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2Problem Former Improved3-MIS and 3D-mat
hing 140 984-MIS 74 505-MIS 68 50E3-OCC-E2-LIN-2 152 140E3-OCC-2-LIN-2 121 112E3-OCC-MAX-2-SAT 788 460E3-OCC-MAX-E2-SAT 788 464E4-OCC-MAX-E2-SAT 588 268E4-OCC-MAX-2-SAT 588 2624-OCC-MAX-2-SAT 588 252E6-OCC-MAX-E2-SAT 308 164E6-OCC-MAX-2-SAT 246 160Figure 1: Summary of the results: values of k.1 Introdu
tionWe refer to [BK99℄ and [BK01℄ for a general ba
kground and notations. We de�neEd-OCC-Ek-LIN-2 as a problem of 
onstru
ting an assignment that maximizes thenumber of satis�ed equations for a given system of linear equations modulo 2 (hen
eLIN-2), where ea
h equation has exa
tly k variables (hen
e Ek) and ea
h variableo

urs exa
tly d times. If we drop an E in the a
ronym of the problem than we have\at most d o

urren
es" or \at most k variables". We repla
e Ek-LIN-2 with MAX-Ek-SAT if we maximize the number of satis�ed disjun
tive 
lauses. d-MIS problemis the problem of maximizing the size of an independent set in a d-regular graph.Ea
h result of this paper (for a Problem X 
onsidered) is of the following form:if 0 < " < 1=(k - 1), it is NP hard to approximate a Problem X to within a fa
tork=(k- 1) - ".The 
hallenge is to obtain as small k as possible for every problem. Fig. 1 summarizesthe progress of this paper as 
ompared with the previous results [BK99℄, [BK01℄, and[CC02℄.2 Ampli�ersThe notion of an ampli�er generalizes the 
on
ept of a spe
i�
 variety of expandersthat are used in proving inapproximability results. This notion was introdu
ed byPapadimitriou in [P94℄ (for dire
ted graphs) and it formalizes the 
onstru
tion of



3Papadimitriou and Yannakakis of [PY91℄, see also [AL97℄.Consider an undire
ted graph G = (V;E). We de�neCut(U) = fe 2 E : e 6� U and e 6� V-Ug and 
ut(U) = jCut(U)j.We say that G is a strong expander if for every U � V we have 
ut(U) �min(jUj; jV-Uj).We say that G is an ampli�er for X � V if it 
ontains no bad sets for X.A set A � V is bad for X if 
ut(A) < min(jX \Aj; jX-Aj).An ampli�er for X is B-regular if ea
h node in X has B- 1 neighbors andea
h node in V - X has B neighbors.
Figure 2: 3-regular ampli�ers for jXj = 4; 5; 6; 8, �'s are the elements of X.We have the following results on 
onstru
tibility of regular expanders.Theorem 1. For a set with n nodes, in random linear time one 
an 
onstru
t a3-regular ampli�er with 7n nodes and 10n edges.Proof. Berman and Karpinski [BK99℄. ❐Theorem 2. For a set with n nodes, in random linear time one 
an 
onstru
t a7-regular ampli�er with n nodes and 3n edges.Proof. Bolob�as [Bo88℄. ❐We are going to prove the following theorem.Theorem 3. For a set with n nodes, in random linear time one 
an 
onstru
t a5-regular ampli�er with 1:8n nodes and 4n edges.Proof. The 
onstru
tion is as follows: start with two sets �X = f�x0; : : : ; �x4n-1g and�U = f�u0; : : : ; �u4n-1g. Pi
k a random mat
hing between �X and �U. For i < n 
ollapse�x4i; : : : ; �x4i+3 into one node of X, and for i < 0:8n 
ollapse �u5i; : : : ; �u5i+4 into onenode of U = V - X. Repeat until the resulting graph has exa
tly 4n edges.A bad set A � V 
an be normalized. We �rst de�ne B = A\X and Ui as the set ofelements of U with exa
tly i neighbors in B. We 
an repla
e A with B[U3[U4[U5:A \ X is un
hanged and 
ut(A) does not in
rease, thus this new A is still bad.Let k = jBj and ai = jUij. Clearly, 
ut(A) = a1 + a4 + 2(a2 + a3) < k.



4We need to show that the probability that our graph is not an ampli�er 
onvergesto 0 as n in
reases. In parti
ular, the probability that a �xed set B � X de�nes a badset is mu
h smaller than C(n; k)-1, where C(n; k) is the binomial 
oeÆ
ient. Be
ausewe 
an 
hoose either B or X- B for our dis
ussion, we assume that k � n=2.Let P 0 be the probability that B de�nes a bad set, and let P = P 0C(n; k). P is anupper bound on the probability that there exists a bad set. We establish probabilityP 0 as follows: B 
ontains 4k edge ends. The other ends of these edges are in set �U,and every set of 4k su
h ends is equally probable, hen
e term C(4n; 4k)-1 in P 0. Thenwe 
ount the number of su
h sets that are 
onsistent with parameters a1; : : : ; a5. Wehave C(0:8n;a0; : : : ; a5) partitions of U into U0; : : : ; U5. For ea
h element of Ui wesele
t in C(5; i) ways the edge ends that 
an 
onne
t to set B. Thus we get thefollowing formula for P:P = 0:8n! 5a1+a4 10a2+a3 4k! 4(n- k)! n!a0! a1! a2! a3! a4! a5! 4n! k! (n - k)! :We will �nd the parameters that yield the maximum probability. We have the fol-lowing system for �i = ai=n and � = k=n:�0 + �1 + �2 + �3 + �4 + �5 = 0:8 (1)�1 + 2�2 + 2�3 + �4 = � 0 � � (2)�1 + 2�2 + 3�3 + 4�4 + 5�5 = 4� (3)�1�33 = �32�4 (4)10�21 = 25�0�2 (5)10�24 = 25�5�3 (6)Equation (1) says that the union of Ui's forms U, (2) says that 
ut(A) � k, (3)says that 
ut(B) = 4k, and equations (4-6) say that we 
annot in
rease P by little
hanges in the values of �'s.We 
onsider three ways that 
hange a 0s without 
hanging 
ut(A) and 
ut(B).First, we 
an add (1: - 3; 3;-1) to (a1; a2; a3; a4), i.e. in
rement a1, de
rement a2by 3 et
. This multiplies P with a2(a2 - 1)(a2 - 2)a4(a1 + 1)(a3 + 1)(a3 + 2) + (a3 + 3) � a32a4a1a33 :If we assume that neither this 
hange not its opposite in
rease P we obtain (4). (5)and (6) are similar.It is easy to see that (4-6) hold i� for some �;�; 
 we have�0 = � �1 = 5�� �2 = 10��2�5 = �
5 �4 = 5��
3 �3 = 10��2
Suppose that 
 > 1, then 5�5 > 2:5(�0 + �5), �1 + 4�4 > 2:5(�1 + �4), 2�2 +3�4 > 2:5(�2 + �3), whi
h with (1) and (3) imply that 4� > 2, hen
e k > n=2, a
ontradi
tion. Therefore 
 � 1.



5Be
ause 4 
ut(A) < 
ut(B), we have20��+ 80��2+ 80��2
+ 20��
3 � 5��+ 20�2 + 30��2
+ 20��
3 + 5�
5 ()4�+ 16�2 + 16�2
 � �+ 4�2 + 6�2
 + 
5 () 3�+ 12�2 + 10�2
 � 
5:If 6� > 
 and 
 � 1 then 3� + 12�2 + 10�2
 � (36 + 1236 + 1036)
5, a 
ontradi
tion.Therefore 6� < 
.Suppose that � 0 < �. Then we 
an in
rease 
ut(A), i.e. by adding (-1; 1; 1;-1) to(a0; a1; a4; a5). This 
hanges P roughly by a fa
tor of 25�0�5�-11 �-14 = 
2�-2 > 36.Therefore � 0 = �.Suppose that � < 0:5. Then we 
an de
rease n, say be removing 5 nodes fromX and 4 nodes from U, and sin
e we do not want to 
hange 
ut(A) or 
ut(B), weremove these 4 nodes from U0. The resulting 
hange in P is the fa
tor�40(0:8n)4 1(1 - �)15To show that this fa
tor is larger then 1, it suÆ
es to show that a0=0:8 � (1-�)3:75.Be
ause (1 - x)3:75 is 
onvex, (1 - 0)3:75 = 1 - 2 � 0 and (1 - 0:4)3:75 � 0:147,(1-�)3:75 � max(0:2; 1-2�). Thus it suÆ
es to show that a0=0:8 � max(0:2; 1-2�)and this is pretty easy.We 
on
lude that � 0 = � = 0:5. We 
an now repeat the reasoning that showed
 � 1 to show that in this 
ase 
 = 1. Thus�0 = �5 = � �1 = �4 = 5�� �2 = �3 = 10��2and equalities (2-3) translate into10��+ 40��2 = 0:55�+ 25��+ 50��2 = 2Thus 5 + 25� + 50�2 = 2=� = 40� + 160�2 () 22�2 + 3� - 1 = 0. This gives� � 0:155656, � = 0:197964, and thus�0 = �5 = 0:197964 �1 = �4 = 0:154072 �2 = �3 = 0:047964Stirling formula and �(x) = xx allow to approximate P1=n as�(0:8) 50:30814 100:9592 2�(0:19796)2 �(0:15407)2 �(0:04796)2 24 < 0:969:
❐



63 Eq-Redu
tionsThe following notion of a gap property was introdu
ed in [BK01℄:(f(n); g(n)) gap property of an optimization problem A means that forevery suÆ
iently small positive " it is NP-hard to distinguish betweentwo groups of instan
es of A of size n: those that have no solutions withs
ore above f(n) + "n and those that have solutions with s
ore at leastg(n) - "n.While not formalized in exa
tly that fashion, gap properties were widely used inproving lower bounds on approximation ratios that 
an be attained by polynomialtime algorithms.For example, H�astad [H97℄ has shown that if 0 < " < 0:5 then for systems of nlinear equations modulo 2 with 3 variables per equation it is NP-hard to distinguishbetween instan
es where a solution may satisfy n- " equations and instan
es whereno solution satis�es more then n=2 + " equations. Thus the problem E3-LIN-2 hasinstan
es with even number of equations modulo 2 with 3 variables ea
h, n the numberof equations in an instan
e and this problem has (n=2 + "; n - ") gap property. Wewill be omitting " terms, so we 
an say that this problem has (n=2;n) gap property.We de�ne the Eq-redu
tions as tools to prove gap properties.Consider two maximization problem, A and B with obje
tive fun
tions a andb. An Eq-redu
tion from A to B has 5 randomized polynomial time 
omputablefun
tions, �; t; �; � and r, in its des
ription:� instan
e translation � and parameter translation t; if x is an instan
e of A withparameter n then �(x) is an instan
e of B with parameter t(n);� solution normalization �; if y is a solution of �(X), then �(u) is another solutionof �(X) su
h that b(�(y)) � b(y);� solution equivalen
e � and value equivalen
e r; let SP(x) be the set of solutionsof an instan
e x of problem P, � is 1-1 onto fun
tion from SA(x) to �(SB(�(x)))su
h that b(�(s)) = r(a(s); n).Observation 4. Assume that problem A has (f(n); g(n)) gap property and that thereexists an Eq-redu
tion from A to B with the parameters des
ribed above. Then problemB has (r(f(n); n); r(g(n); n)) gap property.3.1 Redu
ing E3-LIN-2 to E2-LIN-2We refer to [BK01℄ for the 
orresponding dis
ussion on standard redu
tions for linearequations, and des
ribe a redu
tion from E3-LIN-2 into 2-LIN-2. Consider a system Eof n equations modulo 2 with 3 variables per equation. We de�ne �(E) by repla
ing,one by one, ea
h equation in E. Given an equation w+ x+ y = b, we repla
e it withS(w; x; y; b). Be
ause b is a
tually a 
onstant, we have 12 equations with 2 variables



7and 4 equations with 1 variable (whi
h must be an auxiliary one), thus t(n) = 16(n).If the parameter of an instan
e of E2 - LIN - 2) is (the number of equations withone variable, the number of equations with two variables), then t(n) = (4n; 12n).Let x be the ve
tor of the variables of E and a be the ve
tor of the auxiliaryvariables of �(E). Given a value of (x; a) we 
an 
ompute �(x; a) by 
hanging ea
h aiin su
h a way that a maximal number of equation is satis�ed, if the two 
hoi
es areequally good, we set ai = 0. Be
ause no equation involves two auxiliary variables,these value sele
tions 
annot 
on
i
t and they 
an be performed independently.The solution equivalen
e is �(x) = �(x; a 0), observe that �(x; a 0) does not dependin a 0. It is easy to see that the value equivalen
e is r(k;n) = 10n+ 2k.Value equivalen
e 10n + 2k translates (n=2;n) gap property of E3-LIN-2 into(10n+ n; 10n + 2n) = (11n; 12n) gap property of 2-LIN-2; of we wish n to refer tothe size of the new instan
e, i.e. 16n, we got (11=16 n; 12=16 n) gap.Remark 1, The system �(E) 
onsists of equations that have 1 or 2 variables. We 
ande�ne a similar redu
tion where we introdu
e a new variable z, and we �rst repla
eea
h equation w+x+y = b with w+x+y+z= b and then repla
e the new equationwith a system of 16 equations as des
ribed above. We will use � 0(E) to denote theresulting system of equations with 2 variables ea
h. This was the original redu
tionof H�astad [H97℄.Remark 2, In the subsequent redu
tions we will assume that ea
h variable in aninstan
e of 2-LIN-2 or E3-LIN-2 has a suÆ
ient number of o

uren
es, For example,we 
an repli
ate all equations n times, so in terms of new number of equations ea
hvariable o

urs at least n1=2 many times.3.2 Hardness of E3-OCC-3-LIN-2Given an instan
e of E3-LIN-2 where ea
h variable o

urs suÆ
iently often, we 
anrepla
e it with an instan
e in whi
h ea
h variable o

urs exa
tly 3 times. Supposethat we start with 2n equations, so we have 6n variable o

uren
es. We make ea
hvariable o

uren
e a separate variable; given m 
onta
t o

uren
es of a variable, weadd 6m 
he
ker o

uren
es. We 
onne
t these o

uren
es with a graph that is a3-regular ampli�er for the 
onta
t o

uren
es and then we repla
e ea
h edge fx; ygwith equality x = y � x + y = 0. As analyzed in [BK99℄, this 
reates an instan
eof E3-OCC-3-LIN-2 with 2n equations of length 3, 60n equations of length 2 and forwhi
h it is diÆ
ult to tell if we 
an satisfy almost all equations or at most (61+ ")nof them. We will 
all su
h an instan
e a Hybrid instan
e.Chleb��k and Chleb��kov�a [CC02℄ showed that we 
an redu
e the number of equa-tions in the ampli�ers by 0:9n, whi
h automati
ally improves some of the resultsdis
ussed in this note.



84 Hardness of k-MISWe are going to dis
uss now small degree instan
es of MIS problem.4.1 Hardness of 4-MISTheorem 5. For every " 2 (0; 1=49), it is NP hard to approximate 4-MIS to withina fa
tor 50=49- ".Proof. Given an instan
e of E3-LIN-2 and the 
orresponding Hybrid instan
e 
on-stru
t an instan
e of 4-MIS as follows.� For every variable x that is an ampli�er node we 
reate an edge Px = fx0; x1g.� For every ampli�er edge fx; yg we 
onne
t Px and Py with edges fx0; y1g andfx1; y0g.� For every variable x that is a 
onta
t o

uren
e we 
reate a dire
t 
onta
t, anedge Dx = f�x0; �x1g that is 
onne
ted with Px with edges fx0; �x1g and fx1; �x0g,� For an equation e � x+ y+ z = b we 
reate equation quadruple Qe of nodes ofthe form ��
 where nodes of the form ��
 where �+ � + 
 = b mod 2. We
onne
t ��
 with �x:�, �y:� and �z:
. We 
onne
t the nodes of Qe with arbitrarytwo disjoint edges.A Hybrid instan
e 
reated from an E3-LIN-2 instan
e with 2n equations is trans-lated into a graph G that has 8� 6n pairs (for nodes in the ampli�ers and the dire
t
onta
ts) and 2n Q-quadruples.Let J��
 = f�x�; �y�; �z
g and let I��
 = J��
 [ f ��
 g.Lemma 6. Given equation e � x + y + z = b, the gadget of e is Ae = Qe [ Dx [Dy [Dz. Every maximum independent set in Ae is of the form I��
.Proof. Consider an independent set J � Ae. Be
ause the four nodes of Qe are
onne
ted with a mat
hing, jJ \ Qej � 2. Note that every two nodes in Qe haveexa
tly one 
ommon neighbor in Ae - Qe and thus together they have 5 su
hneighbors. Therefore if jJ \ Qej = 2 then jJ - Qej � 2 and jJj � 3. Be
ausejJ \Dvj � 1, if jJ \Qej = 0 then jJj � 3. Finally, if jJ\Qej = 1, then for some �;�; 
we have J \Qe = f ��
 g, and �x�; �y�; �z
 are the only nodes of Ae = Qe that are not
onne
ted to ��
 . Therefore if jJj = 4 then J = I��
. ❐We will des
ribe a normalization of an independent set I in G in stages. Applyea
h rule in turn as long as possible.(i) Normalization of equation gadgets. Consider equation x + y + z = b and itsgadget Ae. One of the 
ases below must apply.Case a: there exist �;�; 
 are su
h that � + � + 
 = b mod 2 and x:� 62 I,y:� 62 I, z:� 62 I. We set I \Ae to be I��
.



9Case b: 
ase a does not hold, i.e. Px \ I = fx�g, Py \ I = fy�g, Pz \ I = fz
g,and �+ �+ 
 6= b. We set I \ Ae to be J��
.(ii) First assignment of Boolean values. To everyD- or P- pair that 
ontains a nodeof I with subs
ript � give value �, note that after the normalization of equationgadgets every D-pair has a value.(iii) Se
ond assignment of Boolean values. If Px has no Boolean value assigned andno neighbor with value :�, insert x� to I and assign value � to Px.(iv) Third assignment of Boolean values. Let W be the graph where nodes are pairswithout Boolean values, Be
ause a pair in W has a neighbor with value 0 and aneighbor with value 1, it has at most one neighbor inW. ThusW has 
onne
ted
omponents of size 1 or 2.Consider a 
onne
ted 
omponent of size 1: its pair has two neigbors with valueb and one with value :b, we give this pair value b.Consider a 
onne
ted 
omponent of size 2: it has four neighbors, two with value0 and two with value 1; we give value 0 to the elements of this 
omponent.Now every element of W is adja
ent to a di�erent edge between pairs withdi�erent Boolean values.(v) Normalization of Boolean values. After this assignment of values, the 
onne
-tions between pairs with value 0 and pairs with value 1 form a mat
hing. Ifthe size of this mat
hing within an ampli�er A is a, and this ampli�er 
ontainssome 7m P-pairs, then jI \ Aj = 7m - a. If A has k � m=2 dire
t 
onta
tpairs with value :b then the property of the ampli�ers says that a � b. We
onvert entire A and the adja
ent dire
t 
onta
ts to value b, thus assuring thatjI \ Aj = 7m; to keep I as the independent set, we may need to remove itselements from b variable quadruples.After normalization, every pair in ampli�ers and every 
onta
t pair has exa
tly oneelement in I, and we have exa
tly one value given to all o

uren
es of a variableof the original instan
e of E3-LIN-2. One 
an also see that an equation quadruple
ontains an element of I if and only if this equation is satisi�ed by the values givento the variables. Given 2n equations, we had 48n pairs and 2n quadruples, thus nvs 2n question is translated into 49n vs 50n question. ❐In terms of � de�ned in [CC02℄ we 
an improve the above bound from 50 to 6�+8.4.2 Hardness of 3-MISTheorem 7. For every " 2 (0; 1=97), it is NP hard to approximate 3-MIS to withina fa
tor 98=97- ".
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Figure 3: Gadgets of equations x+ y+ z = 1 mod 2 and x+ y+ z = 0 mod 2.Proof. Given an instan
e of E3-LIN-2 and the 
orresponding Hybrid instan
e 
on-stru
t an instan
e of 3-MIS as follows. We use the fa
t that ampli�ers of the Hybridinstan
e have the following stru
ture: all nodes are on a single 
y
le, whi
h we willview as dire
ted for the sake of the 
onstru
tion, and the nodes that are 
he
kero

uren
es are 
onne
ted with an additional mat
hing.� For every variable x that is an ampli�er node we 
reate a path Px =(xo0; xi1; xi0; xo1).� For every ampli�er 
y
le edge (x; y) we 
onne
t Px and Py with edges fxi0; yo1gand fxi1; yo0g.� For every ampli�er mat
hing edge (x; y) we 
onne
t Px and Py with edgesfxo0; yo1g and fxo1; yo0g.� For every variable x that is a 
onta
t o

uren
e we 
reate a dire
t 
onta
t, a pathDx = (�xo0; �xi1; �xi0; �xo1). We 
onne
t Px with Dx with edges edges fxo0; �xo1g andfxo1; �xo0g.� For an equation e � x+ y+ z = b we 
reate equation quadruple Qe of nodes ofthe form ��
 where �+�+ 
 = b mod 2. We 
onne
t Qe, Dx, Dy and Dz asshown in Fig. 3.A Hybrid instan
e 
reated from an E3-LIN-2 instan
e with 2n equations is trans-lated into a graph G that has 7 � 6n paths of length 4 (for nodes in the ampli�ersand the dire
t 
onta
ts) and 2n Q-quadruples.Given equation e � x + y+ z = b, the gadget of e is Ae = Qe [Dx [Dy [Dz.We de�ne J��
 = f�xo�; �xi�; �yo�; �yi�; �zo
; �zi
g and I��
 = J��
 [ f ��
 g.Lemma 8. If J � Ae is an independent set, then jJj � 7.Proof. We present the proof for the 
ase when b = 1, using the left part of Fig. 3.We 
over Ae with a 
y
le of length 7: (�xo0; �xi1; 010 ; �yo0; �yi1; �yi0; 111) and a path of



11length 9: (�zo1; �zi0; �zi1; �zo0; 001 ; �xo1; �xi0; 100 ; �yo1). Clearly, if jJj > 7 then J must havethe maximum number of nodes in the 
y
le and on the path, i.e. 3 and 5 nodesrespe
tively. Thus J 
ontains these nodes from the path: �zo1; �zi1; 001 ; �xi0 and �yo1,and only 3 nodes on the 
y
le are not their neighbors: �xo0; 111 and �yo0. However, J
annot 
ontain both 111 and �xo0. ❐Lemma 9. Assume that e � x+y+z = bmod 2, I is an independent set, J = I\Ae,xo� 2 Px \ I, yo� 2 Py \ I, zo
 2 Pz \ I, and �+ �+ 
 6= b. Then jJj � 6.Proof. In the proof of Lemma 8 we argued that if jJ \ Qej > 2 then jJj � 6.Thus we 
an assume that jJ \ Qej � 2. Assume by the way of 
ontradi
tion thatjJj > 6, then jJ \ Dvj > 1 for two v's among x; y; z, say x and y. This implies thatJ\ (Dx[Dy) = f�xi�; �xo�; �yi�; �yo�g and the only element of Qe that may belong to J is��:
 ; 
onsequently jJ\Dzj = 2. Be
ause �zo:
 is adja
ent to zo
, J\Dz = fzi
; zo
g.This is a 
ontradi
tion be
ause one of these two nodes must be a neighbor of ��:
 . ❐We will des
ribe a normalization of an independent set I in G in stages. Applyea
h rule in turn as long as possible.(i) Normalization of equation gadgets. Consider equation x + y + z = b and itsgadget Ae. One of the 
ases below must apply.Case a: there exist �;�; 
 are su
h that �+ �+ 
 = b mod 2 and xo:� 62 I,yo:� 62 I, zo:� 62 I. We set I \Ae to be I��
.Case b: 
ase a does not hold, i.e. Px \ I = fx�g, Py \ I = fy�g, Pz \ I = fz
g,and �+ �+ 
 6= b. We set I \ Ae to be J��
.(ii) Elimination of ambigous paths. We say that a ampli�er variable v is ambigous iffvo0; vo1g � I. Suppose that (x; y) is a 
y
le edge of an ampli�er, y is ambigousand x is not. If xo0 62 I we remove yoO from I and repla
e it with xi1, and ifxo1 62 I, we repla
e yo1 with xi0. Note that a mat
hing edge of an ampli�er
annot 
onne
t ambigous variables; therefore this rule eliminates all ambigousvariables.(iii) Temporary removal of nodes. If jPx \ Ij � 1, I be
omes I - Px. Let a be thenumber of su
h paths.(iv) First assignment of Boolean values. To every D- or P- path that 
ontains twonodes of I with subs
ript � give value �. Be
ause we have normalized theequation gadgets, every Dx has a value assigned.(v) Se
ond assignment of Bolean values. If Px \ I = ? and no neighbor of Pxhas assigned value :�, we assign value � to Px and insert xi� and xo� to I.Remaining Px's without assigned values have one neighbor with value 0 andone with value 1.



12(vi) Putting ba
k the removed node. For every path Px su
h that Px \ I = ?,
onsider the edge (x; y) of an ampli�er 
y
le. If yo0 62 I, insert xi0, otherwiseinsert xi1.(vii) Perform the third assignment of Boolean values and the normalization ofBoolean values as in the proof of Theorem 5.After normalization, every Px and every Dx 
ontains exa
tly two elements in I, andwe have exa
tly one value given to all o

uren
es of a variable of the original instan
eof E3-LIN-2. One 
an also see that an equation quadruple 
ontains an elementof I if and only if this equation is satisi�ed by the values given to the variables.Given 2n equations, we had 48n paths and 2n quadruples, thus n vs 2n satis�edequations translates into (48�2+1)n vs (48�2)+2n nodes in an independent set. ❐In terms of � de�ned by [CC02℄ we 
an improve the above bound from 98 to12�+ 14.4.2.1 Hardness of 3D-Mat
hingIn 3D-Mat
hing problem we are given 3-partitie hypergraph with node set V0[V1[V2and hyperedge set E su
h that for every edge e and for i = 0; 1; 2 we have e\Vij = 1.A mat
hing is a set of pairwise disjoint hyperedges and we want to approximate amaximum mat
hing.We 
an put another restri
tion on the problem: every node belongs to exa
tlytwo hyperedges. Then the line dual hypegraph is a 3-regular graph. This restri
ted3D-Mat
hing is a restri
ted 3-MIS. The restri
tion is that we 
an 
olor edges with 3
olors and ea
h node belongs to edges of 3 di�erent 
olors.We 
an provide the 3 
oloring to the instan
es of 3-MISprodu
ed in the proof of Theorem 7 if we restri
t them abit. First, the ampli�ers should form a bipartite graph,se
ond, one the 
y
les of ampli�ers some 
onta
ts shouldbe separated by six 
he
kers, and some by �ve (howeverfew).As we see here on the right, and equation gadgets 
anbe 
olored provided that (a) every two edges that 
onne
t the gadget to an ampli�erhave the same 
olor, and (b) not all edges 
onne
ting the gadget to an ampli�er havethe same 
olor.Fig. 4 shows how we 
an 
olor edges inside an ampli�er. In this �gure everypath Px is depi
ted as a 
olumn, with white and bla
k 
irles indi
ating nodes that
orrespond to the two Boolean values. Edges that 
orrespond to the mat
hing edgesof the ampli�ers are the short in
omplete edges that extend up and down from the
olumns, and edges that 
onne
t to equation gadgets are similar, ex
ept longer.
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Figure 4: Coloring in the ampli�er5 Hardness of k-OCC-MAX-2-SAT5.1 Hardness of E3-OCC-2-LIN-2 and E3-OCC-E2-LIN-2The results of this se
tions are obtained by modifying the Eq-redu
tions that aredes
ribed in the following lemma.Lemma 10. There exists an Eq-redu
tion R from E3-LIN-2 to E3-OCC-2-LIN-2 withvalue equivalen
e fun
tion 110n+ 2k and an Eq-redu
tion R 0 from E3-LIN-2 to E3-OCC-E2-LIN-2 with value equivalen
e 138n+ 2k.Proof. Given a system of equations E we des
ribe the instan
e transformation in�ve steps. Whenever we refer two an edge between variables x and y we mean theirequality, i.e. the equation x+ y = 0.(i) For R 0 only: add z to ea
h equation.(ii) For a variable x that has m o

urren
es, 
reate a 3-regular ampli�er with 2m
onta
ts. Every node in this ampli�er is a variable.(iii) Repla
e ea
h equation of E, say x0 + x1 + x2 = b with 16 equations ofS(x0; x1; x2; b). Next, repla
e ea
h variable o

uren
e in S(x0; x1; x2; b) witha new variable, o

uren
es of one variable form quadruples.(iv) Conne
t quadruples of auxiliary variables into simple 
y
les.(v) To ea
h quadruple of a variable x, say x0; x1; x2; x3 add two extra variables x4; x5and 
onne
t them into a simple 
y
le (x0; x4; x1; x2; x5; x3). Conne
t x4 and x5with two 
onta
ts of the ampli�er of x; make sure that ea
h 
onta
t is used onlyon
e in this manner.The solution normalization is des
ribed in four stages.(i) In ea
h ampli�er and ea
h 
y
le of an auxiliary variable make all values equalto the value that is the majority among the 
onta
ts, this 
annot de
rease thenumber of satis�ed equations by the very de�nition of an ampli�er. Note thata 
y
le of 4 nodes is an ampli�er for these nodes.



14a0 a1 a2 a3 ampli�erof xFigure 5: Part of the gadget repla
ing an equation with 3 variables. Theother two variables also have their 
y
les of 6 variables. Empty 
ir
lesindi
ate variables, solid 
ir
les indi
ate equations with just 1 variable,edges indi
ate equations. We 
an add variable z to the original equationto eliminate the equations with 1 variable only.(ii) Let � be the 
ommon value of the variables in the ampli�er of variable x.Consider a 
y
le of variable x in whi
h not all values are equal, and let us usethe above notation x0; : : : ; x5. Suppose that we have Æ edges between � and:� values on the 
y
le, � many :� values among x0; : : : ; x3 and 
 many :�values among x4; x5, i.e. adja
ent to the ampli�er. If Æ+ 
 � �, we 
onvert :�values to � without de
reasing the number of satis�ed equations. As � � 4 andÆ equals 2 or 4, we are done if Æ 6= 2, or if � - 
 � 2. Moreover, if � = 4, we
an 
onvert ea
h � value to :� and in
rease the number of satisfying equationsand that also normalizes the 
y
le. Thus it remains to normalize the 
ase whenÆ = 2, � = 3, 
 = 0. One 
an see that this is not possible.(iii) Now ea
h 
y
le is 
onsistent. We normalize the values in the 
y
les of auxiliaryvariables as in the normalization of �, to maximize the number of satis�edequations.(iv) Suppose that a 
y
le of an original variable x is 
onsistent, but with value :�while its ampli�er is 
onsistent with value �. We 
onvert this 
y
le to �, andrenormalize the auxiliary variables. We gain 2 equations that 
onne
t the 
y
lewith the ampli�er of x, and we loose at most 2 equations (among 16 equationsif S(x; : : :) we satisfy 10 or 12, so we 
ould drop by at most 2).The solution equivalen
e is simple: the value of x is given to all repli
a in itsampli�ers, the other variables in the new instan
e are set with some default and thenwe normalize this solution.It remains to 
al
ulate the value equivalen
e.We started with E that had n equations and 3n variable o

urren
es. In redu
tionR 0, we add z to ea
h equations, whi
h makes 4n variable o

urren
es.For ea
h equation, we made 16 equations, of whi
h 12 are satis�ed if the equationwas satis�ed, and otherwise only 10.



15In these 16 equations, we have 16 o

urren
es of auxiliary variables that are 
on-ne
ted into simple 
y
les, thus 
reating 16 satis�ed equations.An o

urren
e of an original variable has a 
y
le with 6 equations, 2 equations
onne
ting it with its ampli�er. A wheel ampli�er has 10 equations for ea
h 
onta
t,so this o

urren
e needs 20. The total number of equations for an o

urren
e is6+ 2+ 20 = 28.In Eq-redu
tion R, for ea
h original equation we 
reated 16+16+4+3�28+16=116 equations. In a normalized solution that satis�es the original equation we satisfy12+ 16+ 3� 28 = 112, and otherwise we satisfy two equations less. Thus the valueequivalen
e is r(k;n) = 110n+ 2kn.In Eq-redu
tion R 0 we have need to add 28 satis�ed equations, thus we produ
ed144n2 equations and the value equivalen
e is r(k;n) = 138n2 + 2kn. ❐We 
on
lude that (n=2;n) gap property of E2-LIN-2 implies (112=116n; 111=116n)gap property of E3-OCC-2-LIN-2. and (140=144n; 139=144n) gap property of E3-OCC-2-LIN-2.By using the same approa
h as in [BK99℄, we 
an extend the result for E3-OCC-E2-LIN-2 to an identi
al result for 3-MAX-CUT. Thus we 
an formulate this 
on
lu-sion as follows.Theorem 11. For every " 2 (0; 1=139), it is NP hard to approximate E3-OCC-E2-LIN-2 and E3-MAX-CUT to within a fa
tor 140=139 - " and to approximateE3-OCC-2-LIN-2 to within a fa
tor of 112=111- ".5.2 How to Modify Eq-Redu
tionsWe will use a modi�
ation of Eq-redu
tion from E3-LIN-2 to E3-OCC-2-LIN-2. Sup-pose that we have an instan
e X of E3-LIN-2 with 2n equations. We form a systemof 
onstraints f(X) where ea
h equation of X is repla
ed with some L 
onstraints, andin normalized solutions of f(X) the satis�ed equations of X 
orrespond to a group ofL 
onstraints where all but 4 are satis�ed, and unsatis�ed equation 
orresponds to asimilar group where all but 6 are satis�ed. If we ignore "n terms, it is hard to tellif we 
an satisfy only n or up to 2n equations of X, this maps into a questions if we
an satisfy only Ln- 6n + Ln- 4n 
onstrainst or up to Ln - 4n+ Ln- 4n, whi
hgives the hardness of the ratio (2L- 8)=(2L- 10) = (L- 4)=(L- 5). In terms of thetheorem s
hema from the introdu
tion we have K = L- 4.We split the 
onstru
tion of our group of L 
onstrains into several parts. In theredu
tion of E3-LIN-2 to E3-OCC-E2-LIN-2 su
h a group 
ontained the followingbuilding blo
ks:� 4 groups of equations that involve a single a, ea
h group had j = 8 equations(the 
y
le of 4 and the in
ident equations);� 3 x-
y
les and their 
onne
tions to their ampli�er, hen
e 3 times k = 8 equations(6 on a 
y
le, 2 to 
onne
t to the ampli�er);
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xxx xxxnand nand

4-OCC-MAX-2-SAT E3-OCC-MAX-2-SAT (E)6-OCC-: : :(E)3-OCC-MAX-E2-SAT(E)4-OCC-MAX-E2-SAT: : xxxxxx xxx nand
Figure 6: Repla
ement systems for equations with a �xed auxiliary variable.� pie
es of 3-regular ampli�ers that together have 6 
onta
ts, and the ampli�ershas l = 10 equalites per 
onta
t.This gives L = 4j+ 3k+ 6l = 116 and K = 112. We will show new versions of thesebuilding blo
ks of the redu
tion to �nd the respe
tive values of j; k and l.5.2.1 Equations with a Fixed Auxiliary VariableEquation with a �xed auxiliary variable form a system S like that:8>>><>>>: x0 + a = 1x1 + a = 0x2 + a = 0b+ a = 0 () 8>>><>>>: a = x̂0a = x̂1a = x̂2a = 0The universal form on the right 
an always be obtained if we repla
e some x's withtheir nagations. Be
ause we 
hoose the value of a, we view this system as a fun
tionfS : f0; 1g3 ! Z that returns maximum number of satis�ed equations in S. Be
ausewe want to repla
e this system with a larger one, it is 
onvenient to de
rease thevalue of this fun
tion by the number of equations in the system. Thus fS(0; 0; 0) =0; fS(0; 0; 1) = -1; fS(0; 1; 1) = -2 and fS(1; 1; 1) = -1 (note that f is symmetri
).We will 
onstru
t a system T in whi
h ea
h x o

urs twi
e and whi
h otherwisesatis�es limitations of a parti
ular variation of MAX-2-SAT. As we will see, a require-ment that the set of 
onstrains should be regular in
reases the size of T. The next�gure represents these variations of T as follows. Cir
les with an x inside indi
atevariables x0, x1 and x2; empty 
ir
les indi
ate repli
ated 
opies of a, arrows indi
ateimpli
ations, nand indi
ates a 
lause of the form :u _ :v and : indi
ates a 
lause



17of the form :u. When in a system some variables o

ur less than allowed nummberof times, we 
an add impli
ations between su
h variables; in
omplete arrows indi
atewhere we 
an do it.When we allow 
lauses of length one, we obtained j equal to 7 for 4-OCC-MAX-2-SAT, and to 8 for E3-OCC-MAX-2-SAT. Otherwise, we obtained 11 (12) for (E)3-OCC-MAX-E2-SAT, 9 (11) for (E)4-OCC-MAX-E2-SAT and 8 (9) for (E)6-OCC-MAX-E2-SAT.5.2.2 Equations of an Ampli�erFor ampli�ers we did not noti
e as yet any size savings if we allow shorter 
lauses ora below-maximal number of o

uren
es. Therefore we will skip E's when we dis
ussvarious versions of MAX-2-SAT.For 3-OCC-MAX-2-SAT we adapt 5-regular ampli�ers from Theorem 3. We re-pla
e su
h a node of degree 5 with a system of 20 impli
ations, and an equationwith a system of 4 impli
ations; thus we repla
e 1.8 node and 4 equations with 52impli
ations, so we have l = 52.For 3-OCC-MAX-2-SAT we adapt 7-regular ampli�ers from Theorem 3, i.e. strongexpanders. These ampli�ers for ea
h 
onta
t have one node and 3 edges. We repla
esu
h a node with a system of 21 impli
ations and ea
h equality edge with 2 impli
a-tions, so we get l = 27.For 6-OCC-MAX-2-SAT we adapt 9-regular \very strong" expanders. A

ordingto Bolobas [Bo88℄ a random 9-regular graph has isoperimetri
 number larger then 2;therefore if we have a minority among 
onta
ts of size k, the min-
ut between thisminority and the majority of 
onta
ts is at least 2k. As a result we 
an use this 
onta
tnode twi
e. A 
onta
t with 9 
onne
tions inside the expander and 2 
onne
tionsoutside 
an be repla
ed with a system of 22 impli
ations plus 9 impli
ations for the9 adja
ent expander edges. Thus we get l = 31=2.
Figure 7: Repla
ements of of nodes of degree 5, 7 and 11 by 3-, 4- and6-regular graphs of impli
ations.5.2.3 Equations of an x-Cy
leWe 
onne
t 
opies of x as in the Fig. 8. The adja
ent inequalities are atta
hedas follows: x0 and x3 are 
onne
ted with the ampli�er (by equality gadgets), andx1; x2; x4 and x5 with the auxiliary variables. In 
ase of 6-regular system, we have



18only 5 variables, and instead of variable x3 being 
onne
ted with a respe
tive 
onta
tof the ampli�er, say �x3, we have impli
ations x4 ! �x3 ! x5.To 
ompute l, we 
ount the number of impli
ations inside the gadgets and addimpli
ations of equality gadgets that 
onne
t them with the ampli�ers. For 3-regularsystems, equality (equation with two variables) gadget is a 
y
le of 4 impli
ations,and in other 
ases this is a pair of impli
ations. One 
an see that for 3-OCC-, 4-OCC-and 6-OCC- problems we got l = 36; 22; 13.x1 x1 x1x2 x2 x2x3 x3 x4x4 x4 x5x5 x5 x0x0 x0 �x3Figure 8: Cy
le gadgets implemented as 3-, 4- and 6-regular graphs of impli
ations.5.2.4 Summary of the MAX-2SAT Results.We summarize now the results on the small o

urren
e instan
es of MAX-2SAT.Theorem 12. For every " 2 (0; 1=(k- 1), it is NP hard to approximate a version ofMAX-2-SAT to within a fa
tor k=(k- 1) - ", where for� E3-OCC-MAX-2-SAT we have k = 464 = 4� 12+ 3� 36+ 6� 52- 4;� E3-OCC-MAX-E2-SAT we have k = 460 = 4� 11+ 3� 36+ 6� 52- 4;� E4-OCC-MAX-E2-SAT we have k = 268 = 4� 11+ 3� 22+ 6� 27- 4;� E4-OCC-MAX-2-SAT we have k = 262 = 4� 9:5+ 3� 22+ 6� 27- 4;� 4-OCC-MAX-2-SAT we have k = 252 = 4� 7+ 3� 22+ 6� 27- 4;� E6-OCC-MAX-E2-SAT we have k = 164 = 4� 9+ 3� 13+ 6� 31=2- 4;� 6-OCC-MAX-E2-SAT we have k = 160 = 4� 8+ 3� 13+ 6� 31=2- 4; �6 Open ProblemsOur 
onstru
tions have two parts: gadgets that repla
e equations of E3-LIN-2, andampli�ers. It would be very interesting to investigate how the theory of optimalgadgets 
an be applied here. Our impression is that be
ause of the degree bounds,we have quite large gadgets, e.g. for 4-OCC-MAX-2-SAT we have gadgets with morethen 90 
lauses. Exhaustive sear
h for a better gadget does not have to be feasible,but some resear
h is 
learly needed towards that end.



19The ampli�ers are not fully understood either. Moreover, systems of impli
ationsand independent set problems should have their own versions of ampli�er propertiesand a separate probabilisti
 analysis.How about the expli
it inapproximability bounds for very small o

urren
e in-stan
es of MAX-3SAT and MAX-4SAT? Very re
ently, [BKS03℄ established the �rstinapproximability results on E4-OCC-MAX-E3-SAT and E6-OCC-MAX-E4-SAT. Itwould be very interesting to shed some more light on the approximation hardness ofsu
h instan
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