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1 Introdu
tionRandom 3-SAT formulas have been widely studied in the 
ontext of stru
-tural properties of the general satis�ability problem, 
f. [BKPS98, F99,FG01,MF95, FS96, DBM00, A00℄ and the surveys [DBSZ01℄ and [GPFW97℄.Randomly 
hosen 3SAT-formulas are empiri
ally diÆ
ult for de
iding satis-�ability and are used often as a ben
hmark for various testing algorithms.In this paper we study the problem of approximability (rather than justsatis�ability) of random MAX-3SAT. We were originally motivated by are
ent paper of Feige [F02℄ 
onne
ting the hardness of approximation of
ertain 
ombinatorial problems , like MIN-BISECTION, to the problem ofeÆ
ient approximability of random 3SAT and the problem of refutationof its instan
es. In parti
ular, we investigate the problem of the possibleimprovements of the approximation ratio of polynomial algorithms for ran-dom MAX-3SAT over H�astad lower bound of 8/7 [H97℄. We prove in thispaper that there are polynomial time algorithms approximating randomMAX-3SAT (formula by formula) to within a fa
tor 1.0957 (a 
onsiderableimprovement over H�astad's bound).2 Approximation Algorithms on Random Instan
esWe 
onsider a standard model of generation of random 3SAT formulas(R3SAT-formulas). Given parameters n for the number of variables andm for the number of of 
lauses, ea
h 
lause is generated independently atrandom by 
hosing three literals independently and uniformly at random.We denote � = m=n and de�ne a parameter � = 3�2 . There are several othermodels for generating R3SAT-formulas but there are not of signi�
an
e to-wards our results.For a given (generated) R3SAT- formula F , let m(F ) denote the maxi-mum number of 
lauses of F whi
h 
an be satis�ed. For an assignment X ,mX(F ) denotes the number of 
lauses of F satis�ed by X .We 
all a polynomial time (randomized) algorithm Q an approximationalgorithm for the MAX-R3SAT problem with approximation ratio � if forevery (generated) formula F , Q outputs an assignment X su
h that theprobability resulting from the input and the inner algorithm's distributionssatis�es Pr� m(F )mX(F ) � �� � 3=4: (1)2



and limn!1Pr� m(F )mX(F ) � �� = 1 (2)for any �xed �.We 
all a polynomial time (randomized) algorithm Q a value approxima-tion algorithm with approximation ratio � for the MAX-R3SAT problem iffor every (generated) formula F , Q outputs a number m�(F ) su
h that theprobability resulting from the input and the inner algorithm's distributionssatis�es Pr� m(F )m�(F ) � �� � 3=4:and limn!1Pr� m(F )m�(F ) � �� = 1for any �xed �.3 Main ResultWe prove the following main result on the approximability of the MAX-R3SAT problem.Theorem. There exists a polynomial time algorithm for approximatingMAX-R3SAT to within ratio 1.0957.An approximation algorithm and a proof of its 
orre
tness are given inthe next se
tion.4 A 1.0957-Approximation Algorithm for R3SATRe
all that � = m=n: In our analysis, we assume that n (and m) are arbi-trarily large with � �xed. For a formula F , let m(F ) denote the maximumnumber of 
lauses of F whi
h 
an be satis�ed by a properly 
hosen assign-ment of truth values to the variables. We des
ribe an algorithm whi
h, whenapplied to an F returns a value m�(F ) (together with an assignment X) forwhi
h we have that (1) and (2) are satis�ed for � = 1:0957 and any �xed� > 0.Noti
e that there is no guarantee here as it happens elsewhere that sat-is�able formulae are dete
ted with zero error probability.3



We 
onsider separately the 
ase of "high" values and the 
ase of "small"values of �. For values � � 16:554, the algorithm outputs random assignmentfor every formula. For smaller values of � and for ea
h variable the algorithmassigns greedily this variable to true if the positive literal appears at leastas many times as the negative literal. Otherwise the variable is assigned tofalse. We des
ribe now the behavior of the algorithm in detail.4.1 The Case of "High" Values of �We treat �rst the 
ase where � = m=n � 16:554. (This separation givesnear optimal results in our method of proof.) In this 
ase we shall showthat m(F ) is near to 7m8 , so that a random assignment will give the 
laimedratio. Let val(A; F ) be the number of 
lauses of the random formula F trueunder the assignment A. Let B(n; p) denote a Binomial random variablewith parameters n and p and let q = 1 � p. The following inequality isimplied immediately by a large deviations bound of Hoe�ding (see [H64℄Theorem 1 (2.1) p. 15):Pr(B(n; p) � n(p+ t)) �  � pp+ t�p+t � qq � t�q�t!n :We take p = 0:875; q = 0:125 and � = 0:0957 in the above inequality to getPr(val(A; F )) � (7m=8)1:0957)� 0:95899m:This givesE(#fA : val(A; F ) � (7m=8)1:0957)g)� 0:95899m2n:This is o(1) for � � 16:554. Thus for � satisfying � � 16:554, using Markovinequality we have that, with probability 1 � o(1), there is no assignmentsatisfying more than (7m=8)1:0957 
lauses. This 
learly gives us the 
laimedapproximation ratio for � � 16:554.4.2 The Case of "Small" Values of �We 
onsider now the 
ase � = m=n � 16:554. (For 
onvenien
e, the sepa-rating value 16:554 belongs to both the upper and the lower domains.) Weassume for 
onvenien
e that the 
lauses of F are ordered. We are going to
onstru
t the following greedy algorithm.4



For ea
h variable whi
h appears stri
tly more often in positive than innegative form, we assign it to true. and we 
all the 
orresponding positiveliteral \major". We 
all the 
orresponding negative literal \minor". Simi-larly, we assign to false every variable whi
h appears stri
ly more often innegative than in positive form and we 
all the 
orresponding negative lit-eral \major". We 
all the 
orresponding positive literal \minor". We 
allneutral all the variables whi
h appears as many times (possibly none) inpositive or in negative form and we assign these variables to true. We de-note by NEUTRAL the set of literals 
orresponding to neutral variables. Welet MAJOR (resp. MINOR) denote the set of major (respe
tively minor)literals.Let C = (`1; `2; `3) be a �xed 
lause of F (say, the �rst one). What is theprobability that this 
lause is satis�ed in our assignment? Note �rst that thenumber of appearan
es in our formula of ea
h �xed literal is asymptoti
ally(as n ! 1) Poisson with parameter � = 3�2 . It will be 
onvenient tointrodu
e two independent random variables P� and R� and having boththis Poisson distribution. Fix attention on `1. `1 is true in our assignmenteither if (i) it is major, whi
h has probability asymptoti
 toq1 = Pr(P� � R�);or (ii) it is neutral and positive, whi
h has probability asymptoti
 toq2 = (1=2) Pr(P� = R� � 1)Thus, the probability q that `1 is true satis�esq = q1 + q2 � Pr(P� � R�) + (1=2) Pr(P� = R� � 1)Claim Pr(C satis�ed) � 1� (1� q)31Proof of the 
laim We prove equivalently the assertionPr(C is not satis�ed) � (1� q)3Let C = (`1; `2; `3). The above probability is 
learly equal to the produ
t� := Pr(`1 is false ) Pr(`2 is falsej`1 is false) Pr(`3 is false j`1 and `2 are false)1We use � for asymptoti
 equivalen
e, as n!1.5



It is a simple task to 
he
k that the e�e
t on � of the dependen
ies is o(1).This implies the 
laim. 2This 
laim implies of 
ourse that the expe
tation of the total number of
lauses satis�ed is asymptoti
 to m(1� (1� q)3). We pro
eed now to derivean expli
it formula for q. We have thatPr(P� � R� � 1) = 1=2� (1=2) Pr(P� = R�)= 1=2� (1=2) 1Xj=0 e�2� �2j(j!)2and Pr(P� = R� � 1) = 1Xj=0 e�2� �2j+1j!(j + 1)!Thus q � 1=2 + (1=2)0� 1Xj=0 e�2� �2j(j!)2 + 1Xj=0 e�2� �2j+1j!(j + 1)!1A (3)We will need now the following Lemma.Lemma 1. We have thatq � E(maxP�; R�)2�that is, Pr(P� � R�) + (1=2) Pr(P� = R� � 1) = E(maxP�; R�)2�Proof. Note that we haveE(maxP�; R�)2� = 12� 0� 1Xj=1 je�2� �2j(j!)2 + 2 1Xj=1 je���jj! 0�j�1Xk=0 e���kk!1A1A :It is a simple matter to 
he
k that this expression 
an be put into the form(3). 26



Now we 
an �nish the proof 
on
erning the 
ase � = m=n � 16:554. Fix� = 16:554 whi
h gives � = 24:831. Then, from (3), we get using 
omputerassisted analysis, q � 0:55642 implying q � 0:55641 for suÆ
iently largen. The probability of satisfa
tion of any �xed 
lause is thus at least, forsuÆ
iently large n, 1� (1� 0:55641)3 = 0:91271. This proves that, for � = 16:554, the expe
tation of the number of 
lausessatis�ed in our assignment is asymptoti
 to 0:91271m = m1:09564 and yieldsthat the approximation ratio 1.0957 holds for � = 16:554. In the nextse
tion, we prove that q is non-in
reasing as a fun
tion of �, implying thatthe approximation ratio is at least 1.0957 for every � � 16:554 Togetherwith the result of se
tion 4.1, this 
ompletes the proof.4.3 q is Non-in
reasingWe have to prove that q, given a

ording to Lemma 1 byq = E(maxP�; R�)2� ;does not in
rease with �.Aside from P� and R� we introdu
e additional Poisson random variablesPÆ with parameter Æ where Æ is an arbitrarily small positive real, P�+Æ andR�+Æ both with parameter �; Æ; �+ Æ and similarly for R�; RÆ; R�+Æ. Fromthe fa
t that the distribution P�+Æ is the 
onvolution of the distributionsof P� and PÆ it follows that we 
an wiew the pair (P�+Æ; R�+Æ) as the mix-ture, with 
oeÆ
ients e�2Æ; 1 � e�2Æ of the pairs (P�; R�) and (P�; R�+Æ)or (P�+Æ; R�): Let Q(X; Y ) denote the expe
tation of max(X; Y ) for tworandom variables X and Y .By the above argument, we have thatQ(P�+Æ; P�+Æ) = e�2Æ(Q(P�; P�) + 2(1� e�Æ)e�ÆQ(P� + 1; P�) +O(Æ2)= (1� 2Æ)Q(P�; P�) + 2ÆQ(P� + 1; P�) + O(Æ2)= Q(P�; P�) + 2Æ�+ O(Æ2);where � = Q(P� + 1; R�)�Q(P�; R�):In order to estimate �, we simply 
onsider with ea
h pair of values i; j the
orresponding pair i+ 1; j and observe:7



- If i < j, then the max does not 
hange.- If i � j, then the max in
reases by 1.Thus, � is just the probability that P� � Q�. By symmetry we havethat Pr(P� � Q�) = 1=2 + (1=2) Pr(P� = Q�):implying � = Æ=2 + (Æ=2)f(�)where f(�) = P1k=0 e�2��2kk!2 : In other words the derivative of Q is 1=2 +(1=2)f(�). This gives q(�) = 1=2 + Z �0 f(�)2�when
e it follows that q is non-in
reasing (as we wish to prove) if f is non-in
reasing. Using again the de
omposition above, we have thatf(�+ Æ) = f(�)� 2Æ(f(�)� g(�)) +O(Æ2)with g(�) = 1Xk=0 e���kk! e�� �k+1(k + 1)!Thus it suÆ
es to prove that f(�) � g(�); � > 0. We will use the followingLemma.Lemma 2. Let S = (a0; a1; :::am) be a �nite sequen
e of numbers. Forany permutation � of the set f0; 1; :::mg, let q(S) =Pmj=0 aja�(j). The sumS is maximum when � is the identity.Proof. The following simple proof was suggested to us by Yves Ver-hoeven. We have by the Cau
hy-S
hwarz inequality that < S;�S >�jjSjj:jj�Sjj, where <;> denotes the s
alar produ
t. Also jj�Sjj = jjSjj.Therefore < S;�S >� jjSjj2 whi
h is what we want. 2We use this Lemma with ak = e�� �kk! . We �x some m, and let S =(a0; a1; :::am). We de�ne the permutation � on the set f0; 1; :::mg by �(j) =j + 1 for 0 � j � m � 1 and �(m) = 0. Then we have that q(S) tends tog(�) and f(�) is at least q(S) be
ause of the Lemma. Thus, for any � > 0,we get, 
hoosing m suÆ
iently large the inequality g(�) � f(�)+ � and thisimplies of 
ourse g(�) � f(�). 8



5 Proof of Con
entrationWe now turn to the proof of 
on
entration for the 
ase of small values of�, � � 16:554. We use Chebyshev' inequality. So, we are going to provethat the varian
e of the number of 
lauses satis�ed by our assignment issmall. What we need in fa
t is that the ratio of the varian
e divided bythe square of the expe
tation tends to 0 as n tends to in�nity but we provemore. Note that our algorithm is only required to work with a suÆ
ientlylarge probability.The set of 
lauses is 
learly symmetri
. Thus, by a remark of [AS92℄ (see[AS92℄, se
tion 4.3) it suÆ
es to prove that for two distin
t 
lauses C andC0 we have thatPr(C TRUE and C 0 TRUE) = Pr(C TRUE)2(1 + o(1)) (4)where TRUE means true in the assignment whi
h we de�ne. Let u; v; w,(resp. u0; v0; w0) be the (random) literals in C (resp.C 0).[For 
onvenien
e we
onsider the literals in a 
lause as being ordered.℄ For literals a; b; ::: let
`(a); 
`(b):::, denote the 
lass (MAJOR, MINOR or NEUTRAL) of a, resp.b... Fix a sequen
e (
1; 
2; 
3; 
4; 
5; 
6) of 
lasses (i.e., ea
h 
i is either MA-JOR, MINOR or NEUTRAL), and writep1 = Pr(
`(u) = 
1; 
`(v) = 
2; 
`(w) = 
3; 
`(u0) = 
4; 
`(v0) = 
5; 
`(w0) = 
6)andp2 = Pr(
`(u) = 
1; 
`(v) = 
2; 
`(w) = 
3):Pr(
`(u0) = 
1; 
`(v0) = 
2; 
`(w0) = 
3)The proof essentially redu
es to the following 
laim.Claim. For any two stri
tly distin
t literals u and v, and any two 
lasses
1 and 
2, we have thatPr(
`(u) = 
1; 
`(v) = 
2) = Pr(
`(u) = 
1):Pr(
`(v) = 
2)(1 + o(1)) (5)Proof of the 
laim. Let T1 denote the (random) number of o

uren
es ofv and :v 
onditional on the event 
`(v) = 
2. Then we have that T1 � lognwith probability 1�O(1=n). For a �xed T1 the 
lass of u is determined bytwo other random variables T2 and T3:T2 is the number of 
lauses whi
h 
ontain u 
onditional on the fa
t thatalready T1 "pla
es" are used. 9



T3 is the number of 
lauses whi
h 
ontain :u 
onditional on the fa
tthat already T1 + T2 "pla
es" are used.>From the fa
t that T1; T2 � log n with probability 1�O(1=n), one 
andedu
e (we omit the details) that the 
onditional distributions of ea
h of T2and T3 lie at `1 distan
e O(logn=n) of their un
onditional distributions. Thisimplies easily the 
laim, with the stronger error 
oeÆ
ient 1 + O(logn=n).2The 
laim implies that p1 = p2�O(logn=n) 
onditionally on u; v; w; u0; v0; w0being pairwise stri
tly distin
t literals. Now random literals are distin
t withprobability at least 1�O(1=n) so that we have in fa
t p1 = p2�O(logn=n)without any 
onditioning.This 
on
ludes the proof. A
tually, we get a bit stronger result than itwas needed. 26 Value Approximation AlgorithmsWe noti
e that if we are interested only in approximating the values ofm�(F ) and not in 
onstru
ting an a
tual approximating assignment we 
anuse the following value approximation algorithm:1. Compute � = m=n,2. If � � 16:554 then output 0.91271 m,3. If � > 16:554 then output 7/8 m.An interesting question arises whether there exist polynomial time value ap-proximation algorithms for MAX-R3SAT with mu
h better approximationratios � than 1:0957, or even whether there exist a polynomial time valueapproximation s
hemes (VPTAS) approximating MAX-R3SAT within arbi-trary approximation ratios r > 1.A possible proof of existen
e of a VPTAS for MAX-R3SAT would requirethough stronger 
on
entration results than the result of this paper.7 Further Resear
hWe already mentioned the open problem of improving substan
ially thebound 1:0957. Another intriguing question is whether approximation ratiofor the measurement of values of MAX-R3SAT 
an be improved 
onsiderablyover 1:0957 (existen
e of a VPTAS for that problem?).10
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