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1 Introdu
tionThe MIN-BISECTION problem of dividing a given graph into two equal halves so as tominimize the number of edges or the sum of their weights a
ross the partition belongs to themost intriguing problems now in the area of 
ombinatorial optimization. The reason is thatwe do not know at the moment how to deal with the minimization global 
onditions likepartitioning the sets of verti
es into halves. The MIN-BISECTION problem arises naturallyin several 
ontexts ranging from 
ombinatorial optimization to 
omputational geometry andstatisti
al physi
s [H97℄. At the moment we do not have any approximation hardness resultfor MIN-BISECTION 
f. [BK01℄, thus we 
annot ex
lude a possibility of existen
e of a PTASfor that problem. On other hand the best known approximation fa
tor for that problem isonly O(log2 n) [FK00℄.Here we 
onsider the metri
 version of that problem: we 
onsider a �nite set V of pointswhi
h we 
all verti
es together with a metri
 d(:; :) on V and we ask for a partition of V intotwo equal parts su
h that the sum of the distan
es from the points of one part to the pointsin the other is minimized. It is easy to see that the metri
 MIN-BISECTIOM is NP-hardin exa
t setting even if restri
ted to weights 1 and 2. In this paper we prove somewhatsurprisingly that the general metri
 MIN-BISECTION possesses a PTAS.We draw on two lines of resear
h to develop our algorithm: One is by now the well knownmethods of so-
alled exhaustive sampling for additive approximation for optimization prob-lems su
h as MAX-CUT [AKK95℄, [F96℄, [GGR96℄, [FK96℄, [FK97℄, [AFKK01℄. The se
ondone 
onne
ts previous papers on approximate algorithms for metri
 problems and weighteddense problems [FK01℄ and [FVK00℄.We des
ribe now some of the new ideas whi
h we used espe
ially in 
ontrast to [FK01℄. Themain problem was the problem of sampling. Just as in [FK01℄ uniform sampling does notwork, and we need to sample by pi
king ea
h vertex with a probability proportional to thesum of its distan
es to the other verti
es. This was 
ir
umvented in [FK01℄ by dividing ea
hvertex into an appropriate number of \
lones" and doing standard sampling on the set of
lones. Then one 
ould 
on
lude easily from the fa
t that the 
lones of ea
h �xed vertex gotogether in a maximum 
ut. This does not hold anymore for MIN-BISECTION (and alsoMAX-BISECTION) where we 
annot use this 
loning pro
edure. We 
ir
umvent this byguessing the pla
ement of the outliers.We display �rst the NP-hardness of metri
 MIN-BISECTION in exa
t setting.Proposition 1. Metri
 MIN-BISECTION is NP-hard in exa
t setting.Proof: We use the fa
t that metri
 MAX-CUT and, in fa
t, metri
 MAX-BISECTIONproblems are both NP-hard, even if restri
ted to the weights 1 and 2. (
f. [FK01℄, Theorem 1). We redu
e fromMAX-CUT following the redu
tion of [FK01℄. Let OPT be the optimum ofa MAX-CUT instan
eG of size n and OPT' be the optimum of a MAX-BISECTION instan
eH of size 2n to whi
h G has been redu
ed. We have OPT'=2OPT+n2. We 
onstru
t nowa 
omplementary weighted graph H 0 by assigning weight 1 to all edges of H with weight 2,and weight 2 elsewhere. Let OPT" be the optimum of a metri
 MIN-BISECTION instan
e2



of H 0. We have OPT00 = 2((n=2)2 �OPT) + n2= n22 � 2OPT + n2= 3n22 � 2OPT:Thus the exa
t 
omputation of an optimum for metri
 MIN-BISECTION instan
es withweight 1 and 2 is NP-hard.2 Organization of the paperThe rest of the paper is organized as follows.In Se
tion 3, we formulate some metri
 lemmas whi
h we need later. In Se
tion 4, we givean algorithm for the Eu
lidean 
ase and the analysis of its 
orre
tness. Finally, in Se
tion5, we 
onstru
t a PTAS for the general metri
 MIN-BISECTION problem.3 Preliminary resultsGiven a �nite metri
 (V; d), we de�newx = Xy2V d(x; y)for ea
h x 2 V , and W = Xx2V wx:Thus, W is twi
e the sum of all distan
es in V .We de�ne also for U � V , WU = Xv2U wv:First, a 
ouple of metri
 lemmas.Lemma 1 d(v; u) � 4wvwuWProof: See [FK01℄.Lemma 2 8u maxv d(u; v) � W=n3



Proof: See [FK01℄.The following lemma is 
ru
ial here. It shows that it suÆ
es to obtain an additive approxi-mation (within �W ) to get a PTAS for metri
 MIN-BISECTION.Lemma 3 In the metri
 
ase, the optimal value of MIN-BISECTION satis�es OPT � W=5.Proof: Let X = L[R be the optimal min bise
tion, of value OPT . Let W = PX�X d(x; y),WL = PL�L d(x; y), and WR = PR�R d(x; y). Take 2 points x1 and x2 at random uniformlywith repla
ement from L and 2 points x3 and x4 at random uniformly with repla
ementfrom R, and 
onside r the 6 edges of their indu
ed subgraph. Then the 
ontribution to thebise
tion is a = d(x1; x3) + d(x1; x4) + d(x2; x3) + d(x2; x4), with expe
tation 4OPT=(n2=4),and the 
ontribution toWL+WR is d(x1; x2)+d(x3; x4), with expe
tation (WL+WR)=(n2=4),and satis�es: d(x1; x2) � d(x1; x3) + d(x3; x2)d(x1; x2) � d(x1; x4) + d(x4; x2)d(x3; x4) � d(x3; x1) + d(x1; x4)d(x3; x4) � d(x3; x2) + d(x2; x4)d(x1; x2) + d(x3; x4) � aHen
e WL +WR � 4OPT , and so W � 5OPT .4 A Fixed Dimension CaseIn the Eu
lidean 
ase, when the dimension of the underlying spa
e is �xed, a PTAS for MIN-BISECTION 
an be easily obtained. Here, we des
ribe the PTAS for MIN-BISECTION inthe plane. The 
ases of higher but �xed dimension are 
ompletely similar (repla
ing polar
oordinates by spheri
al 
oordinates).4.1 The AlgorithmThe algorithm is the following.Input: A set V of n points in the Eu
lidean plane.1. S
ale the problem so that the average interpoint distan
e is equal to 1.2. Compute g = Px2V x=n, the 
enter of gravity of V .3. If (d(x; g); �(x)) denote the polar 
oordinates of x w.r. to g, de�ne the domainsDr;k = (x 2 R2 : �(1 + �)r�1 � d(x; g) < �(1 + �)r andk�� � �(x) < (k + 1)�� ) ;4



where r � 1 and 0 � k < 2�=�. LetD0 = fx 2 R2 : d(x; g) < �g:4. Constru
t a point (multi)set V 0 obtained by repla
ing ea
h element of V \Dr;k by yr;k,the point with polar 
oordinates d(yr;k; g) = �(1 + �)r�1 and �(yr;k) = k��. Hen
e yr;khas multipli
itymr;k equal to the number of points in V \Dr;k. Moreover, ea
h elementof V \D0 is repla
ed by g.5. Let s = 1 + log1+�(n=2�). Let !r;k denote the weighted distan
e from yr;k to X 0:wr;k = X0�j�2�=� X0�`�smj;ld(yr;k; yj;`):Note that a partition (L;X 0nL) of X 0 is de�ned by the set of pairs of integers (pr;k; qr;k)with qr;k = mr;k � pr;k) where for ea
h 0 � k < 2�=� and 0 � r � s, pr;k denotes thenumber of points in Dr;k whi
h belong to L. We do exhaustive sear
h on all thebise
tions 
orresponding to pr;k with 0 � pr;k � mr;k when mr;k � 1=�2, and withpr;k 2 fjb�2mr;k
 : 0 � j � 1=�2 � 1g. for mr;k > 1=�2. We output the best bise
tionfound.Note that there are O(log n) domains Dr;k. Thus the exhaustive sear
h tests at most(1=�2)O(logn) = nO(log(1=�)) distin
t bise
tions.4.2 Analysis of Corre
tnessLet us analyse the e�e
t of the restri
tions of the sizes of the possible interse
tions of ea
hdomain with ea
h side of the 
ut.Let J denote the set of admissible pairs (r; k). Given an optimum bise
tionOPT=(pr;k;mr;k � pr;k)r�s;k��=� of V 0, we are guaranteed that our exhaustive sear
htests a bise
tion OPT'=(p0r;k; q0r;k)r�s;k��=� with jp0r;k � pr;kj � �2mr;k: Denote by Q the set ofpairs (r; k) for whi
h the inequality �mr;k � pr;k � (1 � �)mr;k is satis�ed. Clearly, the yr;kfor (r; k) =2 Q 
ontribute at most �W to the bise
tion. We have thus,V al(OPT0)� V al(OPT) � X(r;k)2Q X(s;`)2Q�p0r;kq0s;` � pr;kqs;`� d(yr;k; ys;l) + �WFor (r; k) 2 Q; (s; `) 2 Q we have jp0r;k � pr;kj � �pr;k; jq0s;l � qs;lj � �qs;l, and soV al(OPT0)� V al(OPT) � X(r;k)2Q X(s;`)2Q �(1 + �)2pr;kqs;` � pr;kqs;`� d(yr;k; ys;l) + �W� (1 + 3�) X(r;k)2Q X(s;`)2Q pr;kqs;`d(yr;k; ys;l) + �W� (1 + 3�)OPT + �W� (1 + 8�)OPT;the last be
ause we know that OPT � W=5 by Lemma 3. The proof that the preliminarygrouping of the verti
es does not 
hange the value of the optimum bise
tion by more thanO(�W ) is similar to the proof given in [FK01℄ and is omitted. Thus we have a PTAS forMIN-BISECTION on the Eu
lidean plane. 5



5 A PTAS for the General Metri
 MIN-BISECTIONIn this se
tion we design and analyse a PTAS for the general metri
 MIN-BISECTION. Ouralgorithm builds on a sequen
e of papers [AKK95℄, [F96℄, [GGR96℄, [FVK00℄, and [FK01℄,and introdu
es a novel te
hnique whi
h 
ombines biased metri
 sampling with some newhybrid pla
ement and partitioning method.De�nition 1 Consider a partition (L;R) of V: A multiset T of verti
es with multipli
ities�(u); u 2 V is 
alled (Æ; �)-representative with respe
t to P , if for every vertex v ex
eptperhaps for a subset of ex
eptional verti
es of weight at most ÆW , we have�����WD(V; t)jT j Xu2T\L �(u)d(u; v)wu �Xu2L d(u; v)����� � �wv;and �����WD(V; t)jT j Xu2T\R �(u)d(u; v)wu � Xu2R d(u; v)����� � �wv:A vertex whi
h is not ex
eptional is 
alled normal.Our PTAS for metri
 MIN-BISECTION will make essential use of the following lemma.Lemma 4 Let t be any �xed integer � 1. Let U � V , WU = Pu2U wu. Let T be a randomsample obtained by pi
king independently with repla
ement t points ui 2 U with the probabilitydistribution de�ned by Pr(ui = u) = wu=W 8u 2 U . (Thus our sample may be a multi-set.)Let �(u) be the multipli
ity of u in T . Let v 2 V , and D(v; T ) =Pu2T\U �(u)d(v;u)wu . ThenPr �����WD(v; T )t � Xu2U d(v; u)����� � �wv! � WU�2tW (1)Proof: We have: D(v; T ) = tXi=1 Yiwhere the Yi are pairwise independent and ea
h distributed as Y1 withPr(Y1 = d(v; u)wu ) = wuW 8u 2 U;and Pr(Y1 = 0) = 1� WUW :We have 
learly that ED(v; T ) = tW d(v; U), andVar(D(v; T )) � tXu2U wuW  d(v; u)wu !2� tW Xu2U d(v; u)2wu� tW 3 Xu2U w2vwu;6



the last by using Lemma 1. Sin
e Pu2U wu =WU , this givesVar(D(v; T )) � tw2vWUW 3and Var WD(v; T )t ! � w2vWUWt :Observing that E �WD(v;T )t � = Pu2U d(v; u), the assertion of the lemma follows by Cheby-shev's inequality.Let us 
hoose t = 20=�5 so that the probability in 1 is at most �3=20; implying that theexpe
tation of the number of verti
es for whi
h at least one of the inequalities in de�nition1 does not hold is at most �3n=10: This implies in turn that the expe
tation of the weightsof the 
orresponding verti
es does not ex
eed �3W=10: Thus, using Markov inequality, thisweight will not ex
eed �2W with probability at least 1 � �=10. This proves the followinglemma.Lemma 5 Let T be a random sample of V with size jT j = t, de�ned as in Lemma 4 and let(L;R) be an arbitrary bipartition of V . If t � 20=�5, then with probability at least 1��=10, Tis (�; �2)-representative with respe
t to (L;R) and moreover, the total weight of the ex
eptionalverti
es does not ex
eed �2W .Proof: See above.Lemma 6 Let V 0 denote the set of verti
es of weight less than �2W . If Vj is a random subsetof V 0 obtained by pi
king ea
h vertex v 2 V with probability �, then with probability at least1� �2 we have Pv2Vj wv � 2�W . With probability � 0:9 we have PjPu;v2Vj d(u; v) � 11�W .Proof: (i) The sumPv2Vj wv is dominated by the produ
t �2W:B where B has the Binomialdistribution BIN(n; �). The result follows by applying a Cherno�-Hoe�ding Bound.(ii) The sumPjPu;v2Vj d(u; v) has expe
tation bounded above by the sum Wn2 Pj jVjjjVj�1j �1:1�W . The result follows by using Markov inequality.We need the following lemma.Lemma 7 Let (L;R) be an optimum bise
tion of V Let ` = 1=� and de�ne a partitionV1; V2; :::; V` of V by pla
ing ea
h vertex in a randomly 
hosen Vj. With probability 1� o(1),there exists a partition (A;B) whose 
ost is within an additive error at most �W from theoptimum bise
tion and su
h that for ea
h j it satis�esjjA \ Vj j � jB \ Vjjj � 1: (2)7



Proof: Let Lj = Vj \ L; Rj = Vj \R. For ea
h j we do the following:- If jLj j > jRjj, we set Æj = b jLj j�jRj j2 
 and we move from R to L Æj verti
es randomly 
hosenin Lj- If jLj j < jRjj, we set Æj = b jRjj�jLj j2 
 and we move from L to R Æj verti
es randomly 
hosenin Rj.Clearly, the resulting partition satis�es to 2. Let MV be the set of verti
es whose positionshave been 
hanged a

ording to the above rules and let � be the resulting loss in the obje
tivefun
tion. Clearly, � � Xx2MV wx;and so E(�) � Xx2V pxwx; (3)where px is the probability that x is moved. Fix now attention on a parti
ular x 2 L. (The
ase of x 2 R is exa
tly similar.) Assume without loss of generality that x 2 V1. We havethat jL1j � 1 has the binomial distribution with parameters n=2 � 1 and p = �. Also, jR1jhas the binomial distribution with parameters n=2 and p = �. Cherno�-Hoe�ding givesPr(jL1 � EL1j � qn log n � 2n�1=�and the analogue for jR1j. Thus,Pr(jL1 � EL1j+ jR1 � ER1j � 2qn log n) � 4n�1=�For �xed jL1j and jR1j, we have px � jL1�EL1j+jR1�ER1j�n and thuspx � 4�s log nn + 4n�1=�� 5�s log nnand using (3), E(�) � W maxx px� 5W� s log nn :The lemma follows now by using Markov inequality. Note that the result proved is mu
hstronger than the result 
laimed. 8



5.1 The algorithmThe algorithm takes as input a �nite metri
 spa
e (V; d). It makes a series of guesses andreturns, when all these guesses are 
orre
t and with probability at least 3=4 a bise
tion of Vwhose 
ost is within O(�W ) from the optimum.1. Compute vertex weights wv = Pu d(u; v) and total weight W = Pv wv.2. Let X denote the set of verti
es with weight > �2W and let V 0 = V nX.Let ` = 1=� and de�ne a partition V1; V2; :::; V` of V 0 by pla
ing ea
h vertex in arandomly 
hosen Vj .3. Let Po = (L;R) be a bise
tion (L;R) with value at most �W from the optimum andwith the property that it indu
es on ea
h Vi a partition whose parts sizes di�er byat most one. (The existen
e of su
h a partition is guaranteed by Lemma 7.) Byexhaustive sear
h, �nd the partition (XL;XR) of X indu
ed by P0. Let (Lj ; Rj) bethe partition of Vj indu
ed by Po. In the next phase the algorithm will 
onstru
tindu
tively a sequen
e of \hybrid" partitions P0; P1; :::; Pj; :::; P` where the �rst hybridis P0, the last partition P` is the output, and su
h that, for ea
h �xed j, Pj 
oin
ideswith P0 on ea
h of the sets Vj+1; Vj+2; :::; V`:4. For ea
h j = 1; 2; : : : ; `, do the following :(a) Let Tj�1 denote a random multiset of V obtained by pi
king t times a vertex v ofV a

ording to the probabilities twv=W , v 2 V , where t is de�ned as in Lemma5.(b) By exhaustive sear
h, guess the partition (T 0j�1; T 00j�1) indu
ed on Tj�1 by(XL;XR); (A1; B1); : : : ; (Aj�1; Bj�1); (Lj; Rj); : : : ; (L`; R`).That is, 
lassify the verti
es of Tj�1 whi
h are in X;V1; V2; : : : ; Vj�1 a

ording tothe partition being built by the algorithm, and 
lassify the remaining verti
es ofTj�1 a

ording to the optimal partition guessed by exhaustive sear
h.(
) For v 2 Vj , let b̂(v) = Xu2T 0j�1 d(u; v)wu � Xu2T 00j�1 d(u; v)wu :(d) Constru
t a partition (Aj; Bj) of Vj by pla
ing the jVj j=2 verti
es with smallestvalue of b̂(v) in Aj and pla
ing the other jVj j=2 verti
es in Bj.Let A = [jAj and B = [jBj.5. Output the best of the bise
tions (A;B) thus 
onstru
ted.9



5.2 The AnalysisRe
all that for ea
h j 2 f0; :::; `g Pj is the partition whi
h agrees with the partitions(A1; B1); :::; (Aj; Bj) 
onstru
ted by the algorithm in V1; :::; Vj, and whi
h agrees with theoptimal partition (L;R) in Vj+1; :::; V`.We will prove that when the algorithm 
orre
tly guesses for ea
h j the partition (T 0j; T 00j )indu
ed on a random sample Tj by Pj , then the bise
tion (A;B) is optimal within at most16�W with probability at least 3/4. The analysis will 
onsist in showing that the in
reaseof the obje
tive fun
tion when 
hanging one hybrid bise
tion into the next is small. We willneed the following de�nition.De�nition 2 Consider a partition P = (L;R) of V . The unbalan
e of a vertex v 2 V withrespe
t to P is the quantity 
ub(v) = Xu2L d(u; v)� Xu2R d(u; v):Lemma 8 If Tj�1 is representative with respe
t to Pj�1, then COST(Pj) � COST(Pj�1) �5�2W +Pu;v2Vj d(u; v).Before proving the lemma, let us �rst see how to use it to 
omplete the analysis. By Lemma5 the set Tj�1 has probability at least 1� �=10 of being representative with respe
t to Pj�1.Thus, with probability at least 1 � `�=10 = 9=10, Tj�1 is representative for every j andLemma 6 holds for every j. Summing over j, we then dedu
e that in that 
ase:COST((A;B))�OPT = COST(P`)� COST(P0)� 2�W + 5�W +Xj Xu;v2Vj d(u; v)� 18�Wthe last by lemma 6 with probability at least 0.9. This implies with Lemma 3 a relativeapproximation ratio 1+90�. To 
on
lude the proof, it remains to verify that the result holdswith probability at least 3/4 as 
laimed,when all the guesses are 
orre
t, The probabilitythat the result does not hold is bounded above by the sum of:- the probability that Lemma 7 does not hold whi
h is o(1)- the probability that at least one of the samples T1; T2; :::; T` is not (�2; �)-representativewhi
h is bounded above by 1=10- the probability that Lemma 6 does not hold for at least one j whi
h is bounded above by1=9.The sum of these bounds is smaller than 0.25 and the 
laim followsThe running time is 2O(1=�6)n2 where the �rst fa
tor a

ounts for the required number ofexhaustive sear
hes and n2 is, within a 
onstant fa
tor, an upper bound for the number ofoperations needed for any �xed sequen
e of guesses. Hen
e, the algorithm is a PTAS forMIN-BISECTION on metri
 spa
es.We now pro
eed to prove Lemma 8. 10



Proof: [of Lemma 8.℄The only verti
es whi
h are 
lassi�ed di�erently in Pj�1 and in Pj are verti
es in Vj : say,x verti
es are in the left side of Pj�1 and in the right side of Pj , and the same number x ofverti
es are in the left side of Pj and in the right side of Pj�1. Pair up these verti
es in amat
hing M . For ea
h su
h pair (u; v), su
h that Pj�1 pla
es v on the right side and u onthe left side, let Pj�1(u; v) denote the partition obtained from Pj�1 by swit
hing the sides ofverti
es u and v. Note that by de�nition of the algorithm, b̂(u) � b̂(v).Note that the overall probability that for ea
h j, Tj is representative is at least 9/10, so we
an assume that this is the 
ase. Then,COST(Pj(u; v))�COST(Pj�1)� 
ub(u)� 
ub(v)= (
ub(u)� 
ub(v))� Wt (b̂(u)� b̂(v)) + Wt (b̂(u)� b̂(v))� (
ub(u)� 
ub(v))� Wt (b̂(u)� b̂(v))� j
ub(u)� Wt b̂(u)j+ j
ub(v)� Wt b̂(v)j:There are two 
ases.(i) If u and v are normal, then we use the upper bounds j
ub(u) � Wt b̂(u)j � �wu, j
ub(v)�Wt b̂(v)j � �wv.(ii) For the total 
ontribution of the ex
eptional verti
es, we use the overall bound �2W ofLemma 5. Also COST(Pj)� COST(Pj�1) �X(u;v)2M(COST(Pj�1)� COST(Pj�1(u; v))) + Xu;v2Vj d(u; v):Thus, COST(Pj)� COST(Pj�1) � 2� Xu2Vj wu + �2W + Xu;v2Vj d(u; v)� 5�2W + Xu;v2Vj d(u; v)the last by using Lemma 6.This 
ompletes the 
orre
tness proof of our PTAS for the general metri
 MIN-BISECTION.A
knowledgements. We thank Mark Jerrum, Alan Frieze, and Ravi Kannan forstimulating remarks and dis
ussions. 11
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