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1 Introdu
tionSigni�
ant re
ent results 
on
erning existen
e of polynomial time approximations
hemes (PTASs) for dense instan
es of severalNP-hard problems su
h as MAX-CUT, MAX-k-SAT, BISECTION, DENSE-k-SUBGRAPH, and dense MAX-SNPproblems have been obtained in Arora, Karger and Karpinski [AKK95℄, Fernan-dez de la Vega [F96℄, Arora, Frieze and Kaplan [AFK96℄, Frieze and Kannan[FK97℄. Still more re
ently, the approximability of dense instan
es of NP-hardproblems has been investigated from the point of view of the query 
omplexity.Goldrei
h, Goldwasser and Ron [GGR96℄ show that a 
onstant size sample issuÆ
ient to test whether a graph has a 
ut of a 
ertain size. Frieze and Kannan[FK97℄ obtained faster approximations for all dense MAX-CSP problems. Alon,Fernandez de la Vega, Kannan and Karpinski [AFKK01℄ su

eeded further inimproving eÆ
ien
y and sample 
omplexity of the underlying approximations ofdense MAX-CSP 
lasses. Re
all that a PTAS for a given optimization problemis a family (A�) of algorithms indexed by a parameter � 2 (0;1) where ea
halgorithm runs in polynomial time and, for ea
h �, the algorithm A� has approx-imation ratio 1 � � (or 1 + � for a minimization problem). In most 
ases, theinstan
es are graphs, and a dense graph is de�ned as a graph with �(n2) edgeswhere n is the number of verti
es. (In some 
ases, the algorithms apply onlyto graphs with minimum degree �(n).) Some of the problems 
onsidered in thepapers mentioned above, su
h as MAX-CUT, are MAX-SNP-hard, and thus, ifP 6= NP, have no PTASs when the set of instan
es is not restri
ted.In this paper, we adress the question of whether the density 
ondition 
an berelaxed. This possibility was anti
ipated in [AKK95℄. The next two theoremsgive a partial answer to this query.Re
all that the density d(G) of a graph G is de�ned byd(G) =  n2!�1jE(G)j;and an average degree is de�ned as d(G)n.Theorem 1. MAX-CUT problem does have a PTAS on the set of graphs G withdensity 
(1= log n).We generalize our result to subdense 
lasses of general MAX-2CSP problems (
f.for de�nitions [KSW97℄).A density d(C) of an instan
e of an MAX-2CSP problem is de�ned byd(C) = �n2��1N for N a number of 
onstraints of C.Theorem 2. MAX-2CSP has a PTAS on the set of instan
es of density
(1=log n). 2



2 Proof of Theorem 12.1 Results on Representativity.Assume that we have an instan
e G = (V;E) of MAX-CUT with jV j = n verti
esand dn2=2 edges where d = 
(1= log n). The weight of a set of verti
es U � Vis de�ned as the sum of the degrees of the verti
es in U . In parti
ular, we de�neW = dn2 as the weight of V . For 
onsisten
y of notation, we write wv for thedegree of v, whereas �(v) will denote the set of neighbors of v in G. We follow avariant of a 
on
ept introdu
ed in [GGR96℄ (see also [FKK02℄ and [F96℄) of, so
alled, set representativity. To suit our purpose, we formulate it as follows.De�nition 1 For any subset T � V and v 2 V , let
(v; T ) = j�(v) \ T j:Consider a partition P = (L;R) of V: For T � V , de�ne TL = T \L; TR = T \R.T is 
alled (Æ; �)-representative with respe
t to P if for every vertex v ex
eptperhaps for a subset of ex
eptional verti
es of weight at most ÆW , we have�����n
(v; TL)jT j � 
(v; L)����� � �wv;and �����n
(v; TR)jT j � 
(v; T )����� � �wv:A vertex whi
h is not ex
eptional is 
alled normal.We will need (�2; �=10)-representativity. Let us show that we 
an a
hieve thiswith a suitable t = jT j.Lemma 1 Let t be any �xed integer � 1. Let T be a random sample (possiblywith ties) obtained by pi
king independently with repla
ement t points ui 2 V withthe uniform distribution. Let v 2 V be any �xed vertex and let TL; TR; 
(v; TL)and 
(v; TR) be de�ned as in de�nition 1. Then we have thatPr �����n
(v; TL)t � 
(v; L)����� � �wv! � exp(��2twx2jV j ) (1)and, Pr �����n
(v; TR)t � 
(v;R)����� � �wv! � exp(��2twx2jV j ) (2)3



Proof: We have that 
(v; TL) is Binomial with parameters tL and p = 
LjV j with
L = j�(v) \ Lj. Thus, by Hoe�ding- Cherno�,Pr �����n
(v; TL)t � 
(v; L)����� � �wv! = Pr �����
(v; TL)� t
(v; L)n ����� � t�wvn !� 2 exp(� �2tw2v2n
(v; TL))� 2 exp(��2twv2n )� 2 exp(��4td2n )if wv � �2dn2 and Pr �����n
(v; TL)t � 
(v; L)����� � �wv! � �3=20if wv � �2dn2 and t � 10 log(1=�)=(d�4) and � is suÆ
iently small. Note that this
hoi
e of t has logarithmi
 size for d = 
(1= log n) and we 
an thus a�ord as weshall do to perform exhaustive sear
h on the bi-partitions of TWe 
an now prove that (�2 � �=10)-representativity holds.Let T be a random sample of V with size jT j = t, de�ned as just above and let(L;R) be an arbitrary bipartition of V . As we have just proved, the inequalities1 and 2 hold for any �xed vertex of weight at least �2dn2 with probability at least1��3=20 implying that the total weight of the ex
eptional verti
es has expe
tationat most W�320 . By Markov inequality, the weight of these verti
es will not ex
eedW�22 with probability 1� �=10. Adding the weight of the small verti
es gives the
laimed total W�2. This proves:Lemma 2 Fix t = 10 log(1=�)=(d�4). Then, with probability at least 1 � �=10, Tis (�2; �=10)-representative with respe
t to (L;R).Proof: See above.Lemma 3 Let V1; V2; :::V` be a random partition of V in to sets of 
ardinality n�.Then with probability at least 1 � �2 we have:Pv2Vj wv � 2�W . With probability� 9=10 we have PjPu;v2Vj 
(u; v) � 11�W .Proof: The proof is straightforward by using Markov inequality.4



2.2 The AlgorithmThe algorithm takes as input a graph G(V;E) on n verti
es with density d =
(1= log n). It makes a series of guesses and returns with probability at least 4=5when all these guesses are 
orre
t a 
ut of G whose value is within (1 + O(�) ofthe optimum. We let t = 2d log(3=�)=�4.1. Compute vertex weights wv = degree(v) and total weight W = Pv wv =2jE(G)j.2. Let ` = 1=� and de�ne a partition V1; V2; :::; V` of V by pla
ing ea
h vertexin a randomly 
hosen Vj.3. Let Po = (L;R) be an optimum 
ut of G. Let (Lj ; Rj) be the partition of Vjindu
ed by Po. In the next phase the algorithm will 
onstru
t indu
tivelya sequen
e of \hybrid" partitions P0; P1; :::; Pj; :::; P` where the �rst hybridis P0, the last partition P` is the output, and su
h that, for ea
h �xed j, Pj
oin
ides with P0 on ea
h of the sets Vj+1; Vj+2; :::; V`:4. For ea
h j = 1; 2; : : : ; `, do the following :(a) Let Tj�1 denote a random multiset of V obtained by pi
king t times avertex v of V a

ording to the uniform probability distribution on V .(b) By exhaustive sear
h, guess the partition (T 0j�1; T 00j�1) indu
ed onTj�1 by (A1; B1); : : : ; (Aj�1; Bj�1); (Lj; Rj); (Lj+1; Rj+1j) : : : ; (L`; R`).That is, 
lassify the verti
es of Tj�1 whi
h are in V1; V2; : : : ; Vj�1 a
-
ording to the partition being built by the algorithm, and 
lassify theremaining verti
es of Tj�1 a

ording to the optimal partition .(
) For v 2 Vj , let b̂(v) = j�(v) \ T"j�1j � j�(v) \ T 0j�1j(d) Constru
t a partition (Aj; Bj) of Vj by pla
ing the jVjj=2 verti
es ofVj with non-negative values of b̂(v) in Aj and the others in Bj.Let A = [jAj and B = [jBj.5. Output the best of the 
uts (A;B) thus 
onstru
ted.2.3 The AnalysisRe
all that for ea
h j 2 f0; :::; `g Pj is the partition whi
h agrees with the par-titions (A1; B1); :::; (Aj; Bj) 
onstru
ted by the algorithm in V1; :::; Vj, and whi
hagrees with the optimal partition (L;R) in Vj+1; :::; V`. We let EXj denote theset of ex
eptional verti
es o

uring in the jth phase.5



De�nition 2 Consider a partition P = (L;R) of V . The unbalan
e of a vertexv 2 V with respe
t to P is the quantity
ub(v) = j�(u) \Rj � j�(u) \ LjLemma 4 If Tj�1 is representative with respe
t to Pj�1, then we have thatCOST(Pj�1)�COST(Pj) � 2� Xv2VJ wv + Xv2EXj wv +Wjwhere Wj denotes the number of edges inside Vj .Proof: Let Uj denote the set of verti
es whi
h are pla
ed di�erently in Pj�1 andPj . Clearly Uj � Vj. Let u 2 Uj and let Pj�1(u) be the partition obtained fromPj�1 by 
hanging the side of U . We have then that:COST(Pj�1)�COST(Pj) � Xu2UJ(COST(Pj�1)�COST(Pj(u))+Wj:+ Xv2EXjwv+Wj:Assume that 
ub(u) is non-negative whi
h means that u is on the left-side (L) ofPj�1. We have(COST(Pj�1)� COST(Pj(u)) = j�(u) \ Rj � j�(u) \ LjAssume that u is normal. [Otherwise the 
ontribution of u to the loss is boundedabove by its weight and 
ounted separetely.℄. Then, the �rst term in the right-sideof the above is approximated within �wu by the quantity jV jjT j j�(u) \ TRj and these
ond term is approximated by the quantity jV jjT j j�(u) \ TRj. Thus we get thatCOST(Pj�1)� COST(Pj(u) � 
ub(u)(u) + 2�wu;Summing over u 2 Vj gives us then the lemma.Lemma 5 With probability at least 4=5, we have thatCOST(P0)� COST(P` � 14�WProof: Observe that Lemma 2 holds simultaneously for all j with probability atleast 9=10 and also that our bound 11�W for the total number of edges insidethe Vj holds with probability 9=10. Summing the bounds given by the pre
edinglemma for ea
h j gives the 
laimed result, with probability at least 4/5.6



3 Proof of Theorem 2A PTAS for MAX-2CSP with density 
(1= log n) 
an be given along the samelines as our PTAS for subdense MAX-CUT. The only really new feature is anadequate version of representativity. We restri
t ourselves to formulate this newversion and show that it holds with suitable values of the parameters, again withthe logarithmi
 sample size.Let C be an instan
e of MAX-2CSP on a set V of n boolean variables. As usual,we de�ne the density of C by d = jCjn2We denote by N = jCj the number of 
onstraints in the instan
e. Fix an assign-ment a and let T denote a �xed subset of V . For ea
h variable x let n1(x) (resp.n0(x)) denote the number of 
onstraints 
ontaining x whi
h are true when x isset to true [resp. to false℄ and the other variables are set a

ording to a. Let n(x)be the total number of o

urren
es of x. We also refer to n(x) as the weight of x.Let n1(x; T ) [resp. n0(x; T )℄ denote the number of 
onstraints 
ontaining x andanother variable in T whi
h are true when x is set to true [resp. to false℄ and theother variables are set a

ording to a.De�nition 3 (Representativity for MAX-2CSP) The set of variables T issaid to be (Æ � �)-representative with respe
t to the assignement a if for everyvariable v ex
ept perhaps for a subset of ex
eptional variables of weight at mostÆW , we have ����� njT jn1(x; T )� n1(x)����� � �n(x)and ����� njT jn0(x; T )� n0(x)����� � �n(x):The following lemma is proved as its MAX-CUT 
ounterpart.Lemma 6 Let t be any �xed integer � 1. Let T be a random, uniformly pi
kedsample of the variables with size t = jT j. Let x 2 V be any �xed variable and letn(x); n1(x); n1(x; T ); n0(x); n0(x; T ) be de�ned as above. Then we have that, fori=0,1, Pr ����� njT jni(x; T )� ni(x)����� � �n(x)! � 1� 2 exp � �2tn(x)232nni(x)! (3)[The 32 in the right-hand side of 4 
omes from the fa
t that there are 16 distin
tboolean fun
tions of 2 variables.℄ 7



Assuming that n(x) � �2dn, we get that, for i = 0; 1,Pr ����� njT jni(x; T )� ni(x)����� � �n(x)! � 1 � 2 exp ��4td32 !Now assume furthermore t = 150 log(1=�)=(�4d). This givesPr ����� njT jni(x; T )� ni(x)����� � �n(x)! � 1 � �3=20for suÆ
iently small �, again for i = 0; 1. Sin
e the total weight of the variablesx with n(x) � �2dn 
learly does not ex
eed �2dn2 � �2N , we have, reasoning asin the previous se
tion, that for our 
hoi
e of t, T is (�2; �=10)-representative.On
e we know that the above representativity property holds, the design of aPTAS for subdense MAX-2CSP is similar to the design of the PTAS for MAX-CUT of the pre
eding se
tion.4 Open problemsThis work raises the following questions. What about subdense MAX-rCSP prob-lems for arbitrary r? Our method of proving of Theorem 2 gives an apparentlymu
h weaker result in the 
ase of r � 3. Can our method be extended to someother even more relaxed density 
lasses of MAX-CUT and MAX-2CSP?A
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