
Approximating Hu�man Codes in Parallel(Revised Version)Piotr Berman� Marek Karpinskiy Yakov NekrichzAbstractIn this paper we present new results on the approximate parallelconstruction of Hu�man codes. Our algorithm achieves linear workand logarithmic time, provided that the initial set of elements is sorted.This is the �rst parallel algorithm for that problem with the optimaltime and work.Combining our approach with the best known parallel sorting algo-rithms we can construct an almost optimal Hu�man tree with optimaltime and work. This also leads to the �rst parallel algorithm thatconstructs exact Hu�man codes with maximum codeword length H intime O(H) and with n processors. This represents a useful improve-ment since most practical situations satisfy H = O(logn).Keywords: Parallel Algorithms, Approximation Algorithms, Hu�man Codes�Dept.of Computer Science and Engineering, The Pennsylvania State University. Re-search done in part while visiting Dept. of Computer Science , University of Bonn. Workpartially supported by NSF grant CCR-9700053 and DFG grant Bo 56/157-1. E-mailberman@cs.uni-bonn.deyDept. of Computer Science, University of Bonn. Work partially supported by DFGgrants , DIMACS and IST grant 14036 (RAND-APX). E-mail marek@cs.uni-bonn.dezDept. of Computer Science, University of Bonn. Work partially supported by ISTgrant 14036 (RAND-APX). E-mail yasha@cs.uni-bonn.de

1 IntroductionA Hu�man code for an alphabet a1; a2; : : : ; an with weights p1; p2; : : : ; pnis a pre�x code that minimizes the average codeword length, de�ned asPni=1 pili. The problem of construction of Hu�man codes is closely relatedto the construction of Hu�man trees (cf., e.g., [H51], [vL76]).A problem of constructing a binary Hu�man tree for a sequence �w =w1; w2; : : : ; wn consists in constructing a binary tree T with leaves, corre-sponding to the elements of the sequence, so that the weighted path length ofT is minimal. The weighted path length of T , wpl(T) is de�ned as follows:wpl(T; �w) = nXi=1wiliwhere li is a depth of the leave corresponding to the element wi.The classical sequential algorithm, described by Hu�man ([H51]) can beimplemented in O(n logn) time. Van Leeuwen has shown that if elementsare sorted according to their weight, a Hu�man code can be constructed inO(n) time (see [vL76]). However, no optimal parallel algorithm is known.Teng [T87] has shown that construction of a Hu�man code is in a class NC.His algorithm, uses the parallel dynamic programming method of Milleret al. [MR85] and works in O(log2 n) time on n6 processors. Attalah etal. have proposed an n2 processor algorithm, working in O(log2 n) time.This algorithm is based on the multiplication of concave matrices. Thefastest n-processor algorithm is due to Larmore and Przytycka [LP95]. Theiralgorithm, based on reduction of Hu�man tree construction problem to theconcave least weight subsequence problem runs in O(pn logn) time.Kirkpatrick and Przytycka [KP96] introduce an approximate problem ofconstructing, so called, almost optimal codes, i.e. the problem of �ndinga tree T 0 that is related to the Hu�man tree T according to the formulawpl(T 0) � wpl(T)+ n�k for a �xed error parameter k (assuming P pi = 1).We call n�k an error factor. In practical situations the nearly optimal codes,corresponding to nearly optimal trees, are as useful as the Hu�man codes,because compressing a �le of polynomial size with an approximate Hu�mancode leads to the compression losses limited only by a constant. Kirkpatrickand Przytycka [KP96] propose several algorithms for that problem. In par-ticular, they present an algorithm that works in O(k log n log� n) time andwith n processors on a CREW PRAM and an O(k2 logn) time algorithmthat works with n2 processors on a CREW PRAM.The problems considered in this paper were also partially motivated bya work of one of the authors on decoding the Hu�man codes [N00b], [N00a].2

In this paper we improve the before mentioned results by presenting analgorithm that works in O(k logn) time and with n processors. As we willsee in the next section the crucial step in computing a nearly optimal treeis merging two sorted arrays and this operation is repeated O(lognk) times.We have developed a method for performing such a merging in a constanttime.We also further improve this result and design an algorithm that con-structs almost-optimal codes in time O(logn) and with n= logn processors,provided that elements are sorted. This results in an optimal speed-up of thealgorithm of van Leeuwen [vL76]. Our algorithm works deterministically ona CREW PRAM and is the �rst parallel algorithm for that problem with theoptimal time and work. Combining that algorithm with parallel radix sortalgorithms we construct an optimal-work probabilistic algorithm that worksin expected logarithmic time. We construct also a deterministic algorithmthat works on a CRCW PRAM in O(k logn) time and with n log logn= lognprocessors.The above described approach also leads to an algorithm for constructingexact Hu�man trees that works in O(H) time and with n processors, for Hthe height of Hu�man tree. This is also an improvement of the algorithm ofLarmore and Przytycka for the case when H = o(pn logn). We observe thatin the most practical applications height of the Hu�man tree is O(logn).2 A Basic Construction SchemeOur algorithm uses the following tree data structure. A single element isa tree, and if t1 and t2 are two trees, then t = meld(t1; t2) is also a tree,so that weight(t) = weight(t1) + weight(t2). Initial elements will be calledleaves.In a classical Hu�man algorithm the set of trees is initialized with theset of weights. Then one melds consecutively two smallest elements in theset of trees until only one tree is left. This tree can be proven to be optimal.Kirkpatrick and Przytycka [KP96] presented a scheme for paralleliza-tion of a Hu�man algorithm. The set of element weights p1; p2; : : : ; pn ispartitioned into sorted arrays W1; : : : ;Wm, such that elements of array Wisatisfy the condition 1=2i � p < 1=2i�1. In this paper we view (sorted)arrays as an abstract data type with the following operations: extracting ofsubarray A[a; b], measuring the array length, l(A), and merging two sortedarrays, merge(A;B). The result of operation merge(A;B) is a sorted arrayC which consists of elements of A and B. If we use n processors, then each3

Algorithm Oblivious-Hu�man1: for i := m downto 1 do2: if l(Wi) = 1)3: Wi�1 :=merge(Wi;Wi�1)4: else5: t := meld(Wi[1];Wi[2])6: Wi :=merge(t;Wi[3; l(Wi)])7: a := l(Wi)8: b := ba=2c9: for i := 1 to b pardo10: Wi[i] :=meld(Wi[2i� 1];Wi[2i])11: Wi :=merge(Wi(1; b);Wi[2b+ 1; a])12: Wi�1 :=merge(Wi�1;Wi)Figure 1: Hu�man tree construction schemeentry of our sorted array has an associated processor.Since in the Hu�man algorithm lightest elements are processed �rst andsum of any two elements in a classWi is less than sum of any two elements ina class Wj ; j < i, elements of the same class can be melded in parallel beforethe elements of classes with smaller indices are processed. The scheme forthe parallelization is shown on Figure 1. We refer the reader to [KP96] fora more detailed description of this algorithm.Because the total number of iterations of algorithmOblivious-Hu�manequals to the number of classes Wi and the number of classes is linear in theworst case, this approach does not lead to any improvements, if we want toconstruct an exact Hu�man tree.Kirkpatrick and Przytycka [KP96] also describe an approximation algo-rithm, based onOblivious-Hu�man. In this paper we convertOblivious-Hu�man into an approximation algorithm in a di�erent way. We replaceeach weight pi with pnewi = dpinken�k . Let T � denote an optimal tree forweights p1; : : : ; pi. Since pnewi < pi + n�k ,X pnewi li <X pili +Xn�kli <X pili + n2n�kbecause all li are smaller than n. Hence wpl(T �; �pnew) < wpl(T; �p)+ n�k+2.4

Let TA denote the (optimal) Hu�man tree for weights pnewi . Thenwpl(TA; �p) < wpl(TA; �pnew) � wpl(T �; �pnew) < wpl(T �; �p) + n�k+2Therefore we can construct an optimal tree for weights pnew , than replacepnewi with pi and the resulting tree will have an error of at most n�k+2.If we apply algorithm Oblivious-Hu�man to the new set of weights,then the number of iterations of this algorithm will be dk log2 ne, since newelements will be divided into at most dk log2 ne arrays. An additional bene�tis that we will use registers with polynomially bounded values. Note thatin [KP96] PRAM with an unbounded register capacity was used. Thatadvantage of our algorithm will be further exploited in section 4.3 An O(k log n) Time AlgorithmIn this section we describe an O(k log n) time n-processor algorithm thatworks on CREW PRAM.Algorithm Oblivious-Hu�man performs k logn iterations and in eachiteration only the merge operations are di�cult to implement in a constanttime. All other operations can be performed in a constant time. We willuse the following simple fact, described in [V75]:Proposition 1 If array A has a constant number of elements and array Bhas at most n elements, than arrays A and B can be merged in a constanttime and with n processors.Proof: Let C = merge(A;B). We assign a processor to every possible pairA[i]; B[j], i = 1; : : : ; c and B = 1; : : : ; n. If A[i] < B[j] < A[i+1], then B[j]will be the i+ j-th element in array C. Also if B[j] < A[i] < B[j + 1], thenA[i] will be the i+ j-th element in array C. 2Proposition 1 allows to implement operation merge(Wi(1; b);Wi[2b +1; a]) (line 11 of Figure 1) in a constant time.Operation merge(Wi�1;Wi) is the slowest one, because array Wi canhave linear size and merging two arrays of size n requires log logn operationsin general case (see [V75]). In this paper we propose a method, that allowsus to perform every merge of Oblivious-Hu�man in a constant time. Thekey to our method is that at the time of merging, all elements in botharrays know their predecessors in other array, and can thus compute theirpositions in a resulting array in a constant time. A merging operation itselfis performed without comparisons. Comparisons will be used for the initial5

computation of predecessors and to update predecessors after each mergeand meld operation.We say that element e is of rank k, if e 2 Wk . A relative weight r(p) ofan element p of rank k is r(p) = p � 2k. We will denote by r(i; c) a relativeweight of the c-th element in arrayWi, w[e] will denote the weight of elemente, and pos[e] will denote the position of an element e in its arrayWi, so thatWi[pos[e]] = e. To make description more convenient we say that in everyarrayWk Wk[0] = 0 andWk[l(Wk)+1] = +1 At the beginning we constructa list R of all elements, sorted according to their relative weight. We observethat elements of the same classWk will appear in R in a non-decreasing orderof their weight. We assume that whenever e 6= e0, r(e) 6= r(e0).Besides that,if leaf e and tree t are of a rank k and t is the result of melding two elementst1 and t2 of rank k+1, such that r(t1) > r(e) and r(t2) > r(e) (r(t1) < r(e)and r(t2) < r(e)) then a weight of t is bigger (smaller) than a weight of e.We also compute for every leaf e and every class i the value of pred(e; i) =Wi[j], s.t. r(i; j) < r(e) < r(i; j + 1). In other words, pred(e; i) is thebiggest element in class i, whose relative weight is smaller than or equalthan r(e). To �nd values of pred(e; j) for some j we compute an array Cjwith elements corresponding to all leaves, such that Cj [i] = 1 if R[i] 2 Wjand Cj [i] = 0 otherwise and compute pre�x sums for elements of Cj . Apre�x sum for any class k can be computed on an arithmetic circuit inlinear depth and logarithmic time (see [B97]). In our case we have to solved = O(logn) instances of pre�x sum problems. Since the total work forevery single instance is linear we can pipeline all instances in such a waythat all problems are solved in O(d + log n) = O(logn) time and with nprocessors. Thus we can iterate j = 1; : : : ; k log n, and for each value of jcompute Cj , and send its content to the pre�x sum circuit.We use an algorithm from Figure 2 to update values of pred(e; i) for alle 2 Wi�1; : : : ;W1 and values of pred(e; t) for all e 2 Wi and t = i� 1; : : : ; 1after melding of elements from Wi .First we store the tentative new value of pred(e; i) for all e 2 Wi�1; : : : ;W1in array temp (lines 1-3 of Figure 2). The values stored in temp di�er fromthe correct values by at most 1.Next we meld the elements and change the values of w[s] and pos[s] forall s 2 Wi (lines 4-8 of Figure 2).Finally we check whether the values of pred(s; i) for s 2 W1[W2 [: : :[Wi�1 are the correct ones. In order to achieve this we compare the relativeweight of the tentative predecessor with the relative weight of s. If therelative weight of s is smaller, pred(s; i) is assigned to the previous elementof Wi. (lines 10-14 of Figure 2). In lines 15 and 16 we check whether the6

1: for a < i, b � l(Wa) pardo2: s := Wa[b]3: temp[s] := dpos[pred(s; i)]=2e4: for c � l(Wi)=2 pardo5: s := meld(Wi[2c� 1];Wi[2c])6: w[s] := w[Wi[2c� 1]] + w[Wi[2c]]7: pos[s] := c8: Wi[c] := s9: for a < i, b � l(Wa) pardo10: s := Wa[b]11: c := temp[s]12: if r(i; c)> r(a; b)13: c := c� 114: if r(a; b+ 1) > r(i; c+ 1)15: pred(Wi[c+ 1]; a) := s16: pred(s; i) := Wi[c]Figure 2: Melding operationpredecessors of elements in Wi have changed.If a number of elements in Wi is odd then the last element of Wi mustbe inserted into Wi (line 11 of Figure 1). Using Statement 1 we can performthis operation in a constant time. We can also correct values of pred(e; i) ina constant time and with linear number of processors.When the elements ofWi are melded and predecessor values pred(e; i) arerecomputed pos[pred(Wi[j]; i�1)] equals to the number of elements in Wi�1that are smaller than or equal to Wi[j]. Analogically pos[pred(Wi�1[j]; i)]equals to the number of elements in Wi that are smaller than or equalto Wi�1[j]. Therefore indices of all elements in the merged array can becomputed in a constant time.After melding of elements from Wi every element of Wi�1 [Wi�2 [: : :[W1 has two predecessors of rank i � 1. We can �nd the new predecessorof element e by comparing pred(e; i) and pred(e; i � 1). The pseudocode7

description of an operation merge(Wi�1;Wi) (line 12 of Figure 1) is shownon Figure 3.Since all operations of the algorithm Oblivious-Hu�man can be im-plemented to work in a constant time, each iteration takes only a constanttime. Therefore we haveTheorem 1 An almost optimal tree with error factor 1=nk can be con-structed in O(k logn) time and with n processors on a CREW PRAM.do simultaneously:1: for j � l(Wi�1) pardo for j � l(Wi) pardo2: t :=Wi�1[j] t := Wi[j]3: k := pos[pred(t; i)] k := pos[pred(t; i� 1)]4: pos[t] := j + k pos[t] := j + k5: Wi[j + k] := t Wi[j + k] := t6: for a < i, b � l(Wa) pardo7: s :=Wa[b]8: if (w[pred(s; i� 1)] > w[pred(s; i)])9: pred(s; i) := pred(s; i� 1)Figure 3: Operation merge(Wi;Wi�1)The algorithm described in the previous section can also be applied tothe case of exact Hu�man trees. The di�erence is that in case of exactHu�man trees weights of elements are unbounded and number of classesWi is O(n) in the worst case. However, it is easy to see that number ofclasses Wi does not exceed H + 2 where H is the height of the resultingHu�man tree. We can sort elements and distribute them into classes in timeO(logn) with n processors. We can then compute values of pred for classesH;H � 1; : : : ; H � log n and perform �rst logn iterations of Oblivious-Hu�man in time O(logn). Then, we compute values of pred for the classesH� log n;H� log n�1; : : : ; H�2 logn and perform the next log n iterationsof the basic algorithm. Proceeding in the same manner we can perform Hiterations in O(H) time. 8

4 An O(kn) Work AlgorithmIn this section we describe a modi�cation of the merging scheme, presentedin the previous section. The modi�ed algorithm works on a CREW PRAMin O(logn) time and with n= logn processors, provided that initial elementsare sorted.The main idea of our modi�ed algorithm is that we do not use all valuesof pred(e; i) at each iteration. In fact, if we know values of pred(e; i� 1)for all e 2 Wi and values of pred(e; i) for all e 2 Wi�1 then merging can beperformed in a constant time. Therefore, we will use function pred insteadof pred such that the necessary information is available at each iteration,but the total number of values in pred is limited by O(n). We are also ableto recompute values of pred in a constant time after each iteration.For an array R we denote by samplek(R) a subarray of R that consistsof every 2k-th element of R. We de�ne pred(e; i) for e 2 Wl, l > i (l < i)as the biggest element ~e in samplel�i�1(Wi) (samplei�l�1(Wi)), such thatr(~e) � r(e). Besides that we maintain the values of pred(e; i) only fore 2 samplel�i�1(Wl). In other words for every 2l�i�1-th element of Wl weknow its predecessor in Wi with precision of up to 2l�i elements. Obviouslytotal number of values in pred is O(n).Now we will show how pred can be recomputed after elements in a classWi are melded. Number of pairs (e; i) for which values pred(e; i) must becomputed is O(n), and we can assign one processor to every pair.We denote by sibling(e) an element with which e will be melded inOblivious-Hu�man. Consider an arbitrary pair (e; a), e 2 Wi. First thevalue pred(e; a) is known, but the value of pred(s; i), where s = sibling(e)may be unknown. We can set a tentative new value of pred(em; a) whereem = meld(e; s) to pred(e; a).Next we recompute the values of pred(s; i) for s 2 samplei�1W1 [samplei�2W2 [: : : [sample1Wi�1. Let e1 = pred(s; i), e2 = sibling(e1)and e = meld(e1; e2). The correct new values of pred(s; i) can be computedin a similar way as in section 3. If the relative weight of s is smaller thanthat of e, pred(s; i) is assigned to the element preceding e. Otherwise, wealso compare the relative weight of s with the relative weight of the elementfollowing e. If the �rst one is bigger we set pred(s; i) to the element follow-ing e. We also can check whether the predecessors of elements in Wi arethe correct ones at the same time. A pseudocode description of the parallelmeld operation is shown on Figure 4.9

1: for a < i, b � l(samplei�a�1Wa) pardo2: s := Wa[b � 2i�a�1]3: temp[s] := dpos[pred(s; i)]=2e4: for c � l(Wi)=2 pardo5: s := meld(Wi[2c� 1];Wi[2c])6: w[s] := w[Wi[2c� 1]] + w[Wi[2c]]7: pos[s] := c8: Wi[c] := s9: for a < i, b � l(samplei�a�1Wa) pardo10: d1 := 2i�a�111: d2 := 2i�a�212: s := Wa[b � d1]13: c := temp[s]14: if r(i; c � d2) > r(a; b � d1)15: c := c� 116: if r(a; (b+ 1) � d1) > r(i; (c+ 1) � d2)17: pred(Wi[(c+ 1) � d2]; a) := s18: else19: if r(i; (c+ 1) � d2) < r(a; b � d1)20: c := c+ 121: if r(a; (b� 1) � d1) < r(i; (c� 1) � d2)22: pred(Wi[(c� 1) � d1]; a) := Wa[(b� 1) � d2]23: pred(s; i) := Wi[c � d2]Figure 4: A melding operation for the improved algorithmWhen elements from Wi are melded the new elements will belong toWi�1. Now we have to compute pred(e; a) in samplei�a�2(Wa) for every2i�a�2-th element of Wi. Suppose pred(e; a) = Wa[p � 2i�a�1]. We can�nd the new \re�ned"value of pred(e; a) by comparing r(e) with r(Wl[p �2i�l�1+2i�l�2]). When the correct values of pred(e; i) e 2 samplel�i�1(Wl)are known we can compute pred(e; i) for all e from samplei�a�2(Wa). Lete be a new element in samplei�a�2(Wa) and let ep and en be the nextand previous elements in samplei�a�2(Wa). Obviously en and ep are in10

samplei�a�1(Wa) and pred(e; i) is between pred(ep; i) and pred(en; i). Newcorrect values of pred(e; i) can be found in a constant time.Using the values of pred we can merge Wi�1 and the melded elementsfrom Wi in a constant time in the same way as described in section 3.A detailed description of the meld and merge operations for the modi�edalgorithm will be given in the full version of the paper.Since all other operations can also be done in a constant time we can per-form logn iterations of Oblivious-Hu�man in a logarithmic time. There-fore we getTheorem 2 An almost optimal tree with error factor 1=nk can be con-structed in time O(k logn) and with n= logn processors, if elements aresorted according to their weight.We can combine the algorithm described above with algorithms for theparallel bucket sort. Depending on the chosen computation model and as-sumptions about the size of the machine word we can get slightly di�erentresults. We will see that in this case optimal time-processor product can beachieved under reasonable conditions.Using a parallel bucket sort algorithm described in [H87] we can sortpolynomially bounded integers in O(logn log logn) time and with n= lognprocessors on a priority CRCW PRAM. Using the algorithm described byBhatt et al. [BDH+91] we can also sort polynomially bounded integersin the same time and the processor bounds on arbitrary CRCW PRAM.Combining these results with our modi�ed algorithm we getProposition 2 An almost optimal tree with error 1=nk can be constructedin O(k log n log logn) time and with n= logn processors on a priority CRCWPRAM or on an arbitrary CRCW PRAM.Applying an algorithm of Hagerup [H87] we get the following resultProposition 3 An almost optimal tree with error 1=nk can be constructedfor the set of n uniformly distributed random numbers with n= logn pro-cessors in time O(k log n) and with probability 1=C�pn for any constant C.By using the results of Andersson, Hagerup, Nilsson and Raman [AHNR95],n integers in the range 0::nk can be sorted in O(logn) time and withn log log n= logn processors on a unit-cost CRCWPRAM with machine wordlength k logn. Finally [AHNR95] shows that n integers can be probabilis-tically sorted in an expected time O(logn) and expected work O(n) on aunit-cost EREW PRAM with word length O(log2+" n).11

Proposition 4 An almost optimal tree with error 1=nk can be constructedwith expected time O(logn) and expected work O(n) on a CREW PRAMwith word size log2+" n.The last statement shows that a Hu�man tree can be probabilisticallyconstructed on a CREW PRAM with polylogarithmic word length.5 ConclusionThis paper describes the �rst optimal work approximate algorithms for con-structing Hu�man codes. The algorithms have polynomially bounded errors.We also show that a parallel construction of an almost optimal code for nelements is as fast as the best known deterministic and probabilistic meth-ods for sorting n elements. In particular, we can deterministically constructan almost optimal code in logarithmic time and with linear number of pro-cessors on CREW PRAM or in O(logn) time and with n log logn= lognprocessors on CRCW PRAM. We can also probabilistically construct analmost-optimal tree with linear expected work in logarithmic expected timeprovided that the machine word size is log2+" n. This is the �rst optimalwork and the logarithmic time algorithm for that problem.Our approach also leads to the improvement of the construction of Hu�-man trees for the case when H = o(pn log n), where H is the maximumcodeword length. This gives the �rst parallel algorithm that works in O(H)time and with n processors. In practical applications H is usually of orderO(logn). The question of the existence of algorithms that deterministicallysort polynomially bounded integers with linear time-processor product andachieve optimal speed-up remains widely open. It will be also interestingto know, whether e�cient construction of almost optimal trees is possiblewithout sorting initial elements.AcknowledgmentsWe thank Larry Larmore for stimulating comments and discussions.References[AHNR95] Andersson, A., Hagerup, T., Nilsson, S., Raman, R., Sortingin Linear Time?, Proc. STOC: ACM Symposium on Theory ofComputing (1995). 12

[BDH+91] Bhatt, P., Diks, K., Hagerup, T., Prasad, V., T.Radzik, Saxena,S., Improved deterministic parallel integer sorting, Informationand Computation 94 (1991), pp. 29{47.[B97] Blelloch, G., Pre�x Sums and Their Applications, Reif, J., ed,Synthesis of Parallel Algorithms, pp. 35{60, 1997.[H87] Hagerup, T., Toward optimal parallel bucket sorting, Informationand Computation 75 (1987), pp. 39{51.[H51] Hu�man, D. A., A method for construction of minimum redun-dancy codes, Proc. IRE,40 (1951), pp. 1098{1101.[KP96] Kirkpatrick, D., Przytycka, T., Parallel Construction of BinaryTrees with Near Optimal Weighted Path Length, Algorithmica(1996), pp. 172{192.[LP95] Larmore, L., Przytycka, T., Constructing Hu�man trees in par-allel, SIAM Journal on Computing 24(6) (1995), pp. 1163{1169.[MR85] Miller, G., Reif, J., Parallel tree contraction and its applica-tions, Proc. 26th Symposium on Foundations of Computer Sci-ence (1985), pp. 478{489.[N00a] Nekrich, Y., Byte-oriented Decoding of Canonical Hu�manCodes, Proc. Proceedings of the IEEE International Symposiumon Information Theory 2000, (2000), p. 371.[N00b] Nekrich, Y., Decoding of Canonical Hu�man Codes with Look-Up Tables, Proc. Proceeding of the IEEE Data CompressionConference 2000 (2000), p. 342.[T87] Teng, S., The construction of Hu�man equivalent pre�x code inNC, ACM SIGACT 18 (1987), pp. 54{61.[V75] Valiant, L., Parallelism in Comparison Problems, SIAM Journalon Computing 4 (1975), pp. 348{355.[vL76] van Leeuwen, J., On the construction of Hu�man trees, Proc.3rd Int. Colloqium on Automata, Languages and Programming(1976), pp. 382{410. 13

