv��l et. al. [KST93℄as follows. We show that if s > f(k) then (k; s)-SAT is MAX-SNP-
omplete. Wealso give improved bounds on f(k) for small values of k, for instan
e showing thatf(5) < 9 (so that f(k) < 9 � 2k�5 for k > 4), and that f(6) � 7.2 Small Enfor
ersWe need to show how to for
e the Boolean value of a variable within the limitationsof a (k; s)-SAT instan
e. This means providing a set of k-
lauses that is satis�ed ifand only if xi is true, and where xi (x) o

urs s � 1 times|so it 
an be used on
emore|and where auxiliary variables o

ur at most s times. To a
hieve regularity,we may have to add some arbitrary 
lauses for the auxiliary variables. Sin
e these
lauses are arbitrary, we will only provide their number, whi
h may be a fra
tion,e.g. a fra
tional number 1=3 means that when for
ing values of 3 variables we needto 
reate one arbitrary 
lause. We represent a set of 
lauses as an array, where ea
hrow lists literals of one of the 
lauses. By aligning the o

uren
es of a variables wemake it easy to 
ount.If we want to use a proof of MAX-SNP-
ompleteness to �nd an unattainableapproximation ratio for a problem, it is important to have as small size of the instan
etranslation as possible, and by extension, to minimize the size of all the gadgets that
olle
tively form a solution. Converting an unsatis�able 
lause set into an enfor
eris in pra
ti
e wastful, be
ause our examples of small unsatis�able set are 
omposedfrom several enfor
ers.If a 
lause was obtained as an impli
ation from a set of 
lauses, we annotate ea
hliteral with a supers
ript in parenthesis that indi
ates the number of o

urren
esof ea
h variable in this set. From this perspe
tive, an enfor
er for (k; s)-SAT hasthe form of x(i) where i < s. If there exists su
h an enfor
er, we 
an produ
e anunsatis�able set as x(i)1 ; :::; x(i)k and :x1_ :::_:xk. We represent a set of 
lauses as anarray, where ea
h row lists literals of one of the 
lauses. By aligning the o

uren
esof variables we make it easy to 
ount.



32.1 Enfor
ers in (3,4)-SATThe enfor
er given here is somewhat smaller than the one des
ribed by Tovey [T84℄.It 
ontains 19 
lauses, rather than 22 in the 
onstru
tion of [T84℄.We 
an for
e variable x to be true using the following six 3-
lauses:x(3) � x a :ba b :
b 
 :db 
 dx :a :dx :a dBe
ause we need to add some arbitrary 
lause to have the fourth o

uren
e of 
, wealtogether use 19/3 
lauses to for
e x.Three enfor
ers together with :x1_:x2_:x3 
reate a nonsatis�able formula with20 
lauses and 15 variables.To make our 
onventions more 
lear, we will prove that the for
ing indeed o

urs.Suppose that x is false and all 6 of the above 
lauses are true. Be
ause we 
an deletex from these 
lauses, we know that :a_:d and :a_d, hen
e :a. Now we 
an deletea from the remaining 
lauses and the �rst 
lause yields :b. Now we 
an delete b andthe se
ond 
lause yields :
. Consequently, the third and fourth 
lauses yield :d andd, a 
ontradi
tion.2.2 Enfor
ers in (4,6)-SATTo de�ne a set of 
lauses that for
es x withing the 
onstraints of (4,6)-SAT we de�nethe notion of supervised impli
ation whi
h in a
tuality is a set of six 4-
lauses:x(1) ! ( y(2) ! z(2) ) � :x :y z :a:y z a :ba b 
 da b :
 da b :d ea b 
 :d :eNote that if we have two supervised impli
ations, the same variable 
an play therole of 
 in both, and a variable 
an play the role of d in one and the role of e inthe other. As a result, only b's have the de�
it of o

uren
es, and to remove this



4de�
it we add one 
lause to every four supervised impli
ations. Therefore one su
himpli
ation requires 6.25 
lauses.Literal x for
ed to be true by 4-
lauses:x(5) � :x(1) ! ( a(2) ! b(2) ):x(1) ! ( b(2) ! 
(2) ):x(1) ! ( 
(2) ! a(2) ):x ! ( a _ b _ 
 ):x ! ( :a _ :b _ :
 )One 
an see that we for
e x using 20.75 
lauses.2.3 For
ing a Variable in (5,9)-SATThe set of 
lauses that for
es a variable to be false withing the limitations of (5,9)-SAThas a 
ompli
ated 
onstru
tion. We de�ne the following auxiliary notion: F(ix; jy)is a set of 
lauses in whi
h x o

urs i times, y o

urs j times and whi
h 
annot besatis�ed if both x and y are false, but whi
h is otherwise satis�able. Let f(ix; jy) =jF(ix; jy)j. We will use a similar notion for a single variable (a 
ontradi
tion if it isfalse) or for three variables (a 
ontradi
tion if they are all false).Our goal is to de�ne F(8x) and to �nd f(8x).F(8x) = fx _ :y0 _ :y1 _ :y2 _ :y3g [ F(8y0; 1x) [ 3[i=1F(8yi; 2x):Indeed, if x is false, then the only way to avoid 
ontradi
tion is if yi is false for somei = 0; 1; 2; 3, but then either both x and y0 are false, and we have a 
ontradi
tion fromF(8y0; 1x), or both x and y1 are false, and we have a 
ontradi
tion from F(8y1; 2x)et
. Conversely, if y is true, both the initial 
lause and ea
h of the 4 
lause sets usedin the de�nition is satis�able.We de�ne F(8x; 1z) asF(8x; 1z) = fx _ z _ :y0 _ :y1 _ :y2g [ F(8y0; 2x) [ F(8y1; 2x) [ F(8y2; 3x):We de�ne F(8x; 2z) asF(8x; 2z) = fx _ z _ :y0 _ :y1 _ :y2g [ F(8y0; 3x) [ F(8y1; 3x) [ F(8y2; 1x; 1y):We de�ne F(8x; 1a; 1b) asF(8x; 1a; 1b) = fx _ a _ b _ :y0 _ :y1g [ F(8y0; 3x) [ F(8y1; 4x):



5One 
an see thatf(8x) = 1 + f(8x; 1y) + 3f(8x; 2y) = 2 + 5f(8x; 2y) + f(8x; 3y) =7 + 11f(8x; 3y) + 5f(8x; 1y; 1z) = 12 + 16f(8x; 3y) + 5f(8x; 4y):To de�ne F(8x; 3y) we need to de�ne three types of supervised impli
ations, i.e. spe
ialsets of 
lauses. A supervised impli
ation of type I 
an be viewed in two ways, and itis realized by nine 5-
lauses:w(1) ^ x(2) ! (z(3) ! y(2) )w(1) ! ( z(3) ! (x(2) ! y(2) )) � :w :x y :z :a:x y :z a :b:z a b :
 :da b :
 d :ea b 
 :d :ea b 
 d :ea b :
 d ea b 
 :d ea b 
 d eA supervised impli
ation of type II 
an be realized with two supervised impli
ationsof type I, and thus we use 18 5-
lauses:x(2) ! ( y(4) ! z(4) ) � x(1) ! ( z(3) ! (x(2) ! y(2) )x(1) ! ( :z(3) ! (x(2) ! y(2) )Type III is realized with one type II and two type I and one normal 
lause, thus weuse 37 5-
lauses:s(7) ^ t(3) ! u(7)1 ^ u(7)2 ^ u(7)3 � s(2) ! (u(4)1 ! u(4)2 )s(2) ^ t(1) ! (u(2)2 ! u(3)3 )s(2) ^ t(1) ! (u(3)3 ! u(2)1 )s ^ t ! (u1 _ u2 _ u2)Finally, F(8x; 3y) is formed from two type III impli
ations and three normal 
lauses,



6for the total of f(8x; 3y) = 77 5-
lauses:F(8x; 3y) � x(8) ^ y(3) � :x(7) ^ :t(3) ! a(7)1 ^ a(7)2 ^ a(7)3:x ^ a1 ^ a2 ^ a3 ! bb ^ a1 ^ a2 ^ a3 ! 

(7) ^ b(3) ! d(7)1 ^ d(7)2 ^ d(7)3
 ^ b ! :(d1 ^ d2 ^ d3)One 
an use the above idea to get f(8x; 4y) = 39. This leads to f(8x) = 12 + 16 �77 + 5 � 39 = 1439. We also need to add some extra 
lauses to in
rease the numberof o

uren
es of some auxiliary variables to 9.3 NP-
ompletenessSuppose that we 
an for
e a variable to be true withing 
onstraints of (k; s)-SAT, i.e.there exists a set F(x) of 
lauses of length k in whi
h ea
h variable o

urs at most stimes, x o

urs at most s� 1 times and su
h that all 
lauses in F(x) 
an be satisi�edif and only if x is false. Then we 
an 
onstru
t an unsatis�able formula of (k; s)-SAT:start with a 
lause x1 _ : : :_ xk and for ea
h i = 1; : : : ; k we add set of 
lauses F(xi);we need to take 
are that if i 6= j then F(xi) and F(9xj) have no variables in 
ommon.If some of the variables o

urs less than s times, we 
an add extra 
lauses.We 
an use the same approa
h to translate 3-SAT into (k; s)-SAT. First, we redu
ethe number of o

uren
es of ea
h variables to 3. Then we repla
e a 
lause 
 with
_x4 _xk, using di�erent variables for every 
lause. Next, we add F(x) for ea
h newvariable. Finally, we add extra 
lauses to assure that ea
h variable o

urs exa
tly stimes. With little 
are, these extra 
lauses 
an be easy to satisfy.We 
an 
on
lude that if in (k; s)-SAT we 
an for
e a Boolean value of a variable,then (k; s)-SAT is NP-
omplete.4 MAX-SNP HardnessGiven an instan
e of MAX-2-SAT, we 
an in
rease the length of 
lauses by insert-ing literals that are for
ed to be false. In this manner we 
an 
reate a MAX-SATinstan
e with the same minimum number of unsatis�ed 
lauses in whi
h all 
lauseshave a desired length. Towards the inapproximability result, we start from instan
es
onstru
ted in [BK03℄. In that paper, in order to show the hardness of approximat-ing MAX-2-SAT restri
ted to a 
ertain 
lass of instan
es, one have to 
onstru
t the
lasses of 
lause sets with the following properties:1. It is NP-hard to distinguish on whether the minimum number of unsatis�ed
lauses is at least (5� ")k or at most (4 + ")k;



72. all variables o

ur the same number of times ex
ept for those that o

ur in 4k
opies of a gadget 
alled repla
ements of equations of a single auxiliary variable(Fig. 6 in [BK03℄), here we will 
all this gadget RESAV;In Theorem 12 of [BK03℄ the size of these 
lass sets is given as 256k for the 
asewhen ea
h variable o

urs at most 4 times, and RESAV 
ontains one 
lase with onlyone literal and one variable with only 3 o

uren
es. This proves the following lemma.Lemma 1. There exists a family of sets of 2-
lauses su
h that ea
h, for some n,
onsists of 252n 2-
lauses and 4n 1-
lauses for whi
h it is NP-hard to distinguishbetween the systems where (25n � ")n 
lauses 
an be satis�ed and systems where atmost (251 + ")n 
lauses 
an be satis�ed (for " < 1=2). Moreover, 4n variables in thissystem o

ur 3 times, while other variables have exa
tly 4 o

uren
es.We 
an transform a system from this theorem into an instan
e of Max-(3,4)-SAT in two stages. First, we in
rease the length of all 
lauses to 3 by insert-ing 260n variables that are for
ed to be false. For
ing them to be for
e requires(260 � 19=3 = 1646 + 2=3)n 3-
lauses. Se
ond, we need to in
rease the number ofo

uren
es of 4n variables using 4=3 n 
lauses. Thus we in
reased the number of
lauses in the system from 256n to 1904n and we 
an 
on
lude thatTheorem 1. There exists a family of instan
es of Max-(3,4)-SAT su
h that ea
h,for some n, 
onsists of 1904n 
lauses, for whi
h it is NP-hard to distinguish betweenthe systems where (1900 � ")n 
lauses 
an be satis�ed and systems where at most(1899 + ")n 
lauses 
an be satis�ed (for " < 1=2).This entails the following 
orollary.Corollary 1. It is NP-hard to approximate MAX-(3,4)-SAT to within any fa
torbelow 1.00052.Moreover, Theorem 12 of [BK03℄ shows that the size of the diÆ
ult 
lause sets forthe 
ase when ea
h variable o

urs at most 6 times is 168, and RESAV 
ontains twovariables with only 5 o

uran
es. This shows the following.Lemma 2. There exists a family of sets of 2-
lauses su
h that ea
h, for some n,
onsists of 168n 2-
lauses for whi
h it is NP-hard to distinguish between the systemswhere (164�")n 
lauses 
an be satis�ed and systems where at most (163+")n 
lauses
an be satis�ed (for " < 1=2). Moreover, 8n variables in this system o

ur 5 times,while other variables have exa
tly 6 o

uren
es.



8We 
an transform a system from this theorem into an instan
e of Max-(4,6)-SATin two stages. First, we in
rease the length of all 
lauses to 4 by inserting 336n vari-ables that are for
ed to be false. For
ing them to be false requires 336�20:75 = 69723-
lauses. Se
ond, we need to in
rease the number of o

uren
es of 8n variables using2n 
lauses. Thus we in
reased the number of 
lauses in the system from 168n to7144n and we 
an 
on
lude thatTheorem 2. There exists a family of instan
es of Max-(4,6)-SAT su
h that ea
h,for some n, 
onsists of 7144n 
lauses, for whi
h it is NP-hard to distinguish betweenthe systems where (7140 � ")n 
lauses 
an be satis�ed and systems where at most(7139 + ")n 
lauses 
an be satis�ed (for " < 1=2).In the same fashion we 
an show that Max-(5,9)-SAT is also MAX-SNP-hard, butthe 
al
ulation of the provable inapproximability ratio is a bit diÆ
ult. A systemof 2-
lauses in whi
h there is a diÆ
ult gap of almost n 
lauses would have about100n 
lauses, and thus it would require an insertion of about 300n variables for
edto be false|so we in
rease the 
lause length to 5. For ea
h of the 300n variables weneed roughly 1500 
lauses that for
e it, and thus we get a system with 
a. 400; 000n
lauses. (It may be possible to de
rease this estimate by a fa
tor of 2.)Note that if there exists an unsatis�able formula of (k; s)-SAT, then there existsa system in whi
h some variable x o

urs less then s times and whi
h 
an be satis�edif and only if x is false. Su
h a system 
an be used to de�ne an Eq-redu
tion thattransform (2; s)-SAT instan
es into instan
es of (k; s)-SAT, using the same approa
has in the last two theorems. Therefore we 
an 
on
lude thatTheorem 3. If s > f(k) then (k; s)-SAT is MAX-SNP-
omplete.5 Satis�ability of Small O

urren
e Instan
esWe now turn to lower bounds on f(k), the largest integer s su
h that every instan
eof (k; s)-SAT is satis�able. Lower bounds on f(k) were given by Krato
hv��l, Savi
k�yand Tuza [KST93℄, who used the Lov�asz Lo
al Lemma to show that f(k) � b2k=ek
;they also showed f(i) = i for i � 3 and 4 � f(4) � 6.The Lov�asz Lo
al Lemma has also been used in the study of the related problemof hypergraph 
olouring; indeed this was one of its original appli
ations (see [EL75℄,[AS00℄, [B01℄, [MR02℄). A hypergraph H = (V;E) is 2-
olourable if there is a partitionV = V1[V2 su
h that ea
h edge 
ontains verti
es from both V1 and V2. For k � 2, letg(k) be the largest integer su
h that every k-uniform hypergraph in whi
h every vertexis 
ontained in at most g(k) edges is 2-
olourable. It follows from a result of Seymour[S74℄ that g(k) � k � 1 for every k, and after signi�
ant work it is now known wheng(k) � k: the Lo
al Lemma shows g(k) � k for k � 9, Alon and Bregman [AB88℄



9showed that g(k) � k for k � 8, and �nally Thomassen [T92℄ showed g(k) � kfor k � 4; while the Fano plane shows that g(3) < 3. More re
ently, M
Diarmid[M97℄ showed that it is possible to improve on bounds for g(k) obtained from theLo
al Lemma by using the `lopsided' version of the Lo
al Lemma given by Erd}os andSpen
er [ES91℄. In this se
tion we use a similar approa
h to obtain bounds on f(k).Let G be a graph with vertex set X, and let fAxgx2X be a 
olle
tion of events insome probability spa
e. We say that G is a lopsidependen
y graph for fAxgx2X if, forea
h x 2 X, and ea
h subset Y � X n ��(x), we haveP(Axj ŷ2Y Ayg � P(Ax):Here we write �(x) for the set of neighbours of x and set ��(x) = fxg [ �(x). We
an now state the Lopsided Lo
al Lemma.Theorem 4. [ES91℄ Suppose that G = (X;E) is a lopsidependen
y graph for a
olle
tion of events (Ax)x2X. If there are real numbers (qx)x2X su
h that, for ea
hx 2 X, P(Ax) � qx Yy2�(x)(1� qy)then P(Vx2X Ax) > 0.Some notation: for a 
lause C, we write C+ for the set of variables that o

ur inC without negation, and C� for the set of variables that appear negated. We writeV (C) = C + [C� for the set of all variables that o

ur in C.Theorem 5. Suppose d � k � 1 are positive integers and there is x 2 (0; 1) su
hthat x1=k((1� x)bd=2
+ (1 � x)dd=2e) > 1: (1)Then every instan
e of (k; d)-SAT has a satisfying assignment.Proof. Let C be the set of 
lauses in an instan
e of (k; d)-SAT, and let X be the set ofvariables o

urring in 
lauses from C. We de�ne a graph G with vertex set C and anedge between 
lauses C and C 0 if and only if there is a variable x that o

urs negatedin one 
lause and without negation in the other. Given a sequen
e (pi)i2X of realspi 2 [0; 1℄, we generate a random assigment for X by setting ea
h variable i 2 X trueindependently with probability pi and false otherwise. Note that thenP(C not satis�ed) = Yi2C� piY2C+(1� pi):For C 2 C, let AC be the event that C is not satis�ed. We �rst show that G isa lopsidependen
y graph for the events (AC)C2C. Indeed, let C be a 
lause in C andlet fCj : j 2 Jg be a set of 
lauses that does not 
ontain C or any of its neighbours.Let B be the event that Cj is satis�ed for every j 2 J . Let X0 be the set of variables



10that o

ur both in C and in some Cj: 
hanging the sign of all o

urren
es of someof these variables if ne
essary, we may assume that all variables in X0 o

ur withoutnegation in C. By the de�nition of G, it follows that these variables do not o

urnegated in any of the Cj. Thus AC and B are both in
reasing in the variables in X0.Sin
e A and B are independent if we 
ondition on the assignment restri
ted to X0, itfollows from the FKG inequality [FKG71℄, or the inequality of Harris [H60℄, that Aand B are positively 
orrelated, and hen
e A and B are negatively 
orrelated, whi
his the 
ondition required for a lopsidependen
y graph.Let x 2 (0; 1) satisfy (1). We will 
hoose probabilities (pi)i2X so that, for every
lause C, Yi2C� pi Yi2C+(1� pi) < x(1� x)d(C);where d(C) is the degree of C in G. Now it follows from (1) that, for 0 � i � k, wehave x1=k((1 � x)i + (1 � x)d�i) > 1(note that (1�x)i+(1�x)d�i is minimized for integers in this range when i = dd=2eor bd=2
). Thus we 
an 
hoose numbers �0; : : : ; �d 2 (0; 1) su
h that, for 0 � i � d,�i < x1=k(1� x)d�iand �i + �d�i = 1:For ea
h i 2 X, let pos(i) be the number of positive o

urren
es of i in 
lauses of C.We de�ne pi = �pos(i).For a 
lause C and a variable a 2 V (C), we de�ne dC(a) as follows: if a o

urswithout negation in C then dC(a) is the number of negated o

urren
es of a in 
lausesof C; if :a o

urs in C then dC(a) is the number of non-negated o

urren
es of a in
lauses of C. Sin
e C is adja
ent to a 
lause C 0 exa
tly when there is a variable thato

urs negated in one 
lause and without negation in the other, we have d(C) �Pa2V (C) dC(a). Now if a is not negated in C then pa = �d�dC(a), while if a is negatedthen pa = �dC(a). SoP(C unsatis�ed) = Yi2C� pi Yi2C+(1� pi) = Yi2C� �d�dC(a) Yi2C+(1 � �dC(a))= Yi2V (C) �d�dC(a) < Yi2V (C)x1=k(1� x)dC(a)� x(1 � x)d(C):It therefore follows from Theorem 4 that, with positive probability, all 
lauses of Care satis�ed and, in parti
ular, it follows that C is satis�able.We 
an now prove our lower bounds on f(k).



11Corollary 2. All instan
es of (6; 7)-SAT, (7; 13)-SAT, (8; 23)-SAT and (9; 41)-SATare satis�able.Proof. Apply Theorem 5 with x = 1=21, x = 1=47, x = 1=100 and x = 1=200respe
tively.Dubois [D90℄ showed that if every instan
e of (r; s)-SAT is satis�able then everyinstan
e of (r + 1; s + bs=r
)-SAT is satis�able. Corollary 2 therefore implies thefollowing.Corollary 3. Every instan
e of (k; k + 1)-SAT is satis�able for k � 6.We remark that Theorem 5 is not enough to show that every instan
e of (5; 6)-SAT is satis�able. Indeed, 
onsidering an instan
e in whi
h ea
h variable o

urs threetimes without negation and three times with negation, we see that we would needsome x 2 (0; 1) su
h that 2x1=5(1� x)3 > 1, but the left hand side has maximum lessthan 0.95. However, we 
onje
ture the following.Conje
ture 1. Every instan
e of (5; 6)-SAT is satis�able.Theorem 5 also gives an asymptoti
 lower bound on f(k) that is slightly betterthan that of Krato
hv��l, Savi
k�y and Tuza [KST93℄. However, it should be possibleto obtain better bounds by employing te
hniques from hypergraph 
olouring (see, forinstan
e, Radhakrishnan and Srinivasan [RS00℄).Finally, we remark that the arguments above show only the existen
e of a solutionfor instan
es of (r; s)-SAT with s � f(r). Be
k [B91℄ gave an algorithmi
 version ofthe lo
al lemma, whi
h provides that a randomized algorithm �nding a satisfyingassignment with a large probability, but his proof requires a mu
h smaller value of s.For �xed r, and s � f(r), is there a polynomial-time algorithm that �nds a satisfyingassignment for all instan
es of (r; s)-SAT?A
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