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1 Introduction

Random 3-SAT formulas have been widely studied in the context of struc-
tural properties of the general satisfiability problem, cf. [BKPS98, F99,
FGO1, MF95, FS96, DBMO00, A00] and the surveys [DBSZ01] and [GPFW97].
Randomly chosen 3SAT-formulas are empirically difficult for deciding satis-
fiability and are used often as a benchmark for various testing algorithms.

In this paper we study the problem of approximability (rather than just
satisfiability) of random MAX-3SAT. We were originally motivated by a
recent paper of Feige [F02] connecting the hardness of approximation of
certain combinatorial problems , like MIN-BISECTION, to the problem of
efficient approximability of random 3SAT and the problem of refutation
of its instances. In particular, we investigate the problem of the possible
improvements of the approximation ratio of polynomial algorithms for ran-
dom MAX-3SAT over Hastad lower bound of 8/7 [H97]. We prove in this
paper that there are polynomial time algorithms approximating random
MAX-3SAT (formula by formula) to within a factor 1.0957 (a considerable
improvement over Hastad’s bound).

2 Approximation Algorithms on Random Instances

We consider a standard model of generation of random 3SAT formulas
(R3SAT-formulas). Given parameters n for the number of variables and
m for the number of of clauses, each clause is generated independently at
random by chosing three literals independently and uniformly at random.
We denote p = m/n and define a parameter A = 32—’). There are several other
models for generating R3SAT-formulas but there are not of significance to-

wards our results.

For a given (generated) R3SAT- formula F, let m(F) denote the maxi-
mum number of clauses of F' which can be satisfied. For an assignment X,
mx (F) denotes the number of clauses of I satisfied by X.

We call a polynomial time (randomized) algorithm ) an approximation
algorithm for the MAX-R3SAT problem with approximation ratio « if for
every (generated) formula F, @ outputs an assignment X such that the
probability resulting from the input and the inner algorithm’s distributions
satisfies

Pr( m(Z«Z < a) > 3/4. (1)

mx (F)



and

lim Pr( m(F) < a) =1 (2)

for any fixed p.

We call a polynomial time (randomized) algorithm @ a value approzima-
tion algorithm with approzimation ratio o for the MAX-R3SAT problem if
for every (generated) formula F, () outputs a number m*(F’) such that the
probability resulting from the input and the inner algorithm’s distributions

satisfies - (:;((1;)) < a) > 3/4.

and

for any fixed p.

3 Main Result

We prove the following main result on the approximability of the MAX-
R3SAT problem.

Theorem. There exists a polynomial time algorithm for approximating
MAX-R35AT to within ratio 1.0957.

An approximation algorithm and a proof of its correctness are given in
the next section.

4 A 1.0957-Approximation Algorithm for R3SAT

Recall that p = m/n. In our analysis, we assume that n (and m) are arbi-
trarily large with p fixed. For a formula F', let m(F’) denote the maximum
number of clauses of I which can be satisfied by a properly chosen assign-
ment of truth values to the variables. We describe an algorithm which, when
applied to an F' returns a value m*(F) (together with an assignment X') for
which we have that (1) and (2) are satisfied for & = 1.0957 and any fixed
p > 0.

Notice that there is no guarantee here as it happens elsewhere that sat-
isfiable formulae are detected with zero error probability.



We consider separately the case of "high” values and the case of "small”
values of p. For values p > 16.554, the algorithm outputs random assignment
for every formula. For smaller values of p and for each variable the algorithm
assigns greedily this variable to true if the positive literal appears at least
as many times as the negative literal. Otherwise the variable is assigned to
false. We describe now the behavior of the algorithm in detail.

4.1 The Case of "High” Values of p

We treat first the case where p = m/n > 16.554. (This separation gives
near optimal results in our method of proof.) In this case we shall show
that m(F) is near to %”, so that a random assignment will give the claimed
ratio. Let val(A, F) be the number of clauses of the random formula F' true
under the assignment A. Let B(n,p) denote a Binomial random variable
with parameters n and p and let ¢ = 1 — p. The following inequality is
implied immediately by a large deviations bound of Hoeffding (see [H64]
Theorem 1 (2.1) p. 15):

Pr(B(n,p) > n(p+1)) < ((ﬁf (ﬁ))

We take p = 0.875, ¢ = 0.125 and ¢ = 0.0957 in the above inequality to get
Pr(val(A, F')) > (Tm/8)1.0957) < 0.95899™.
This gives
E(#{A :val(A, F') > (Tm/8)1.0957) }) < 0.95899™2".

This is o(1) for p > 16.554. Thus for p satisfying p > 16.554, using Markov
inequality we have that, with probability 1 — o(1), there is no assignment
satisfying more than (7m/8)1.0957 clauses. This clearly gives us the claimed
approximation ratio for p > 16.554.

4.2 The Case of ”Small” Values of p

We consider now the case p = m/n < 16.554. (For convenience, the sepa-
rating value 16.554 belongs to both the upper and the lower domains.) We
assume for convenience that the clauses of F' are ordered. We are going to
construct the following greedy algorithm.



For each variable which appears strictly more often in positive than in
negative form, we assign it to true. and we call the corresponding positive
literal “major”. We call the corresponding negative literal “minor”. Simi-
larly, we assign to false every variable which appears stricly more often in
negative than in positive form and we call the corresponding negative lit-
eral “major”. We call the corresponding positive literal “minor”. We call
neutral all the variables which appears as many times (possibly none) in
positive or in negative form and we assign these variables to true. We de-
note by NEUTRAL the set of literals corresponding to neutral variables. We
let MAJOR (resp. MINOR) denote the set of major (respectively minor)
literals.

Let C' = ({1, {3, l3) be a fixed clause of F (say, the first one). What is the
probability that this clause is satisfied in our assignment? Note first that the

number of appearances in our formula of each fixed literal is asymptotically

(as n — oo) Poisson with parameter A = 32—”. It will be convenient to

introduce two independent random variables P, and R) and having both
this Poisson distribution. Fix attention on {;. £y is true in our assignment
either if (i) it is major, which has probability asymptotic to

q1 = Pr(P\ > R)),
or (ii) it is neutral and positive, which has probability asymptotic to
g2 = (1/2) Pr(Py= R\ - 1)
Thus, the probability ¢ that £; is true satisfies
q=q1+ g2~ Pr(Py> R\) + (1/2) Pr(Py = Ry - 1)

Claim
Pr(C satisfied) ~ 1 — (1 — ¢)°!

Proof of the claim We prove equivalently the assertion
Pr(C is not satisfied) ~ (1 — ¢)°
Let C'= ({1, (3, (3). The above probability is clearly equal to the product

7 = Pr({y is false ) Pr({y is false|(; is false) Pr({5 is false |¢; and (3 are false)

'We use ~ for asymptotic equivalence, as n — co.



It is a simple task to check that the effect on 7 of the dependencies is o(1).

This implies the claim.
O

This claim implies of course that the expectation of the total number of
clauses satisfied is asymptotic to m(1 — (1 —¢)3). We proceed now to derive
an explicit formula for ¢. We have that

Pr(Py> Ry —1) = 1/2—(1/2) Pr(P\ = R))

o] 27
= 1/2-(1/2)> A,' -
= Y
and
N gy AT
Pr(P\=Ry,—1)= e Ve
( )=y
Thus

o~ 1/24 (1/2) (i A +§36_2AL+1) (3)
2GRt A TG
We will need now the following Lemma.

Lemma 1. We have that

E(max Py, R))

7~ 2\

that is,

E(max Py, R))

Pr(Py > Ry)+ (1/2) Pr(Py = Ry — 1) = )

Proof. Note that we have

E(max ]D/\7 R/\) 1 > .9\ )\2] > A )\] -1 _ )\k
2 2 ;]6 Gzt ;]6 T PIE

!
J: k=0

It is a simple matter to check that this expression can be put into the form

(3).

a



Now we can finish the proof concerning the case p = m/n < 16.554. Fix
p = 16.554 which gives A = 24.831. Then, from (3), we get using computer
assisted analysis, ¢ ~ 0.55642 implying ¢ > 0.55641 for sufficiently large
n. The probability of satisfaction of any fixed clause is thus at least, for
sufficiently large n,

1— (1—0.55641)% = 0.91271

. This proves that, for p = 16.554, the expectation of the number of clauses
satisfied in our assignment is asymptotic to 0.91271m = 58c5; and yields
that the approximation ratio 1.0957 holds for p = 16.554. In the next
section, we prove that ¢ is non-increasing as a function of A, implying that
the approximation ratio is at least 1.0957 for every p < 16.554 Together
with the result of section 4.1, this completes the proof.

4.3 q is Non-increasing
We have to prove that ¢, given according to Lemma 1 by

E(max P\, R))
2) 7

does not increase with A.

Aside from Py and R) we introduce additional Poisson random variables
Ps with parameter § where § is an arbitrarily small positive real, P\ys and
Ry4s both with parameter A, §, A + ¢ and similarly for Ry, Rs, Ry4+s. From
the fact that the distribution Py\is is the convolution of the distributions
of Py and Ps it follows that we can wiew the pair (Pyys, Ryts) as the mix-
ture, with coefficients €720, 1 — e=2% of the pairs (Py, Ry) and (P, Rass)
or (Pyys, R)). Let Q(X,Y) denote the expectation of max(X,Y) for two
random variables X and Y.

By the above argument, we have that

Q(Pris, Prys) = e72(Q(Py, P +2(1—€e")e’Q(Py+ 1, P) +0(67)
= (1—25)Q(P/\,P/\)—I—Q(SQ(P/\—I—LP/\)—I—O((SQ)
= Q(P/\,P/\)—I—Q(SA—I—O((SQ),
where
A=Q(P\+1,R\) —Q(P\,R)).

In order to estimate A, we simply consider with each pair of values ¢, j the
corresponding pair ¢+ 1, j and observe:



- If ¢ < 7, then the max does not change.

- If ¢ > 7, then the max increases by 1.

Thus, A is just the probability that Py > 5. By symmetry we have
that

PI’(P/\ > Q/\) = 1/2—|— (1/2) PI’(P/\ = Q/\)
implying

A=6/2+4 (6/2) ()
where f(A) = 3272, e‘”%. In other words the derivative of @ is 1/2 +
(1/2) f(A). This gives
=1/2+ /

whence it follows that ¢ is non-increasing (as we wish to prove) if f is non-
increasing. Using again the decomposition above, we have that

Flu+6) = flp) = 26(f(1) — g(p) + O(6?)

with

Ze—p,lu — lu
K k+1)

Thus it suffices to prove that f(u) > ¢g(p), 1 > 0. We will use the following
Lemma.

Lemma 2. Let S = (ag, a1, ...a,,) be a finite sequence of numbers. For
any permutation 11 of the set {0, 1, ...m}, let q(S) = 377 g ajary;y. The sum
S is mazimum when 11 is the identity.

Proof. The following simple proof was suggested to us by Yves Ver-
hoeven. We have by the Cauchy-Schwarz inequality that < S,/ILS ><
||S]]-]|TLS]||, where <, > denotes the scalar product. Also ||ILS|| = [|9]].
Therefore < S,TLS >< ||S||? which is what we want.

O

We use this Lemma with ap = e‘“%. We fix some m, and let § =
(ag,ai, ...an,). We define the permutation Il on the set {0, 1, ...m} by I1(5) =
j+1for0<j<m-—1and Il{(m) =0. Then we have that ¢(S) tends to
g(p) and f(p) is at least ¢(9) because of the Lemma. Thus, for any € > 0,
we get, choosing m sufficiently large the inequality ¢(p) < f(i)+ € and this
implies of course g(u) < f(p).



5 Proof of Concentration

We now turn to the proof of concentration for the case of small values of
p, p < 16.554. We use Chebyshev’ inequality. So, we are going to prove
that the variance of the number of clauses satisfied by our assignment is
small. What we need in fact is that the ratio of the variance divided by
the square of the expectation tends to 0 as n tends to infinity but we prove
more. Note that our algorithm is only required to work with a sufficiently
large probability.

The set of clauses is clearly symmetric. Thus, by a remark of [AS92] (see
[AS92], section 4.3) it suffices to prove that for two distinct clauses C' and
C" we have that

Pr(C' TRUE and ¢’ TRUE) = Pr(C’ TRUE)?(1 + o(1)) (4)

where TRUE means true in the assignment which we define. Let u, v, w,
(resp. u’,v’, w’) be the (random) literals in C' (resp.C”).[For convenience we
consider the literals in a clause as being ordered.] For literals a,b, ... let

cl(a), cl(b)..., denote the class (MAJOR, MINOR or NEUTRAL) of a, resp.
b...

Fix a sequence (¢, ¢z, €3, €4, C5, ¢g) Of classes (i.e., each ¢; is either MA-

JOR, MINOR or NEUTRAL), and write

p1 = Pr(cl(u) = c1,cl(v) = ez, cl(w) = e3, cl(u') = ey, cl(v') = e5, cl(w') = cq)
and

p2 = Pr(cl(u) = c1,cl(v) = ez, cl(w) = c3). Pr(cl(v') = ¢, cl(v') = ¢, cl(w') = ¢3)

The proof essentially reduces to the following claim.

Claim. For any two strictly distinct literals u and v, and any two classes
¢ and ¢y, we have that

Pr(cl(u) = ¢1, cl(v) = ¢3) = Pr(cl(u) = ¢1). Pr(cl(v) = c3)(1 4+ o(1)) (5)

Proof of the claim. Let 7} denote the (random) number of occurences of
v and —w conditional on the event ¢/(v) = ¢3. Then we have that 77 < logn
with probability 1 — O(1/n). For a fixed T; the class of u is determined by
two other random variables 75 and T3:

T5 is the number of clauses which contain u conditional on the fact that
already T4 7places” are used.



T3 is the number of clauses which contain —u conditional on the fact
that already T} + 15 ”places” are used.

JFrom the fact that Ty, 7% < logn with probability 1 — O(1/n), one can
deduce (we omit the details) that the conditional distributions of each of 1%
and T3 lie at {; distance O(log n/n) of their unconditional distributions. This
implies easily the claim, with the stronger error coefficient 1+ O(logn/n).

|

The claim implies that p; = p2+0O(log n/n) conditionally on w, v, w, v/, v',
being pairwise strictly distinct literals. Now random literals are distinct with
probability at least 1 —O(1/n) so that we have in fact p; = p; £ O(logn/n)
without any conditioning.

This concludes the proof. Actually, we get a bit stronger result than it
was needed.

O

6 Value Approximation Algorithms

We notice that if we are interested only in approximating the values of
m*(F) and not in constructing an actual approximating assignment we can
use the following value approximation algorithm:

1. Compute p = m/n,

2. If p < 16.554 then output 0.91271 m,

3. If p > 16.554 then output 7/8 m.

An interesting question arises whether there exist polynomial time value ap-
prozimation algorithms for MAX-R3SAT with much better approximation
ratios « than 1.0957, or even whether there exist a polynomial time value
approximation schemes (VPTAS) approximating MAX-R3SAT within arbi-
trary approximation ratios r > 1.

A possible proof of existence of a VPTAS for MAX-R3SAT would require
though stronger concentration results than the result of this paper.

7 Further Research

We already mentioned the open problem of improving substancially the
bound 1.0957. Another intriguing question is whether approximation ratio
for the measurement of values of MAX-R3SAT can be improved considerably
over 1.0957 (existence of a VPTAS for that problem?).

10
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