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1 Introdu
tionProblem statement and motivation. The partition of a data set into a small numberof 
lusters, ea
h 
ontaining a set of seemingly related items, plays an in
reasingly 
ru
ialrole in emerging appli
ations su
h as web sear
h and 
lassi�
ation [12, 50℄, interpretation ofexperimental data in mole
ular biology and astrophysi
s [41, 57, 48℄, or market segmenta-tion [45℄. This task raises several fundamental questions about representing data, measuringaÆnity, estimating 
lustering quality, and designing eÆ
ient algorithms. For example, whensear
hing or mining massive unstru
tured data sets, data items are often pro
essed and rep-resented as points in a high dimensional 1 spa
e Rd, where some standard distan
e fun
tionmeasures aÆnity (see, for example, [20, 58, 26, 12℄).This paper deals with the question of designing good algorithms for an attra
tive 
riterionfor 
lustering quality in su
h a setting. More spe
i�
ally, we 
onsider a set V of n pointsendowed with a distan
e fun
tion Æ : V � V ! R. These points have to be partitionedinto a �xed number k of subsets C1; C2; : : : ; Ck so as to minimize the 
ost of the partition,whi
h is de�ned to be the sum over all 
lusters of the total pairwise distan
es in a 
luster.We refer to this problem as the Min-Sum All-Pairs k-Clustering problem. Our algorithmsdeal with the 
ase that Æ is an arbitrary metri
 (in
luding, in parti
ular, points in Rd withdistan
es indu
ed by some norm). We also handle the non-metri
 
ase of points in Rd wherethe distan
e between two points x; y is measured by Æ(x; y) = kx� yk22. In the latter 
ase,our algorithms 
an be modi�ed to deal with other obje
tive fun
tions, in
luding the problemof Min-Sum Median k-Clustering, where the 
ost of a 
lustering is the sum over all 
lustersof the total distan
es between 
luster points and the best 
hoi
e for a 
luster 
enter. Alloptimization problems that we 
onsider are NP -hard to solve exa
tly even for k = 2.Our results. For the Min-Sum All-Pairs obje
tive fun
tion, we present algorithms forevery k and for every � > 0 that 
ompute a partition into k 
lusters C1; C2; : : : ; Ck of 
ostat most 1 + � times the 
ost of an optimum partition. In the metri
 
ase the algorithm israndomized and its running time is O(n2k + nk+12 ~O(1=�3k+1)). In the 
ase of the square ofEu
lidean distan
e, the algorithms are deterministi
, and their running time is nO(k=�4). Ouralgorithms 
an be modi�ed to output, for all � > 0, a 
lustering that ex
ludes at most �noutliers and has 
ost at most 1 + � times the optimum 
ost. In the 
ase of the square ofEu
lidean distan
e, we 
an do this in probabilisti
 time O(f(k; �; �) �n3 log n), where f grows(rapidly) with k, 1� , and 1� .The Min-Sum Median obje
tive fun
tion 
an be optimized in polynomial time for �xedk in �nite metri
s, be
ause the number of 
hoi
es for 
enters is polynomial. However, if thepoints are lo
ated in a larger spa
e, su
h as Rd, and the 
enters 
an be pi
ked from this largerspa
e, the problemmay be
ome hard. For points inRd with distan
es measured by the squareof Eu
lidean distan
e, we give Min-Sum Median algorithms that partition all points into k
lusters of 
ost at most 1+ � of the optimum 
ost in probabilisti
 time O(g(k; �) �n � (log n)k),where g grows (rapidly) with k and 1� . Some of our ideas 
an be modi�ed trivially to derivepolynomial time approximation s
hemes for other obje
tive fun
tions, su
h as minimizing1By \high dimensional" we mean that the dimension d should be treated as part of the input and not asa 
onstant. 1



the maximum radius of a 
luster. We do not elaborate on these modi�
ations.Related work. S
hulman [56℄ initiated the study of approximation algorithms for Min-Sum All-Pairs k-Clustering. He gave probabilisti
 algorithms for 
lustering points in Rd withdistan
e measured by the square of Eu
lidean distan
e. (Thus he also handled other inter-esting 
ases of metri
s that embed isometri
ally into this distan
e spa
e, su
h as Eu
lideanmetri
s or L1 metri
s.) His algorithms �nd a 
lustering su
h that either its 
ost is within afa
tor of 1 + � of the optimum 
ost, or it 
an be 
onverted into an optimum 
lustering by
hanging the assignment of at most an � fra
tion of the points. The running time is linearif d = o(log n= log log n) and otherwise the running time is nO(log logn). Thus our resultsimprove and extend S
hulman's result, giving a true polynomial time approximation s
hemefor arbitrary dimension.Earlier, Fernandez de la Vega and Kenyon [24℄ presented a polynomial time approxima-tion s
heme for Metri
 Max Cut, an obje
tive fun
tion that is the 
omplement of Metri
Min-Sum All-Pairs 2-
lustering. Indyk [35℄ later used this algorithm to derive a polynomialtime approximation s
heme for the latter problem. Thus our results extend Indyk's resultto the 
ase of arbitrary �xed k. Bartal, Charikar, and Raz [11℄ gave a polynomial timeapproximation algorithm with polylogarithmi
 performan
e guarantees for Metri
 Min-SumAll-Pairs k-Clustering where k is arbitrary (i.e., part of the input).As mentioned above, instan
es of Min-Sum Median k-Clustering in �nite metri
s with�xed k are trivially solvable in polynomial time. (For arbitrary k, the problem is APX-hard [33℄ and has eli
ited mu
h work and progress [8, 16, 37, 15℄.) This is not the 
ase ingeometri
 settings, in
luding the square of Eu
lidean distan
e dis
ussed in this paper. This
ase was 
onsidered by Drineas, Frieze, Kannan, Vempala, and Vinay [25℄, who gave a 2-approximation algorithm. Ostrovsky and Rabani [52℄ gave a polynomial time approximations
heme for this 
ase and other geometri
 settings. Our results improve signi�
antly therunning time for the square of Eu
lidean distan
e 
ase. Re
ently and independently of ourwork, B�adoiu, Har-Peled, and Indyk [10℄ gave a polynomial time approximation s
heme forpoints in Eu
lidean spa
e with mu
h improved running time (as well as results on other
lustering obje
tives). Their algorithm and analysis are in some respe
ts similar to ouralgorithm (though it handles a di�erent distan
e fun
tion).It is interesting to note that both S
hulman's algorithm for Min-Sum All-Pairs Clusteringand the algorithm of Fernandez de la Vega and Kenyon for Merti
 Max Cut use a similaridea of sampling data points at random from a biased distribution that depends on thepairwise distan
es. In re
ent resear
h on 
lustering problems, sampling has been the 
oreidea in the design of provably good algorithms for various obje
tive fun
tions. Examplesin
lude [5, 3, 51℄.2 PreliminariesIn this se
tion we introdu
e some notation and some tools that will be used to derive andanalyze our algorithms.Throughout the paper we use V to denote the input set of points and Æ to denote the2



distan
e fun
tion over pairs of points in V . The fun
tion Æ 
an be given expli
itly or impli
itly(for example, if V � Rd and Æ is derived from a norm on Rd). Our time bounds 
ountarithmeti
 operations and assume that 
omputing Æ(x; y) is a single operation. The readermay assume that the input is rational to avoid having to deal with unrealisti
 
omputationalmodels. We use k, a �xed 
onstant, to denote the desired number of 
lusters. We omitthe 
eiling notation from expressions su
h as �1��. Our 
laims and proofs 
an be modi�edtrivially to a

ount for taking the 
eiling of non-integers wherever needed.Let X;Y � V and x 2 V . With a slight abuse of notation, we use Æ(x; Y ) to denotePy2Y Æ(x; y), and we use Æ(X;Y ) to denotePx2X Æ(x; Y ) (noti
e that Æ(�; �) is a symmetri
bilinear form but is not a distan
e in the power set of V ). We use Æ(X) to denote Æ(X;X).We put W = Æ(V ) and wx = Æ(x; V ). Finally, we denote the diameter of X by diam(X) =maxx;y2X Æ(x; y).Let C1; C2; : : : ; Ck be a partition of V into k disjoint 
lusters. Then, for all i = 1; 2; : : : ; k,we use 
ost(Ci) to denote the 
ost of Ci. For most of the paper, we are 
on
erned with theall-pairs 
ost of a 
luster, putting 
ost(Ci) = 12Æ(Ci). In some 
ases, our algorithms 
anbe modi�ed to apply to hard 
ases of the median 
ost of a 
luster, putting 
ost(Ci) =minx2Rd fÆ(x;Ci)g. In both 
ases, the 
ost of the 
lustering is 
 = 
ost(C1; C2; : : : ; Ck) =Pki=1 
ost(Ci). We use C�1 ; C�2 ; : : : ; C�k to denote a 
lustering of V of minimum 
ost 
� =
ost(C�1 ; C�2 ; : : : ; C�k).Our polynomial time approximation s
hemes handle the 
ase where Æ indu
es an arbitrarymetri
 on V , as well as the non-metri
 
ase of V � Rd and Æ(x; y) = kx� yk22. The former
ase obviously in
ludes instan
es where V � Rd and Æ(x; y) = kx � ykp for p 2 [1;1) orp =1. Instan
es of points in Rd are 
omputationally hard if d is part of the input.2.1 Properties of Metri
 Spa
esThe main property of metri
s that we use is the following proposition, whi
h follows easilyfrom the triangle inequality.Proposition 1. Let X;Y;Z � V . Then,jZjÆ(X;Y ) � jXjÆ(Y;Z) + jY jÆ(Z;X):Proof: For every x; y; z, we have Æ(x; y) � Æ(y; z)+ Æ(z; y). Summing over X �Y �Z givesthe desired result.Here are some 
orollaries whi
h are used in our proofs in metri
 spa
e.Corollary 2. diam(V ) � 2W=n.Proof: Let x; y be su
h that diam(V ) = Æ(x; y), and apply Proposition 1 to X = fxg,Y = fyg, and Z = V .Corollary 3. Let C � V . For every vertex v 2 C we haveÆ(v;C)� Æ(C)2jCj :3



Proof: Apply Proposition 1 to X = C, Y = C and Z = fvg.Our approximation s
heme for min-sum all-pairs 
lustering in metri
 spa
es uses as atool an approximation s
heme for Metri
 Max-k-Cut.De�nition: The Metri
 Max-k-Cut problem takes as input a set V of n points from anarbitrary metri
 spa
e, and outputs a partition of V into k 
lusters C1; C2; : : : ; Ck so as tomaximize total distan
e between pairs of points in di�erent 
lusters, i.e.max k�1Xi=1 kXj=i+1 Æ(Ci; Cj):. For any partition, the sum of the Max-k-Cut value and of the min-sum all-pairs 
lusteringvalue equals W . Thus the same partition is optimal for both obje
tives.Theorem 4 ([24, 23℄). There is a polynomial time approximation s
heme for Metri
 Max-k-Cut.Theorem 4 is a
tually an easy extension of the MaxCut approximation s
heme of [24℄.The same redu
tion whi
h is used for MaxCut also applies to Max-k-Cut, and the resultingweighted dense graph is only a variant of dense graphs in the usual sense, so that the Max-k-Cut approximation s
hemes for dense graphs (see [32, 7℄) apply. An alternate algorithm
an be found in [23℄.2.2 Properties of k � k22Unless otherwise spe
i�ed, all subsets and multi-subsets of Rd that we dis
uss are, for sim-pli
ity, �nite. For a �nite set X � Rd we denote by 
onv(X) the 
onvex hull of X, i.e.,
onv(X) = fy 2 Rd j 9� 2 RjXj su
h that � � 0 and k�k1 = 1 and y = Px2X �xxg. Weasso
iate with every y in 
onv(X) su
h that y = Px2X �xx with rational 
oeÆ
ients �, amulti-subset Y of X as follows. For every x 2 X, the number nx of 
opies of x in Y isde�ned by �x = nx=jY j, where nx is the number of times x appears in Y . We often use �Yto denote the 
enter of gravity of Y .The following proposition 
hara
terizes the all-pairs 
ost of a 
luster for the 
ase thatÆ(x; y) = kx� yk22.Proposition 5. For every 
luster C � V , 
ost(C) = jCjÆ(C; �C).Proof:jCj � Æ(C; �C) = jCj �Xx2C x� 1jCjXy2C y! � x� 1jCjXy2C y!= jCj �Xx2C kxk22 + 1jCj2Xy2CXz2C y � z � 2jCjXy2C x � y! by bilinearity= jCj �Xx2C kxk22 � 1jCjXx2CXy2C x � y by renaming and grouping4



= 12Xx2CXy2C �kxk22 + kyk22 � 2x � y� by renaming= 12Xx2CXy2C kx� yk22= 
ost(C):The following simple propositions will 
ome in handy.Proposition 6. For every multi-subset Y of Rd, the 
enter of gravity of Y is su
h that�Y = argminz2Rd fÆ(Y; z)g.Proof: Let z 2 Rd be the point that minimizes the above expression. As Æ(Y; z) =Pdi=1Py2Y (yi�zi)2, we 
an determine z by minimizing ea
h 
oordinate separately. We have�Py2Y (yi�zi)2�zi = �2Py2Y (yi � zi). The right hand side has a single zero at zi = 1jY jPy2Y yi.As �2Py2Y (yi�zi)2�z2i = 2jY j > 0, this point is the unique global minimum.Proposition 7. For every x; y; z 2 Rd, Æ(x; z) � Æ(x; y) + Æ(y; z) + 2pÆ(x; y) � Æ(y; z).Proof: By the triangle inequality for Eu
lidean distan
e, pÆ(x; z) �pÆ(x; y) +pÆ(y; z).Squaring this inequality gives the desired result.Proposition 8. For every x 2 Rd, for every multi-subset Y of Rd, Æ(x; �Y ) � 1jY jÆ(x; Y ).Proof: Æ(x; �Y ) = 




x� 1jY jXy2Y y




22= 




 1jY jXy2Y (x� y)




22= dXi=1  1jY jXy2Y (xi � yi)!2� dXi=1 1jY jXy2Y (xi � yi)2 (1)= 1jY jXy2Y dXi=1 (xi � yi)2= 1jY jXy2Y Æ(x; y);where (1) follows from the Cau
hy-S
hwarz inequality.The following lemma is attributed to Maurey [53, 14, 6℄. We provide a proof for 
om-pleteness. 5



Lemma 9 (Maurey). For every positive integer d, for every Y � Rd, for every � > 0, andfor every x 2 
onv(Y ), there exists a multi-subset Z of Y 
ontaining jZj = 1� points su
hthat Æ(x; �Z) � � � (diam(Y )).Proof: Put t = 1� . As x 2 
onv(Y ), it 
an be expressed as a 
onvex 
ombination x =Py2Y �yy, where the 
oeÆ
ients �y are non-negative reals that sum up to 1. Pi
k a multisetZ = fz1; z2; : : : ; ztg at random, where the zi-s are independent, identi
ally distributed,random points with Pr [zi = y℄ = �y. Now,E �Æ(x; �Z)� = E 24




x� 1t tXi=1 zi




2235= E 24




1t tXi=1 �x� zi�




2235= E " 1t2 tXi=1 tXj=1 �x� zi� � �x� zj�#= 1t2 tXi=1  E �kx� zik22�+Xj 6=i E ��x� zi� � �x� zj��! (2)= 1t2 tXi=1 E �kx� zik22� (3)� 1tdiam(Y );where (2) follows from the linearity of expe
tation, and (3) follows from the fa
t that for everyi 6= j, zi and zj are independent, so E [(x� zi) � (x� zj)℄ =Pdl=1E [(xl � zil)℄E ��xl � zjl �� =0. As E �Æ(x; �Z)� � 1tdiam(Y ), there exists a 
hoi
e of Z su
h that Æ(x; �Z) � 1tdiam(Y ).Lemma 9 
an be used to derive a high-probability argument as follows.Lemma 10. There exists a universal 
onstant � su
h that for every integer d, for everyY � Rd, for every � > 0, and for every � > 0, a multi-subset Z of Y that is generated bytaking a sample of � � 1�2 � log 1� independent, uniformly distributed, points from Y satis�esPr �Æ( �Y ; �Z) > � � diam(Y )� < �.Proof: Put s = �2 � 1� � log(1=�) and t = 2� . Consider Z as s samples Z1; Z2; : : : ; Zs of size tea
h. By Proposition 8, Æ( �Y ; �Z) � 1s �Psi=1 Æ( �Y ; �Zi). Therefore, Pr �Æ( �Y ; �Z) > � � diam(Y )� �Pr �Psi=1 Æ( �Y ; �Zi) > i�s � diam(Y )�. Put �i = Æ( �Y ; �Zi)=diam(Y ) for all i = 1; 2; : : : s. The�i are independent, identi
ally distributed, random variables taking values in the range[0; 1℄. By Lemma 9, E [�i℄ � 12� for all i. Using standard Cherno� bounds we get thatPr [Psi=1 �i > �s℄ < � e4��s=2. Putting � = 4= log(4=e), the right hand side is equal to �.6



3 A PTAS for Metri
 Instan
esIn this se
tion we present our algorithm for 
lustering metri
 spa
es. We �rst des
ribe astreamlined version of Indyk's algorithm [35℄ that solves the 
ase of k = 2. It will help tomotivate our approximation s
heme for arbitrary �xed k.Let (L;R) denote an optimal partition into 2 
lusters. Run the following three algorithms,
onstru
ting three partitions into 2 
lusters. Output the best of the three partitions.1. First algorithm: Use the metri
 MaxCut approximation s
heme of de la Vega andKenyon with relative error �3.2. Balan
ed 
lusters algorithm: By exhaustive sear
h, guess jLj 2 (�n; n℄ and jRj = n�jLj.Repeat O(1) times the following. Pi
k a random element ` 2 V uniformly at random,and a random element r 2 V uniformly at random. For ea
h vertex v 2 V , letÆ̂(v; L) = jLj � Æ(v; `) and Æ̂(v;R) = jRj � Æ(v; r). Constru
t a partition (L0; R0) of V bypla
ing v in L0 if Æ̂(v; L) � Æ̂(v;R), and pla
ing v in R0 otherwise.3. Unbalan
ed 
lusters algorithm: By exhaustive sear
h, guess jLj 2 (0; �n℄ and jRj =n � jLj. Repeat O(1) times the following. Pi
k a random sample r 2 R uniformlyat random. For ea
h vertex v 2 V , let Æ̂(v;R) = jRj � Æ(v; r). Constru
t a partition(L0; R0) of V by pla
ing in L0 the jLj verti
es of V with largest value of Æ̂(v;R).We now present our approximation s
heme for arbitrary �xed k.De�nition:Given � > 0, two disjoint sets of points A and B are said to be well-separatedif Æ(A) + Æ(B) < �k+1Æ(A [B).Our algorithm 
onsists of taking the best of all partitions that are generated as follows.1. By exhaustive sear
h, guess the optimal 
luster sizes jC1j � jC2j � � � � � jCkj. Leti0 be the largest i su
h that jCij > �jCi�1j for i = 2; 3; : : : ; i0. Clusters C1 throughCi0 are 
alled large 
lusters, and the others are 
alled small 
lusters. By exhaustivesear
h, for ea
h pair of large 
lusters Ci and Cj, guess whether 
lusters Ci and Cj arewell-separated. De�ne groups of large 
lusters by taking the transitive 
losure of therelation \Ci and Cj are not well-separated".2. Choose, uniformly at random, an element 
i in ea
h large 
luster Ci. (i.e. take i0points uniformly at random, and with 
onstant probability the ith element will be inCi). For ea
h point x and for ea
h large 
luster Ci, de�ne Æ̂(x;Ci) = jCijÆ(x; 
i).3. For ea
h x, 
onsider the large 
luster Ci whi
h minimizes Æ̂(x;Ci). Pla
e x in Ci's groupand de�ne its 
ontribution to the group as f(x) = Æ̂(x;Ci). This de�nes a partition ofV into groups.4. By exhaustive sear
h, for ea
h group G thus 
onstru
ted and for ea
h small 
lusterCj, guess jG \Cij, and remove from G the jG \Cij elements with largest 
ontributionf(x). Re
ursively partition the removed elements into (k � i0) 
lusters.5. Partition ea
h group of h large 
lusters with h > 1 using Max-h-Cut with error pa-rameter �0 = �3k+2=h2. 7



4 Analysis of the Metri
 AlgorithmLemma 11. Let C � V and r 2 C be su
h that Æ(r; C) � 2Æ(C)=jCj. Let Æ̂(x;C) =jCj � Æ(x; r), for x 2 V . Then jÆ(x;C)� Æ̂(x;C)j � 2Æ(C)=jCj.Proof: Apply Proposition 1 to X = fxg, Y = C and Z = frg, and to X = fxg, Y = frgand Z = jCj.The following lemma is useful for analyzing balan
ed well-separated 
lusters.Lemma 12. Consider two sets of points R and L whi
h are both of size at least �jL [Rj,and su
h that Æ(R) + Æ(L) < �2Æ(R [ L). Let r be su
h that Æ(r;R) � 2Æ(R)=jRj andsimilarly ` be su
h that Æ(`; L) � 2Æ(L)=jLj. For any x, de�ne Æ̂(x;R) = jRj � Æ(x; r) andÆ̂(x;L) = jLj � Æ(x; `). Let F = fx 2 RjÆ̂(x;L) � Æ̂(x;R)g. Then,� jF j = O(�2)jR [ Lj; moreover, if Æ(R) + Æ(L) < �
Æ(R [ L), then jF j = O(�
)jR [ Lj.� Æ(F ) � O(�)Æ(R), and� Æ(L;F )� Æ(R;F ) � O(�)(Æ(R) + Æ(L)).Proof: If x 2 F then Æ̂(x;L)� Æ̂(x;R) � 0. Thus any point x in F must verify:Æ(x;L)� Æ(x;R)= Æ(x;L)� Æ̂(x;L) + Æ̂(x;L)� Æ̂(x;R) + Æ̂(x;R)� Æ(x;R)� 2Æ(R)=jRj + 2Æ(L)=jLj� 2(Æ(R) + Æ(L))�jR [ Lj ;where the �rst inequality 
omes from Lemma 11 and the se
ond one follows from jRj; jLj ��jR [ Lj.We bound jF j as follows.jF jÆ(R [ L)2jR [ Lj � Xx2F Æ(x;R [ L) from Corollary 3 applied to x in R [ L= XF (2Æ(x;R) + (Æ(x;L)� Æ(x;R)))� 2Æ(F;R) + jF j2(Æ(R) + Æ(L))�jR [ Lj from Equation 4� 2Æ(R) + jF j2(Æ(R) + Æ(L))�jR [ Lj� 2�
Æ(R [ L) + 2jF j�2Æ(R [ L)jR [ Lj :Thus jF j = O(�2)jR [ Lj, whi
h proves the �rst statement of the Lemma.8



Applying Proposition 1 to X = Y = F and Z = R, we getÆ(F ) � 2 jF jjRj Æ(F;R) � O(�)Æ(R)sin
e jF j = O(�2)jR[Lj and jRj � �jR[Lj. This proves the se
ond statement of the Lemma.Finally, summing Equation (4) over every x 2 F givesÆ(L;F )� Æ(R;F ) � 2 jEijj�jR [ Lj(Æ(R) + Æ(L)) � O(�)(Æ(R) + Æ(L))sin
e jF j � O(�2)jR [ Lj. This proves the last statement of the Lemma.The following lemma is useful to the analysis of unbalan
ed 
lusters.Lemma 13. Consider two sets of points R and L su
h that jLj < �jRj and su
h thatÆ(R) + Æ(L) < �2Æ(R [ L). Let r 2 R be su
h that Æ(r;R) � 2Æ(R)=jRj. For x 2 R [ L, letÆ̂(x;R) = jRj � Æ(x; r). Let C 0i denote the jRj points of R [ L with largest value of Æ̂(:; R),and C 0j = R [L nC 0i. Let F = R\C 0j = fv1; : : : ; vmg and E = L\C 0i = fv01; : : : ; v0mg. Then,� Æ(R;E)� Æ(R;F ) = O(�)Æ(R).� Pmp=1 Æ(vp; v0p) � O(1)Æ(R)=jRj,� jÆ(L;F )� Æ(L;E)j � O(�)Æ(R),� Æ(F ) � O(�)Æ(R), and� Æ(E) � O(�)Æ(R).Proof: We pair up vertex vp with vertex v0p.Æ(vp; R)� Æ(v0p; R) = (Æ(vp; R)� Æ̂(vp; R)) + (Æ̂(vp; R)� Æ̂(v0p; R)) + (Æ̂(v0p; R) � Æ(v0p; R)):>From Lemma11 we have Æ(vp; R)�Æ̂(vp; R) � 2Æ(R)=jRj and Æ̂(v0p; R)�Æ(v0p; R) � 2Æ(R)=jRj.By de�nition, the elements of C 0i (and hen
e of E) all have larger value of Æ̂(:; R) than theelements of C 0j (and hen
e of F ). In parti
ular, Æ̂(vp; R)� Æ̂(v0p; R) � 0. Together, this impliesthat Æ(vp; R)� Æ(v0p; R) � 4Æ(R)=jRj. Summing over p, we getÆ(E;R)� Æ(F;R) � 4 jF jjRjÆ(R)= 4 jEjjRjÆ(R)� 4 jLjjRjÆ(R)= O(�)Æ(R);hen
e the �rst statement of the Lemma. 9



Applying Proposition 1 to vp, v0p and R and summing over p, we get:jRjXp Æ(vp; v0p) � Æ(F;R) + Æ(E;R)= Æ(E;R)� Æ(F;R)) + 2Æ(F;R)� O(�)Æ(R) + 2Æ(R)= O(1)Æ(R);hen
e the se
ond statement of the Lemma.Applying Proposition 1 to vp, v0p and L and to v0p, vp and L, we getjÆ(vp; L)� Æ(v0p; L)j � jLj � Æ(vp; v0p):Summing over p, we getjÆ(L;F )� Æ(L;E)j � jLjjRjO(1)Æ(R) = O(�)Æ(R);hen
e the third statement of the Lemma.Applying Proposition 1 to F , F and R, we getÆ(F ) � 2Æ(F;R)jF jjRj � 2Æ(R)jLjjRj � 2�Æ(R);hen
e the fourth statement of the Lemma.Now, write Æ(v0p; v0q) � Æ(v0p; vp) + Æ(vp; vq) + Æ(vq; v0q). When we sum over p and q, weobtain Æ(E) � 2Xp Æ(vp; v0p)jEj+ Æ(F )� 2jLjO(1)Æ(R)jRj +O(�)Æ(R)= O(�)Æ(R);hen
e the last statement of the Lemma.Now, let us analyze the 2-
lustering algorithm.Case 1: Assume that 
� � �2W . Then the MaxCut algorithm with error �3 produ
es apartition whose Cut value is at least OPT-Max-Cut(1 � �3) � OPT-Max-Cut � �3W . The2-
luster value of this partition is thus at mostW �OPT-Max-Cut+�3W , whi
h is 
�+�3W ,hen
e at most (1 + �) � 
�.Case 2: Assume that 
� < �2W and that the optimal partition (L;R) is su
h that jLj; jRj ��n. We analyze the Balan
ed Clusters algorithm.With probability at least �=2, the algorithm has pi
ked ` 2 L and r 2 R. For ` pi
keduniformly at random in L, we have on averageE(Æ(`; L)) = Æ(L)=jLj. ByMarkov's inequality,with probability at least 1=2, it holds that Æ(`; L) � 2Æ(L)=jLj. Similarly, with probability10



at least 1=2, it holds that Æ(r;R) � 2Æ(R)=jRj. Moreover, the two events are independent.Thus, with probability at least �(1� �)=4, we have:` 2 L; Æ(`; L) � 2Æ(L)=jLj; r 2 R; and Æ(r;R) � 2Æ(R)=jRj:We assume that ` and r satisfy these properties and that jLj and jRj have been guessed
orre
tly.Let L0 = L+ F �E and R0 = R + E � F . Then,Æ(L0) + Æ(R0)� Æ(L)� Æ(R)= Æ(L+ F � E;L+ F � E) + Æ(R+ E � F;R+ E � F )� Æ(L;L)� Æ(R;R)= 2(Æ(L;F )� Æ(R;F )) + 2(Æ(R;E)� Æ(L;E)) + 2Æ(E) + 2Æ(F )� 4Æ(E;F )= O(�)
�;by Lemma 12.Case 3: assume that 
� < �2W and that the optimal partition (L;R) is su
h that jLj < �n.Then jLj < �=(1� �)jRj. We analyze the Unbalan
ed Clusters algorithm.With probability at least (1� �)=2, we have r 2 R and Æ(r;R) � 2Æ(R)=jRj. We assumethat this holds and that jLj has been guessed 
orre
tly.Let E = L\R0 and F = R\L0. The di�eren
e between the value of the 
ut 
onstru
tedby the algorithm and the value of the optimal 
ut isÆ(L+ F � E) + Æ(R+ E � F )� Æ(L)� Æ(R)= 2(Æ(L;F )� Æ(L;E)) + 2(Æ(R;E)� Æ(R;F )) + 2Æ(E) + 2Æ(F )� 4Æ(E;F )= O(�)Æ(R);by Lemma 13.Thus in all 
ases, one of the algorithms will output a near-optimal solution. This 
on-
ludes the analysis of 2-
lustering.We now pro
eed with the analysis of the k-
lustering algorithm.We �rst analyze the mistakes made in step 3. For that, we fo
us on the large 
lusters.Consider two large 
lusters Ci and Cj whi
h belong to di�erent groups. let Eij be the set ofelement of Ci whi
h are mistakenly 
lassi�ed as belonging to Cj. Consider the intermediatek-
luster su
h that C 0i = � Ci if i > i0Ci �[jEij + [jEji if i � i0:We have: Xi Æ(C 0i)�Xi Æ(Ci)� 2Xi;j (Æ(Ci; Eji)� Æ(Cj; Eji)) +Xi;j Æ(Eij)+2Xi;j;j0 Æ(Eji; Ej0i) + 2Xi;j;j0 Æ(Eij; Eij0):11



The �rst sum has only O(k2) terms, whi
h are all small (i.e. O(�)
�) by Lemma 12. These
ond sum also has only O(k2) terms, whi
h are also all small by Lemma 12.The third sum has only O(k3) terms. Consider one of them. Applying Proposition 1 toX = Eji, Y = Ej0i and Z = Ci, we get jCij � Æ(Eji; Ej0i) � jEjijÆ(Eji; Ci) + jEj0ijÆ(Ej0i; Ci).We analyze the �rst of the two terms of this sum (by symmetry, our analysis will also holdfor the se
ond term of the sum). We have:jEjijjCij Æ(Eji; Ci)� jEjijjCij (Æ(Eji; Cj) + Æ(Eji; Ci)� Æ(Eji; Cj))� jEjijjCij (Æ(Cj) +O(�)(Æ(Ci) + Æ(Cj))) by Lemma 12= O(�k+1)jCi [ Cj jjCij O(
�)= O(�)
�;where the previous-to-last equality follows from the de�nition of well-separated 
lusters, andthe last equality follows from the de�nition of large 
lusters, whi
h implies jCij � �kn.The last sum is analyzed similarly:Æ(Eij; Eij0)� jEijjjCij Æ(Ci; Eij0) + jEij0jjCij Æ(Ci; Eij)� jEijj+ jEij0 jjCij Æ(Ci)� O(�)Æ(Ci):Thus the partition (C 0i) is a near-optimal k-
lustering:Xi Æ(C 0i) � (1 +O(k3�))
�:Unfortunately some mistakes are made in step 4 as well. We now need to bound the e�e
tof those mistakes. For ea
h large 
luster Ci and ea
h small 
luster Cj, let Fij denote thepoints of C 0i whi
h mistakenly go into Cj, and Fji denote the points of Cj whi
h mistakenlygo into Ci's group. By the guess made in step 4, we have jFijj = jFjij, and so we 
an pairup the verti
es as in the analysis of the Unbalan
ed 
lustering algorithm. LetC 00i = � C 0i +Pj>i0 Fji �Pj>i0 Fij if i � i0C 0i +Pj�i0 Fji �Pj�i0 Fij if i > i0:Xi Æ(C 00i )�Xi Æ(C 0i) 12



= Xi Æ(C 0i +Xj Fji �Xj Fij; C 0i +Xj Fji �Xj Fij)� Æ(C 0i; C 0i)= Xi Xj (Æ(C 0i; Fji)� Æ(C 0i; Fij)) +Xi Xj Æ(Fji) +Xi Xj Æ(Fij) +Xi Xj;j0 (Æ(Fji; Fj0i)� Æ(Fji; Fij0)) +Xi Xj;j0 (Æ(Fij; Fij0)� Æ(Fji; Fij0)):Remember that Fab is non-empty only if a refers to a small 
luster and b to a large 
luster,or if a refers to a large 
luster and b to a small 
luster.The �rst term has O(k2) terms whi
h are all small by Lemma 13. The next two termsalso have O(k2) terms whi
h are also all small by Lemma 13.For the next term, remembering that Fj0i is paired up with Fij0 and using Æ(x; y) �Æ(x; y0) � Æ(y; y0), we getÆ(Fji; Fj0i)� Æ(Fji; Fij0) � jFjij X(y;y0) pair of Fj0i�Fij0 Æ(y; y0):If Ci is large and Cj; Cj0 are small, then by Lemma 13 this is bounded by jCjjO(1)Æ(Ci)=jCij,whi
h is O(�)Æ(Ci) be
ause of the gap between sizes of large and small 
lusters.If Ci is small and Cj; Cj0 are large, then by Lemma 13 this is bounded by jCijO(1)Æ(Cj0)=jCj0 j,whi
h is O(�)Æ(Cj0). Thus in all 
ases, this term, like the previous terms, is O(�)
�. The lastterm 
an be dealt with similarly. Thus the partition (C 00i ) is a near-optimal k-
lustering:Xi Æ(C 00i ) �Xi Æ(C 0i) +O(k3�)
� � (1 +O(k3�))
�:Finally, we need to analyze the use of Max-h-Cut in the last step of the algorithm; wewill present the analysis as if the group was perfe
t, i.e. 
onsisted of the 
lusters Ci. (Itis easy to see that the proof also goes through when repla
ing the Ci by C 00i , at the 
ost ofsome bookkeeping of the small errors introdu
ed at every step of the 
al
ulation.) In thegroups of large 
lusters, the 
lusters are not well-separated. From this, we 
an dedu
e that
� is 
(W ) as follows.Consider a group C1 [ C2 [ � � � [ Ch. We have:Æ(C1 [ � � � [ Ch) =Xi Æ(Ci) +Xi 6=j Æ(Ci; Cj): (4)For i 6= j, by de�nition of group, there exists a sequen
e of length m � h,Ci = Ci0; Ci1 ; : : : ; Cim = Cj;13



su
h that two 
onse
utive 
lusters in that sequen
e are not well separated. WritingÆ(xi0; xi1) � Æ(xi0; xi1) + Æ(xi1; xi2) + � � �+ Æ(xim�1; xim)and summing over Ci0 � � � � � Cim , we getÆ(Ci0; Cim)jCi0j � jCimj � Æ(Ci0; Ci1)jCi0j � jCi1j + Æ(Ci1; Ci2)jCi1j � jCi2j + � � �+ Æ(Cim�1; Cim)jCim�1j � jCimj :Sin
e the size of any two large 
lusters di�er by a fa
tor of �k at most, we dedu
eÆ(Ci; Cj) � 1�2k (Æ(Ci0; Ci1) + � � �+ Æ(Cim�1; Cim)):By de�nition of well-separated 
lusters, we then obtainÆ(Ci; Cj) � 1�3k+1 ((Æ(Ci0) + Æ(Ci1)) + � � � + (Æ(Cim�1) + Æ(Cim)) � 2�3k+1
�:Plugging this into Equation (4) yieldsÆ(C1 [ � � � [ Ch) � (1 + 2h(h� 1)�3k+1 )
�: (5)Now, doing Max-h-Cut on C1[� � �[Ch with error parameter �(�3k+1=h2) will yield a partitionwhose 
ut value is within an additive �(�3k+1=h2)Æ(C1[� � �[Ch) of optimal. Hen
e the valueof the 
lustering will be o� by�(�3k+1=h2)Æ(C1 [ � � � [ Ch) = �(�)
�by Equation (5).The algorithm then re
ursively �nds a 
lustering of the removed elements. There are atmost k levels of re
ursion, ea
h indu
ing a mistake of order 1 + O(k3�), for a total relativeerror of O(k4�).Now, let us turn to the running time of the algorithm. The exhaustive sear
h of the �rststep takes timeO(nk2k). Sampling and 
omputing Æ̂ in the se
ond step takes timeO(n+k) =O(n). The minimization in the third step takes time O(nk). The fourth step takes timeO(nk), ex
luding the re
ursive 
all. The �nal step uses Max-k-
ut, whi
h is a randomizedalgorithm and takes time O(n2 + nk2 ~O(1=�03)) (in the version inspired from [32℄). Overall,running the algorithm for �0 = (�=k4)3k+1=k2, the algorithm thus be
omes a (1 + O(�))-approximation and has running timeO(nk2k(n+ nk + nk + n2 + nk2 ~O(1=�03))� k = O(k2kn2k + k22knk+12 ~O(1=�03)):The above dis
ussion proves the following theorem.Theorem 14. For every �xed positive integer k and for every � > 0 there exists an algo-rithm for Metri
 Min-Sum All-Pairs k-
lustering that 
omputes a solution of 
ost within afa
tor of 1 + � of the optimum 
ost in time O(n2k + nk+12 ~O(1=�3k+1)).14



5 The Basi
 Algorithm for Squared Eu
lidean Distan
eIn this se
tion we 
onsider a �nite input set V � Rd and distan
e fun
tion Æ(x; y) = kx�yk22.We give, for every � > 0, an nO(k=�4) time algorithm that produ
es a partition of the inputspa
e into k 
lusters with 
ost within a fa
tor of 1 + � of the 
ost of an optimum partition.Our algorithm 
an be modi�ed to solve the min-sum median 
ase. We indi
ate the 
hangesneeded at the end of the se
tion.We �rst present the algorithm, and then pro
eed to motivate and analyze it.1. By exhaustive sear
h, guess the optimal 
luster sizes jCij = ni, n1+ n2+ � � �+ nk = n.By exhaustive sear
h, for ea
h i = 1; : : : ; k, 
onsider all possible multisetsAi 
ontaining�16� �4 points.22. Consider the following weighted 
omplete n�n bipartite graph G. The left side has nverti
es, of whi
h ni are labelled Ai, and the right side has n verti
es whi
h 
orrespondto the points of V . The edge between a vertex labelled Ai and a vertex x of V hasweight Æ̂(x;Ci) = ni � Æ(x; �Ai).3. Compute a minimum 
ost perfe
t mat
hing in the graph G. This de�nes the following
lustering C1; C2; : : : ; Ck: Ci is the set of points mat
hed to the 
opies of Ai.4. Output the best su
h 
lustering over all 
hoi
es ofA = (A1; : : : ; Ak) andN = (n1; : : : ; nk).Our algorithm is motivated by the following bound.Lemma 15. Let Y be any multi-subset of V . Then, for every � su
h that 0 < � � 1, thereexists a multi-subset Z of Y of size jZj = �16� �4 and su
h that��Æ(Y; �Z)� Æ(Y; �Y )�� � � � Æ(Y; �Y ):Proof: Let � = 1jY jPx2Y Æ(x; �Y ) denote the average distan
e between a point x 2 Y and�Y . Let Y
 = fx 2 Y j Æ(x; �Y ) � 64�=�2g. By Proposition 7, diam(Y
) � �2p64�=�2�2 =256�=�2. By Lemma 9, there exists a multi-subset Z of Y
 su
h that jZj = (16=�)4 andÆ(Z; Y
) � �4diam(Y
)=164 � �2�=256. We 
omplete the proof by proving the following
laim.Claim 16. If Z is a multiset su
h that Æ( �Z; �Y
) � �2�=256, then��Æ(Y; �Z)� Æ(Y; �Y )�� � � � Æ(Y; �Y ):Proof: We want to boundÆ(Y; �Z)� Æ(Y; �Y
) =Xx2Y �Æ(x; �Z)� Æ(x; �Y
)� :2The 
onstant 164 = 65536 was 
hosen to simplify our 
al
ulations. It 
an be improved signi�
antly.15



We bound ea
h term of the right hand side separately using Proposition 7. This givesÆ(x; �Z) � Æ(x; �Y
) � Æ( �Z; �Y
) + 2pÆ( �Z; �Y
) � Æ(x; �Y
). Let Y1 = fx 2 Y j Æ(x; �Y
) � �g. Ifx 2 Y1, then Æ(x; �Z)� Æ(x; �Y
) � �18�+ 1256�2� � �: (6)If x 2 Y n Y1, then Æ( �Z; �Y
) � �2�=256 < �2Æ(x; �Y
)=256. Therefore,Æ(x; �Z)� Æ(x; �Y
) < �18�+ 1256�2� Æ(x; �Y
): (7)By Proposition 6, Px2Y
 Æ(x; �Y
) �Px2Y
 Æ(x; �Y ). By Proposition 8,Æ( �Y ; �Y
) � 1jY
jXy2Y
 

�Y � y

22� �; (8)where (8) follows from the de�nition of Y
. If x 2 Y n Y
, then Æ(x; �Y ) > 64�=�2. Therefore,using Proposition 7 and (8) we get:Æ(x; �Y
) � Æ(x; �Y ) + Æ( �Y ; �Y
) + 2qÆ(x; �Y ) � Æ( �Y ; �Y
)< �1 + 14�+ 164 �2� � Æ(x; �Y ): (9)Combining the bounds in (6), (7), and (9), we getXx2Y Æ(x; �Z) = Xx2Y1 Æ(x; �Z) + Xx2Y nY1 Æ(x; �Z)� Xx2Y1 Æ(x; �Y
) +�18�+ 1256�2� � � � jY1j+�1 + 18�+ 1256 �2� � Xx2Y nY1 Æ(x; �Y
)� �1 + 14�+ 164 �2� ��1 + 18�+ 1256 �2� �Xx2Y Æ(x; �Y ) +�18�+ 1256�2� � � � jY j� �1 + 12�+ 7128�2 + 31024 �3 + 116384 �4� �Xx2Y Æ(x; �Y )� (1 + �) �Xx2Y Æ(x; �Y ):On the other hand, by Proposition 6, Px2Y Æ(x; �Z) � Px2Y Æ(x; �Y ). This 
ompletes theproof of Claim 16 and of Lemma 15.We are now ready for the analysis of our algorithm.Theorem 17. The above algorithm 
omputes a solution whose 
ost is within a fa
tor of(1 + �) of the optimum 
ost in time nO(k=�4). 16



Proof: By Lemma 15, for every i = 1; 2; : : : ; k, there exists a multi-subset Zi of C�i of sizejZij = (16=�)4 and su
h that��Æ(C�i ; �Zi)� Æ(C�i ; �C�i )�� � � � Æ(C�i ; �C�i ):Consider the iteration of the algorithm where Ai = Zi and ni = jC�i j for every i = 1; 2; : : : ; k.Let Ci be the set of points mat
hed to the nodes marked Ai in this iteration, for all i =1; 2; : : : ; k. Then, 
ost(C1; C2; : : : ; Ck) = kXi=1 jCij �Xx2Ci Æ(x; �Ci)� kXi=1 ni �Xx2Ci Æ(x; �Ai)� kXi=1 ni � Xx2C�i Æ(x; �Ai)� (1 + �) � kXi=1 jC�i j � Xx2C�i Æ(x; �C�i ):The performan
e guarantee follows be
ause the algorithm �nds a partition whose 
ost is atleast as good as 
ost(C1; C2; : : : ; Ck).As for the running time of the algorithm, there are less than nk possible representationsof n as a sum n1 + n2 + � � � + nk. There are less than n65536k=�4 possible 
hoi
es for A.Computing a minimum 
ost perfe
t mat
hing in G takes O(n3 log n) time.To solve the min-sum median 
ase, we modify the algorithm as follows. We remove theenumeration over the 
luster sizes, and the multipli
ation of edges weights in G by thosesizes. Instead of 
omputing a minimum 
ost perfe
t mat
hing in G, we assign ea
h point tothe 
losest set to it.6 OutliersIn this se
tion we present a mu
h faster randomized algorithm that 
lusters at least (1� �)npoints from V into k 
lusters C1; C2; : : : ; Ck, su
h that 
ost(C1; C2; : : : ; Ck) is within a fa
torof 1 + � of the optimum 
ost to 
luster all the points into k 
lusters (in fa
t, of the 
ost to
luster the points the algorithm 
hooses into k 
lusters), with probability at least 1� �.The algorithm di�ers from the previous algorithm in the way it enumerates over the
hoi
e of A and N . This is done as follows. Pi
k a sample Z of 
�8 � k� � log(k=�) points,ea
h 
hosen independently and uniformly at random from X (where 
 is a suÆ
iently large
onstant). Enumerate over all 
hoi
es for a list A of t � k disjoint subsets A1; A2; : : : ; At ofZ, ea
h 
ontaining ��8 � log(k=�) points. For ea
h 
hoi
e of A enumerate over all 
hoi
es fora list N of integers n1; n2; : : : ; nt su
h that for all i = 1; 2; : : : ; t, ni = �1 + �2�ji � �n2k , for somenon-negative integer ji, and furthermore �1� �2�n � Pti=1 ni � n. Pro
eed to 
ompute a17




lustering using the graph G(A; N) as in the previous algorithm. (Noti
e that the two sidesof the graph need not be equal, so a minimum 
ost maximum mat
hing may fail to assignsome of the points to 
lusters.) Output the best 
lustering 
omputed over all 
hoi
es of Aand N .Theorem 18. With probability at least 1 � �, the above algorithm 
omputes a solu-tion 
ontaining at least (1 � �)n points, whose 
ost is within a fa
tor of 1 + � of theoptimum 
ost. The algorithm runs in time O (g(k; �; �; �) � n3 log n), where g(k; �; �; �) =exp � 1�8 � k � log(k=�) � (log k + log(1=�) + log(1=�) + log log(1=�))�.Proof: If there are any 
lusters among C�1 ; C�2 ; : : : ; C�k that 
ontain less than �2 � nk points,then by removing them we remove at most �2 � n points and we do not in
rease the 
ost of
lustering the remaining points into k 
lusters. So, 
onsider a 
luster C�i that 
ontains atleast �2 � nk points. Let �i = 1jC�i jPx2C�i Æ(x; �C�i ), and let Yi = fx 2 C�i j Æ(x; �C�i ) � 64�i=�2g.By Markov's inequality, jYij � �1� �264� � �2 � nk . Therefore, for every suÆ
iently large � thereexists 
 > 0 su
h that Pr �jZ \ Yij < ��8 log(k=�)� < �2k : (10)(In the above expression we 
onsider the interse
tion Z \ Yi as a multiset.)Conditioned on the event jZ \ Yij � ��8 log(k=�), the multiset Zi 
ontaining the �rst��8 log(k=�) points in Z \ Yi is a sample of jZij points pi
ked independently and uniformly atrandom from Yi. By Lemma 10, assuming � is suÆ
iently large,Pr �Æ( �Zi; �Yi) > � �16�4 � diam(Yi)� < �2k (11)If Æ( �Zi; �Yi) � � �16�4 � diam(Yi), then by Claim 16������Xx2C�i Æ(x; �Zi)� Xx2C�i Æ(x; �C�i )������ � � � Xx2C�i Æ(x; �C�i ): (12)Let I � f1; 2; : : : ; kg be the set of indi
es i su
h that C�i � �2 �nk . Without loss of generality,let I = f1; 2; : : : ; jIjg. Consider the event E that for every i 2 I we have jZ\Yij � ��8 log(k=�)and furthermore Æ( �Zi; �Yi) � � �16�4 � diam(Yi). Summing (10) and (11) over all i 2 I, Pr [E℄ �1� �. Assuming E holds, 
onsider the iteration of the algorithm where t = jIj, for all i 2 I,Ai = Zi, and �1� �2� jC�i j � ni � jC�i j. Let C1; C2; : : : ; Ct be the 
lustering produ
ed by thealgorithm in this iteration. Then,
ost(C1; C2; : : : ; Ct) � tXi=1 ni � Xx2C�i Æ(x; �Ai)� (1 + �) � tXi=1 jC�i j � Xx2C�i Æ(x; �C�i )� (1 + �) � 
ost(C�1 ; C�2 ; : : : ; C�k):18



Furthermore, the number of points 
lustered istXi=1 ni � �1� �2� � tXi=1 jC�i j� �1� �2�2 � kXi=1 jC�i j> (1� �) � n:It remains to analyze the time 
omplexity of the algorithm. The number of possible
hoi
es for A is 2O( 1�8 �k�log(k=�)�(logk+log(1=�)+log(1=�)+loglog(1=�))):The number of possible 
hoi
es for N is2O(k�(logk+log(1=�))):Ea
h iteration requires the 
omputation of a minimum 
ost maximum bipartite mat
hing.7 A Faster Min-Sum Median AlgorithmIn this se
tion we present an improved polynomial time approximation s
heme for min-summedian k-
lustering, building on the ideas of the previous se
tion. We give a randomizedpolynomial time approximation s
heme for min-sum median 
lustering of a �nite input setV � Rd with distan
e fun
tion Æ(x; y) = kx� yk22. The running time of our algorithms, for�xed k, �, and �, is just O(npoly log n) (� is the failure probability).The approximation s
heme works as follows. Enumerate over all possible monotoni
allynon-in
reasing integer sequen
es n1; n2; : : : ; nk su
h that for all i = 1; 2; : : : ; k, ni = (1 + �)jifor a non-negative integer ji, and n � Pki=1 ni � (1 + �) � n.3 Partition f1; 2; : : : ; kg intosegments B1; B2; : : : ; Bt as follows. The �rst segment begins with 1 and every 
onse
utivesegment begins with the index following the last index of the previous segment. A segmentBi that starts with ai ends with the �rst s = bi, s � ai, su
h that s = k or ns+1 < � �16k�2 �ns.Compute a set of 
andidate 
lusterings using a depth-t re
ursion. It is 
onvenient to think ofthe re
ursion as a depth-t rooted tree T , where every node of T is labelled by a 
lustering ofa subset of X into at most k 
lusters. The 
andidate 
lusterings are the labels of the leavesof T . Output the best 
andidate 
lustering.To pro
eed with our des
ription, we need some notation. Put mi = nai , for all i =1; 2; : : : ; t. Put mt+1 = 0. For every i = 1; 2; : : : ; t, every depth-i node of T 
orresponds toa 
lustering into bi 
lusters, ex
luding 16k2� mi+1 points. (The root of T 
orresponds to anempty 
lustering.) The label on a node of T is an extension of the label on its parent. I.e.,it is a 
lustering that adds points and 
lusters to the label of its parent, but does not 
hangethe assignment of points already 
lustered.3In fa
t, a 
oarser approximation by a fa
tor of 2 would suÆ
e.19



Let Ci�1 be a label on a depth-(i � 1) node of T , where 1 � i � t. We des
ribe how to
ompute the labels of the 
hildren of this node. Denote by Ri�1 the set of points that arenot 
lustered in Ci�1. Pi
k a sample Z of Ri�1 of � k16��2k � 
�10 ln k points drawn independentlyand uniformly at random, where 
 > 0 is a 
onstant. Enumerate over all 
hoi
es for anordered list of jBij disjoint subsets Aai : : : ; Abi of Z, ea
h 
ontaining ��8 ln k points, where� > 0 is a 
onstant. (Both 
 and � are determined in the analysis below.) Every su
h
hoi
e generates a 
hild of Ci�1. (In the analysis it will be 
onvenient to assume that everydepth-i node of T in
ludes, in addition to its label, the list A1; A2; : : : ; Abi, where its pre�xA1; A2; : : : ; Abi�1 is inherited from its parent.) Augment Ci�1 by �nding a minimum 
ostassignment of jRi�1j � 16k2� � mi+1 points4 from Ri�1 to C1; C2; : : : ; Cbi , where the 
ost ofassigning x 2 Ri�1 to Cj is Æ(x; �Aj). This 
ompletes the spe
i�
ation of the algorithm. Wenow pro
eed with its analysis.Claim 19. For all i = 1; 2; : : : ; t, nbi � � �16k�2(k�1)mi.Proof: By 
onstru
tion, for every j 2 fai + 1; : : : ; big, nj � � �16k�2 nj�1. Therefore, puttings = bi � ai, nbi � � �16k�2s nai. As s < k, the 
laim follows.Claim 20. Among the sequen
es n1; n2; : : : ; nk that the algorithm enumerates over thereexists one su
h that for every j = 1; 2; : : : ; k, ��C�j �� � nj � (1 + �) � ��C�j ��.Proof: Clearly for every j there is a valid 
hoi
e of nj that satis�es the bounds in the 
laim.Be
ause for these values n � Pkj=1 nj � (1 + �) � n, there is an iteration where the wholesequen
e is 
onsidered.Thus, from now on we analyze the iteration of the algorithm for whi
h the boundsin Claim 20 hold. Consider a depth-(i � 1) node u of T with label C1; C2; : : : ; Cbi�1, listA1; A2; : : : ; Abi�1, and set of un
lustered points Ri�1. To generate a 
hild v of u, we add tothe list sets Aj, for j = ai; : : : ; bi. We are interested in a parti
ular 
hoi
e of those sets. LetKai; : : : ;Kbi � Ri�1 be mutually disjoint sets su
h that Kj = Ri�1 \ C�j if ��Ri�1 \ C�j �� �� �16�3 �nj, and otherwise Kj is an arbitrary set of size nj. (Noti
e that as jRi�1j = 16k2� �mi >k �mi �Pj2Bi nj, su
h a 
hoi
e of sets exists.)Claim 21. For every � > 0 and for every suÆ
iently large � > 0, there exists 
 > 0 su
hthat with probability at least 1� �k , the sample Z from Ri�1 has the following property. Forevery j 2 Bi, jZ \Kjj � ��8 lnk.Proof: The sets Kj , j 2 Bi, are disjoint. There are at most k su
h sets, and ea
h set hassize at least � �16�3 nbi � �2256 � � �16k�2k � jRi�1j. Then, jZ \Kj j is the sum of �16k� �2k � 
�10 ln kBernouli trials with su

ess probability �2256 � � �16k�2k. Thus, by standard Cherno� bounds,for 
 suÆ
iently large, the probability that jZ \Kjj < ��8 ln k is at most �k2 . Summing thisprobability for j 2 Bi 
ompletes the proof.4Noti
e that this is a positive number of points, and in fa
t, almost all the points in Ri�1 get assigned atdepth i. 20



Claim 22. For every � > 0 there exist � > 0 and 
 > 0 su
h that with probability at least1� �k , u has a 
hild v with list A1; A2; : : : ; Abi su
h that for every j 2 Bi,������Xx2Kj Æ(x; �Aj)� Xx2Kj Æ(x; �Kj)������ � �8 � Xx2Kj Æ(x; �Kj):Proof: Following the proof of Theorem 18 put, for every j 2 Bi, �j = 1jKjjPx2Kj Æ(x; �Kj),and Yj = fx 2 Kj j Æ(x; �Kj) � 64�j=�2g. Set � so that the following property holds. Forevery j 2 Bi, a multi-subset Zj of �2�8 ln k independent, uniformly distributed, points of Yjsatis�es Pr hÆ( �Zj; �Yj) > � �128�4 � diam(Yj)i < �3k . (This is possible by Lemma 10.) Set 
 sothat with probability at least 1 � �3k the bound in Claim 21 holds. Conditioned on thisevent, for every j 2 Bi Z 
ontains a sample of ��8 ln k independent, uniformly distributed,points from Kj . Noti
e that Yj 
ontains more than two-thirds of the points in Kj. If �is suÆ
iently large, then the probability that Zj = Z \ Yj has at least �2�8 ln k points is atleast 1 � �3k . Conditioned on this assumption, Zj is a sample of independent, uniformlydistributed, points of Yj as dis
ussed above. If Æ( �Zj ; �Yj) � � �128�4 � diam(Yj), then, byClaim 16, ���Px2Kj Æ(x; �Zj)�Px2Kj Æ(x; �Kj)��� � �8 �Px2Kj Æ(x; �Kj). The probability that allour assumptions are true is at least 1 � �k . In this 
ase, v is the 
hild of u 
orresponding tothe 
hoi
e Aj = Zj , for all j 2 Bi.Claim 23. With 
onstant probability, T 
ontains a depth-t node l with label C1; C2; : : : ; Ctand list A1; A2; : : : ; At su
h that the dire
ted path p in T from its root to l has the propertythat every parent-
hild pair along p satis�es the bound in Claim 22.Proof: By a trivial indu
tion on the level i.Assume from now that the event in Claim 23 o

urs. Denote, for every x 2 X, by jx theindex of the 
luster that x gets assigned to by the algorithm, and denote by j�x the indexfor whi
h x 2 C�j�x . Let J be the set of indi
es j su
h that Kj � C�j . For i = 1; 2; : : : ; t, letJi = fj 2 J j j � big. For i = 1; 2; : : : ; t, let Di be the set of points assigned to 
lustersat the depth-i node of p. A point x 2 Di is premature i� j�x > bi. Let Pi denote the set ofpremature points in Di. A point x 2 Di is leftover i� Kj�x 6� C�j�x and j�x � bi. Noti
e that inthis 
ase, almost all points from C�j�x must be premature at some depth less than i. Let Lidenote the set of leftover points in Di.Let j 62 J . Let Lj denote the set of leftover points from C�j . By de�nition, jLj j < � �16�3 nj.Sort the points in C�j nLj by non-de
reasing order of w(x) = maxfÆ(x; �C�j ); Æ(x; �Ajx)g. (Theseare all premature points.) Assign these points to the points in Lj in round-robin fashion.Let Q(x) be the set of points assigned to x 2 Lj . Let q(x) be a point in Q(x) with smallestw(x). (Noti
e that fq(x) j x 2 Ljg is a set of jLjj points with smallest w(�) value in C�j nLj.)For every x 2 X let �(x) = 8<: unde�ned if x 2 Pi;jq(x) if x is leftover;j�x otherwise.21



Claim 24. For every j 62 J ,Xx2Lj Æ(x; �A�(x)) � �1 + �3� �Xx2Lj Æ(x; �C�j ) + �6 �Xx2Lj Xy2Q(x)w(y):Proof: Let x 2 Lj . By the triangle inequality,qÆ(x; �A�(x)) �qÆ(x; �C�j ) +qÆ(q(x); �C�j ) +qÆ(q(x); �A�(x)):By de�nition, j = j�x = j�q(x). If w(q(x)) � � �16�2 � Æ(x; �C�j ), we get thatÆ(x; �A�(x)) � �qÆ(x; �C�j ) +qÆ(q(x); �C�j ) +qÆ(q(x); �A�(x))�2�  qÆ(x; �C�j ) + 2 �r� �16�2 � Æ(x; �C�j )!2= ��1 + �8� �qÆ(x; �C�j )�2� �1 + �3� � Æ(x; �C�j ):Otherwise, for every y 2 Q(x), w(y) > � �16�2 � Æ(x; �C�j ). Moreover,jQ(x)j = ��C�j n Lj��jLjj� (1 � �) � nj � � �16�3 � nj� �16�3 � nj> 12 ��16� �3Therefore, in this 
ase,Xy2Q(x)w(y) > 12 ��16� �3 � � �16�2 � Æ(x; �C�j ) = 8� � Æ(x; �C�j );and w(q(x)) < 2 � � �16�3 � Xy2Q(x)w(y):Thus, we getÆ(x; �A�(x)) � �qÆ(x; �C�j ) +qÆ(q(x); �C�j ) +qÆ(q(x); �A�(x))�2< 0�s �8 � Xy2Q(x)w(y) + 2 �s2 � � �16�3 � Xy2Q(x)w(y)1A2< �6 � Xy2Q(x)w(y): 22



Summing these bounds over all x 2 Lj 
ompletes the proof.Put Qi = fx 2 X j j�x 2 Ji and x 2 Rig. Let Si be a set of jPij points in Qi with smallestÆ(x; �A�(x)) value (noti
e that by de�nition Qi 
annot 
ontain premature points, so �(x) isde�ned for every x 2 Qi).Claim 25. tXi=1 Xx2Si Æ(x; �A�(x)) � �8 � tXi=1 Xx2DinPi Æ(x; �A�(x)):Proof: Fix i 2 f1; 2; : : : ; tg. The set Pi is a subset of Sj>bi C�j and therefore jPij � k �mi+1.On the other hand, jQij � jRij � k �mi+1 = �16k2� � k� �mi+1 > 8k2� �mi+1. Thus,Px2Si Æ(x; �A�(x))Px2Qi Æ(x; �A�(x)) � jSijjQij = jPijjQij � �8k :Moreover, Qi � X n (Si0 Pi0), so Px2Qi Æ(x; �A�(x)) � Pi0Px2Di0nPi0 Æ(x; �A�(x)): Summingover i, whi
h takes t � k values, 
ompletes the proof.Claim 26. tXi=1 Xx2DinPinLi Æ(x; �A�(x)) � �1 + �8� �Xj2J Xx2Kj Æ(x; �C�j ):Proof: Noti
e that the lhs sums pre
isely over the points in Sj2J Kj. Moreover, for j 2 J ,x 2 Kj, �(x) = j�x = j. As we are assuming that the bound in Claim 22 holds, the proof is
omplete.Theorem 27. With 
onstant probability the above algorithm 
omputes a solution whose
ost is within a fa
tor of 1 + � of the optimum 
ost. The running time of the algorithm isO(g(k; �) � n � (log n)k), where g(k; �) = exp � 1�8 � k3 ln k � �ln 1� + ln k��Proof: With 
onstant probability the re
urren
e T will 
ontain a 
omputation path p asper Claim 23. Assuming this o

urs, 
onsider the 
lustering C1; C2; : : : ; Ck 
omputed at theleaf l rea
hed by the path p.For every i = 1; 2; : : : ; t, the set DiSSi n Pi is a subset of Ri�1 of size jRi�1j � jRij.Therefore, assigning every x 2 DiSSi n Pi to C�(x) is a feasible augmentation of Ci�1, so its
ost Px2DiSSinPi Æ(x; �A�(x)) 
annot be smaller than the 
ost of the augmentation that thealgorithm 
hooses whi
h is Px2Di Æ(x; �Ajx). Therefore,Xx2X Æ(x; �Ajx) = tXi=1 Xx2Di Æ(x; �Ajx)� tXi=1 Xx2DiS SinPi Æ(x; �A�(x))23



� kXj=1 Xx2Lj Æ(x; �A�(x)) + tXi=1 Xx2Si Æ(x; �A�(x)) + tXi=1 Xx2DinPinLi Æ(x; �A�(x))� �1 + �8� �0� kXj=1 Xx2Lj Æ(x; �A�(x)) + tXi=1 Xx2DinPinLi Æ(x; �A�(x))1A� �1 + �8� �0��1 + �3� �Xj 62J Xx2Lj Æ(x; �C�j ) + �6 �Xj 62J Xx2Lj Xy2Q(x)w(y)1A++�1 + �8�2 �Xj2J Xx2Kj Æ(x; �C�j )� �1 + �2� �Xx2X Æ(x; �C�j�x) + �5 tXi=1 Xx2Pi Æ(x; �Ajx):Moving terms around, we getXx2X Æ(x; �Ajx) � 1 + �=21� �=5 �Xx2X Æ(x; �C�j�x)< (1 + �) �Xx2X Æ(x; �C�j�x):On the other hand, 
ost(C1; C2; : : : ; Ck) = kXj=1 Xx2Cj Æ(x; �Cj)� kXj=1 Xx2Cj Æ(x; �Aj)= Xx2X Æ(x; �Ajx):As the algorithm outputs a 
lustering whi
h is at least as good as C1; C2; : : : ; Ck, this estab-lishes the performan
e guarantee of the algorithm.As for the running time of the algorithm, the number of sequen
es n1; n2; : : : ; nk that thealgorithms has to enumerate over is O ��log1+� n�k�. The size of T is at most2( 1�8 �k3 ln k�(ln 1�+ln k)):Computing the augmentation at ea
h node of T requires O(n) distan
e 
omputations, wherethe hidden 
onstant depends mildly on k and �.24
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