
Improved Approximations for GeneralMinimum Cost SchedulingPiotr Berman � Marek Karpinski yAbstract. We give improved trade-o� results on approximating generalminimum cost scheduling problems.
�Dept. of Computer Science and Engineering, The Pennsylvania State University,University Park, PA 16802. Partially supported by NSF grant CCR-9700053. Email:berman@cse.psu.edu.yDept. of Computer Science, University of Bonn, 53117 Bonn. Supportedin part by DFG grants, DIMACS, and IST grant 14036 (RAND-APX). Email:marek@cs.uni-bonn.de. 1



1 IntroductionThere exists a number of natural optimization problems related to schedulingthat are di�cult to approximate.In recent years, two techniques o�ered polynomial time algorithms withimproved approximation ratios. For some problems these were the �rst con-stant factor aproximations. The �rst technique was introduced by Bar-Noyet al. [BGNS99]; the problem is �rst described as an integer program, thenone gets a fractional solution to linear relaxation of this program, and after-wards the results are converted to integers using a new method. One problemwith this approach is that it the running time, while polynomial, is ratherlarge. The second technique was simultaneously presented by Bar-Noy et al.[BBFNS00] Berman and DasGupta [BD00] . The latter technique is combi-natorial and besides being more e�cient, it handles well the case when timemoments (release times, deadlines) are expressed with large numbers.Phillips et al. [PUW00] presented an extension of the technique of[BGNS99] to two scheduling problems, and one of themwas to �nd a trade-o�between the cost and the completion rate in a variety of scheduling problemswhere the cost has to be minimized. This problem encapsulates many mini-mization problems for non-preemptive scheduling, for one or more machines,like minimization of the 
ow time, average completion time, total tardiness,etc.Because a solution of our paper does not require the cost function tobe increasing (in the sense that the later we schedule a particular job, thelarger the cost), we can handle the case when many unrelated machines areavailable. As a result, we can handle some industrial engineering applications,where \machines" are either various machines in single factory or di�erentfactories, and where the cost function can be quite arbitrary.To summarize, our improvements are the following: the new algorithmis an adaptation of the combinatorial approach of [BD00], and thus it isfaster and can be adapted to handle time expressed with large numbers (i.e.it o�ers a polynomial time algorithm rather than pseudo-polynomial); thetrade-o� obtained is more favorable; limitations on the cost function areremoved, which, among others, generalizes the technique to the cases withmany machines. 2



2 Trade-O� for the General Minimum CostSchedulingWe discuss here the general problem of minimum cost scheduling. This prob-lem encapsulates many minimization problems for non-preemptive schedul-ing, for one or more machines, like minimization of the 
ow time, averagecompletion time, total tardiness, etc. For the general background of thisproblem, see, e.g., [PUW00]. Because a solution o�ered in this paper doesnot require a cost function to be increasing (e.g., executing a particular joblater may cost less, we can extend our result to the case of many machines(e.g., we can pretend that the job can be scheduled on one machine only, butthis machine will run on many days and the cost of executing a job dependsonly on the hour, not on the day when it is performed).To present the problem formally, our input describes a set of n jobs J ,each job i 2 J has a set of intervals when it can be executed and the weightwi. For simplicity, assume that Pi2J w(i) = 1. An scheduling entry a hasjob j(a), start s(a) and �nish f(a) where job j(a) can be executed in theinterval [s(a); f(a)). Moreover, the scheduling entry a has its unit cost c(a)and weight w(a) = wj(a). A schedule is a set S of scheduling entries suchthat� for each i 2 J there exists at most one a 2 S such that j(a) = i;� for each t there exists at most one a 2 S such that s(a) � t < f(a).The weight of a schedule S is w(S) = Pa2S w(a) and the cost is cost(S) =Pa2S c(a)w(a). We assume that there exists a schedule S� such that w(S�) =1 and cost(S�) = C�. Intuitively, C� is the minimal cost of a completeschedule.The natural problem to consider in this context is to �nd a minimumcost complete schedule. However, this problem is known to be NP-hard.Moreover, if we insist on �nding a complete schedule, no polynomial timealgorithm can approximate the minimal cost of a complete schedule with anapproximation factor o(pn), as it was shown by Kellerer et al. [KTW95].Phillips et al. [PUW00] investigated the following trade-o�: for a fraction 'we want to �nd a schedule of weight at least ' with as low cost as possible.The state of the art is such that for ' > 12 we cannot �nd any schedule ofweight ', and for ' = 12 we can barely manage to �nd a schedule, so wewould rather not think about minimizing its cost. Thus we consider only3



' < 12. An algorithm for this problem can be characterized by its guaranteefunction.Formally, we say that the general minimum cost scheduling is solved witha guarantee g('), if a polynomial time algorithm �nds, given an instance ofthe problem and a fraction ' < 12 , a schedule with weight at least ' and costat most C�g(').Phillips et al. [PUW00] use linear relaxation of the problem to obtaina guarantee function g(') = 1�'1�2' . Their discussion explicitly handles thecase when all jobs have equal weights and it generalizes the method to thearbitrarily weighted jobs.We will describe a more direct approach that will yield a smaller guaranteefunction. We run our algorithm with parameter C that estimates C�.In our algorithm, we de�ne for each scheduling entry a the unit pro�tpC(a) = C�c(a)(1�2'); the pro�t of this entry is pC(a)w(a) so that we cande�ne profitC(S) = Pa2S pC(a)w(a) = Cw(S) � cost(S)(1 � 2'). Clearly,profitC(S�) = C � C�(1� 2').Bar-Noy et al. [BBFNS00] as well as Berman and DasGupta [BD00] de-scribed e�cient algorithms that guarantee to �nd an approximation S of S�such that profitC (S) � 12profitC (S�). We use SC to denote the outcome ofsuch an algorithm. We consider two cases.Case 1: profitC (SC) � C'. ThenprofitC(S�) � 2C' � C � C�(1� 2') � 2C' �C(1� 2') � C�(1 � 2') � C � C�:Case 2: profitC (SC) � C'. Then Cw(SC)� cost(SC)(1� 2') � C' whichimplies w(SC) � '+ 1� 2'C cost(SC) and (1)cost(SC) � Cw(SC)� '1� 2' � C 1 � '1� 2': (2)In this case we know that the weight of SC is large enough. Moreover, ifC � C�(1 + "), then cost(SC) � C� 1�'1�2'(1 + ")4



This case analysis shows that if C = C0=(1 + ") satis�es Case 1 andC = C0 satis�es Case 2, then w(SC0) is large enough and cost(SC0) ex-ceeds the guarantee of Phillips et al. [PUW00] by a factor not larger than1 + ". Clearly, for any " we can �nd an appropriate C0 using Newton it-eration. We start from a low estimate for C being 0 and a high estimatebeing Pi2J maxa:j(a)=i c(a)w(a). If the average of the two estimates satis�esCase 1, it becomes the new low estimate, if it satis�es Case 2, it becomesthe new high estimate. We stop when the di�erence between the estimatesdrops below ".While we already obtained a solution that satis�es the guarantee ofPhillips et al., we can observe that our actual guarantee is a bit stronger.To simplify the reasoning, assume that " = 0 and thus C = C�. We willdescribe two algorithms, with smaller guarantee functions.We will use � to denote the maximum job weight. If � � ", both of ouralgorithm return schedule fag where a is a scheduling entry with w(a) = �and the minimum cost. Clearly, cost(fag) � C�.The design of our �rst algorithm starts with the observation that in (2) thecost of SC is equal to C 1�'1�2' only if SC includes all the jobs, i.e. w(SC) = 1.On the other hand, if w(SC) is just as we promised, i.e. equal to ', thencost(SC) = 0. In the latter case we are clearly obtaining a lower cost than weinitially wanted to guarantee. If w(SC) > ', we will try to compute anothersolution S. We start with S = SC . Then we can pick an entry a 2 S withthe maximum unit cost and remove it. As a result, the average unit cost willnot go up. We can repeat this until w(S)�w(a) < ', clearly we end up withw(S) � '+ �.The above reasoning shows that we start with the cost of C w(SC)�'1�2' andwe decrease it by the factor of ('+ �)=w(SC) to obtain'+ �w(SC) � Cw(SC) � '1 � 2' = C ('+ �)(1� '=w(SC))1� 2' � C ('+ �)(1� ')1 � 2' :Thus we have proven the following theorem.Theorem 1. We can solve in polynomial time the general minimum costscheduling problem with the performance guarantee ('+�)(1�')1�2' if � < ' and 1if � � '.Using a slower algorithm, we can provide a performance guarantee thatdoes not depend on �, more precisely, the guarantee of max('(1�')1�2' ; 1). Notethat '(1�')1�2' � 1 if ' � 3�p52 . 5



We consider only the case when � < '; we will assume that � = wi.Our new algorithm will consider every possible scheduling entry a for jobi. For a given a, we remove from consideration all scheduling entries thatare in con
ict (schedule job i or have interval that overlaps the interval ofa). We �nd the schedule that consists of a and the solution of the followingresidual problem:all weights are divided by 1 � � so they add to 1,the target fraction of weight is ('� �)=(1 � �),the optimum cost is C� � c, where c = c(a)�,the maximum job weight is �=(1� �).By Theorem 1, the resulting schedule has the cost at mostc+ �'��1�� + �1��� �1� '��1�� ��1 � 2'��1�� � (C� � c) = c+ '(1� ')(1� 2'+ �)(1� �)(C� � c) =c+ '(1� ')1� 2'+ �(2'� �)(C� � c) � c+ '(1� ')1 � 2' (C� � c) �max(1; '(1 � ')1� 2' )c+max(1; '(1 � ')1� 2' )(C� � c) = max(1; '(1� ')1 � 2' )C�This entails the following theorem.Theorem 2. We can solve in polynomial time the general minimum costscheduling problem with the performance guarantee max(1; '(1�')1�2' ). 2References[BGNS99] A. Bar-Noy, S. Guha, J. Naor and B. Schieber, Approximatingthe Throughput of Real-Time Multiple Machine Scheduling, 31st STOC,1999.[BBFNS00] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor and B. Schieber,A Uni�ed Approach to Approximating Resource Allocation and Schedul-ing, 32nd STOC, 2000.[BD00] P. Berman and B. DasGupta, Improvements in Throughput Maxi-mization for Real-Time Scheduling, 32nd STOC, 2000.6



[KTW95] H. Kellerer, T. Tautenhahn and G.J. Woeginger, Approximabilityand Nonapproximability Results for Minimizing Total Flow Time on aSingle Machine, 28th STOC, 1995.[PUW00] C. Phillips, R.N. Uma and J. Wein, O�-Line Admission Controlfor General Scheduling Problems, 11th SODA, ACM and SIAM, 2000.

7


