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Abstract

In [2, 3], we have reduced the problem of finding an augmenting path
in a general graph to a reachability problem in a directed, bipartite
graph, and we have shown that a slight modification of depth-first
search leads to an algorithm for finding such paths. This new point of
view enables us to give a simplified realization of the Hopcroft-Karp
approach for the computation of a maximum cardinality matching in
general graphs. We show, how to get an O(n+ m) implementation of
one phase leading to an O(y/nm) algorithm for the computation of a
maximum cardinality matching in general graphs.



1 Introduction and motivation

In 1973, Hopcroft and Karp [9] proved the following fact. If one computes
in one phase a maximal set of shortest augmenting paths, then O(y/n) such
phases would be sufficient. For the bipartite case they showed that a phase
can be implemented by a breadth-first search followed by a depth-first search.
This led to an O(n 4+ m) implementation of one phase, and hence, to an
O(y/nm) algorithm for the computation of a maximum matching in bipartite
graphs.

In 1975, Even and Kariv [5, 10] presented an O(min{n* mlogn}) imple-
mentation of a phase, leading to an O(min{n*®, /nmlogn}) algorithm for
the computation of a maximum matching in general graphs. In 1978, Bartnik
[1] gave an alternative O(n?) implementation in his unpublished Ph.D. thesis
(see [8]). In 1980, Micali and Vijay Vazirani [11] have presented an O(m+n)
implementation of a phase without the presentation of a correctness proof.
In 1994, Vijay Vazirani [13] provided a correctness proof. Gabow and Tarjan
[7] gave another O(m + n) implementation of a phase in 1989.

We have reduced the problem of finding an augmenting path to a reach-
ability problem in a directed, bipartite graph [3]. Moreover, we have shown
how to solve this reachability problem by a modified depth-first search. We
will show, how to use this latter fact for getting a simplified O(n + m) im-
plementation of one phase leading to a simplified O(y/nm) algorithm for the
computation of a maximum matching in general graphs.

We assume the reader’s familiarity with [3] and we do not repeat any
results presented in this paper.

In Section 2, the simplified realization of one phase is described. We will
prove its correctnes in Section 3, and outline an efficient implementation of
an entire phase in Section 4.

2 A simplified implementation of one phase

In the bipartite case, Hopcroft and Karp [9] have described an elegant, simple
O(m 4+ n) implementation of an entire phase of the matching algorithm. Let
us sketch this implementation. First they have reduced the problem of finding
augmenting paths to a reachability problem. Then, by performing a breadth-
first search (BFS) on Gy with start node s until the target node ¢ is reached,



they have obtained a layered and directed graph G for which the paths
from s to ¢ correspond exactly to the shortest M-augmenting paths in G.
Using depth-first search, they find a maximal set of disjoint M-augmenting
paths. Whenever an M-augmenting path is found, the path and all incident
edges are deleted and the depth-first search is continued. Breadth-first search
and depth-first search take O(m + n) time. Hence, the implementation of
Hopcroft and Karp has time complexity O(m + n).

With respect to general graphs, the following question suggests itself.
Can we get an implementation of an entire phase by performing something
like breadth-first search followed by something like depth-first search? We
will give an affirmative answer to this question.

Let G = (V,E) be an undirected graph, M be a matching of ¢, and
Gu = (V' Eyr) be the directed graph as defined in [3]. Our goal is to
construct from Gy a layered and directed graph Gy = (V/, Epr) such that

1. the [th layer contains exactly those nodes [v, X] € V' such that a
shortest strongly simple path from s to [v, X] in Gy has length [, and

2. Giyr contains all shortest strongly simple paths from s to t in Gyy.

It is clear that s is the only node in Layer 0, i.e. level(s) = 0. Note that by the
structure of Gy, X = B (X = A) implies level([v, X]) is odd (even). Since
breadth-first search (BFS) on G with start node s finds shortest simple
distances from s, and not shortest strongly simple distances, BFS cannot
be used directly for the construction of G'p;. But we can modify BFS such
that the modified breadth-first search (MBFS) finds shortest strongly simple
distances. Remember that for the construction of the (I + 1)th level, BFS
needs only to consider the nodes in Level [, and to insert into the (I 4 1)th
level all nodes w which fulfill the following properties.

1. There is a node v in the [th level with (v,w) € E.
2. Level(w) has not been defined.

With respect to finding strongly simple distances from s, the construction of
the (I + 1)th level is a bit more difficult. By the structure of GGy, the level of
a non-free node [w, B] is well-defined by the level of the unique node [v, A]
with ([v, A], [w, B]) € Ea. Hence, the construction of odd levels is trivial.
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For odd [ we will describe the construction of the (I 4+ 1)th level under the
assumption that Levels 0,1,2,...,[ are constructed. It is clear that similar
to BFS, MBFS has to insert into the (I + 1)th level all nodes [w, A] € V'
which fulfill the following properties.

1. There is a node [v, B] in Level [ with ([v, B], [w, A]) € Euz, and there
is a strongly simple path from s to [v, B] of length [ which does not
contain [w, B].

2. Level([w, A]) has not been defined.

Hence, the first part of Round [ + 1 of MBF'S is similar to BF'S.
Part 1 of Round l 4+ 1 of MBFS:
After the construction of the [th level, [ odd, all edges ([v, B], [w, A]) with

level([v, B]) = [ are considered. We distinguish three cases.

Case 1: Level([w, A]) > [, and there is a strongly simple path P from s to
[v, B] of length [ not containing [w, B].

MBF'S inserts node [w, A] into the ([41)th level, and adds edge ([v, B], [w, A])
to EM

Case 2: Level([w, A]) > [, and all strongly simple paths from s to [v, B] of
length [ contain [w, B].

MBEFS does not enlarge Level [ + 1.
Case 3: level(w, A]) <.
MBEFS does not enlarge Level [ + 1. O

But these are not all the nodes which MBFS has to insert into Level [ + 1.
Consider the example described in Figure 1. Note that level([vr, B]) = 7,
but level([vs, A]) # 8, since the unique shortest strongly simple path from s
to [v7, B] contains [v3, B]. The unique strongly simple path P from s to [vs, A]
has length 14. Hence level([vs, A]) = 14. Furthermore, level([vs, A]) = 4,
level([vs, B]) = 5, level([vi7, A]) = 6, and so on. Moreover, level([vs, A]) =
(level([v17, B])+level([ve, B])+1)—level([vs, B]). P isfound when level([ve, B])
and level([vy7, B]) have been defined. Hence, our goal will be to find such
paths P at the moment when for two adjacent nodes [v;, A], [vi11, B] or

[viy B], [Vit1, A], level([v;, X]) and level([v;41, X]) are defined, for X € {A, B}.
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Therefore, MBF'S also has to insert nodes [w, A] € V’ into Level [+ 1, for
which there is a shortest strongly simple path P = s, [v1, B],. .., [v, B], [w, A]
with level([v;, B]) < [. Obviously, level([w, B]) < [. For the treatment of
these nodes, the following notation is useful.

Let T C V' such that level([v, X]) is defined, for all [v, X] € T. We
denote by DOM(T') the set of those nodes [u, B] € V', which satisfies:

a) All shortest strongly simple paths from s to [v, X] contain [u, B], for
all [v, X] e T;

b) Level([u, A]) has not been defined; and
c) Level([w, B]) < level([u, B]) for all [w, B] € V' satisfying a) and b).

If node [u, B] does not exist, then DOM(T') denotes node s. Furthermore,
DOM(s) denotes node s. Note the fact that level([u, B]) is defined but
level([u, A]) is not defined implies DOM([u, B]) = {[u, B]}. We will use
DOM(T) only for subsets of V' of size at most 2. We will show that



IDOM(T')| = 1 later. Next, we will describe the second part of Round [ + 1
of MBFS, which is needed for even [, too.

Part 2 of Round l 4+ 1 of MBFS:

GH—I = (Vlfl_l, El+1) denotes the subgraph of Glar, constructed after the ter-
mination of Part 1 of Round [ 4+ 1. After the termination of Part 1, MBFS
considers all pairs of nodes [v, 7], [w, Z], Z = B (Z = A) if [ even (odd) such
that:

1) ([U,Z], [wv ]) € L
ii) level([v, Z]) and level([w, Z]) have been defined; and
iii) level([v, Z]) or level([w, Z]) is [ 4 1.

Starting in [v, Z], [w, Z], MBFS performs a search on the backpaths of G4,
until DOM({[v, Z], [w, Z]}) is reached. All visited nodes [u, X] such that
level([u, X]) has not been defined, and [u, X] # DOM({[v, 7], [w, Z]}), are
inserted into Level (level([v, Z]) + level([w, Z]) + 1 — level([u, X])). All tra-
versed edges not in Gy, and not incident to DOM({[v, Z],[w, Z]}), are
added to E,. O

A nice property of MBFS is that with respect to Part 1 of any round, it
suffices to consider only edges ([v, B], [w, A]) which have not been considered
in Part 2 of a previous round. For the subsequence, we assume that we have
changed MBFS in that way. l.e., during Part 1 of Round [ + 1 only edges
([v, B, [w, A]) such that level([v, B]) = [ and edge ([v, B],[w, A]) has not

been traversed during an earlier round are considered.

3 The correctness proof of MBF'S

Next we will prove the correctness of MBFS. First we will show |[DOM(T)| =
1, for nonempty 7" C V'. This will be a simple conclusion from the following
lemma.

Lemma 1 Let P = s,[v1, B],[v2, A, ..., [v;, B] be a shortest strongly simple

path from s to v, B, i.e. level([v,, B]) = [. Let [vj, B] € P be a node with
level([v;, A]) > 1. Then for all odd i < j, level([v;, B]) < level([v;, B]).
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Proof: Assume that the assertion does not hold. We will obtain a contradic-
tion by the construction of a strongly simple path from s to [v;, A] of length
less than [.

Consider [v;, B] € P,i < j with level([v;, B]) > level([v;, B]). Let P =
Py, [vi, B], P, [v;, B], P5s. Since level([v;, B]) < level([v;, B]), there exists a
strongly simple path @ = @4, [v;, B] from s to [v;, B] such that |Q1] < |Fy].
Note that @1 and Ps are not strongly disjoint. Otherwise, R = Q1, [v;, B], Ps
would be a strongly simple path from s to [v;, B] shorter than P. Let [¢, X]

be the first node on @ such that [¢, X] € P5 or [¢, X] € P5. Let

LY 1" _ Pé,[q,X],Pé/ if[QvX]EP?)
Q1= Q1 g, X], @y and P5 = { Pi,[q, X], P¥ otherwise

If [¢,X] € Ps, then R = Q1,]q, X], Py would be a strongly simple path

from s to [v;, B] shorter than P. Hence, [¢,X] € Ps;. Consider R =
Llg, X1, r(P3), [vj, Al. By the choice of [¢, X], path R is a strongly sim-
ple path from s to [v;, A]. Furthermore,
Bl = Qi +2+ [P +1

< Q]+ [P +1

< [P
This contradicts level([v;, A]) > [. 1
The following lemma is a simple consequence of Lemma 1.

Lemma 2 Let T C V', T # 0 such that level([v, X]) is defined for all
[v,X] € T. Then the following statements hold true:

a) [DOM(T)| = 1.

b) Let DOM(T) = [u, B]. Then, after the definition of level([u, A]), always
DOM(T') = DOM([u, B]).

Proof: a) Assume that [DOM(T)| > 1. Let [uy, B],[us, B] € DOM(T).
By considering any shortest strongly simple path from s to [v, X] for any

[v,X] € T, applying Lemma 1, we obtain level([u1, B]) < level([ug, B]) or
level([uz, B]) < level([u1, B]), a contradiction.

b) is obvious by the definition of DOM(T'). 1
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We say that, a path P is constructed by MBFS if all edges on P are added to
FEnr. The correctness proof for MBES is a direct conclusion of the following
lemma.

Lemma 3 MBFS maintains the following invariants:

Invariant 1: Case 2 of the algorithm MBFS never occurs.

Invariant 2: For all [u, X],[u, X]| € V', level([u, X]) < level([u, X] the following
holds true:
Level([u, X]) has been defined, and all corresponding shortest strongly
simple paths have been constructed after the termination of Part 1 of

Round level([u, X]). Level([u, X]) has been defined, and all correspond-
ing shortest strongly simple paths have been constructed after the termi-

nation of Part 2 of Round [, where | = 1/2(1evel([u, B])+level([u, A])—
1).
Invariant 3: If, during Part 2 of Round [, level([u, X]) is defined according to the

consideration of the pair of nodes [v, 7], [w, Z], then level([v, Z]) =
level([w, Z]) = L.

Invariant 4: For all [u, X] € V', level([u, X]) is computed correctly.

Proof: Consider the first situation in which one of the four invariants is not
maintained. Four cases are to be considered.

Case 1: Invariant 1 is not maintained.

Assume that [v, B] has been inserted into Level [ — 1, edge ([v, B], [w, A]) is
considered during Part 1 of Round [, and Case 2 occurs with respect to the
consideration of this edge. Note that level([v, B]) =1 — 1.

Consider any shortest strongly simple path P = Py, [w, B], Py, [x, A], [v, B]
from s to [v, B]. Since Case 2 of MBFS is fulfilled, the node [w, B] must be
on P. Consider path P’ = P;,[w, B], [v, A]. By construction, P’ is strongly
simple. Hence, level([v, A]) < |P'| < [— 1. We distinguish two cases.

Case i: ([w, B, [v, A]) € Ep.
Since, level([xz, A]) < [ — 1, and ([x, A],[v, B]) is an edge in E', edge

([v, B], [w, A]) has been considered during Part 2 of a previous round. Hence,
this edge cannot be considered during Part 1 of Round [, a contradiction.



Case ii: ([w, B, [v, A]) € En.

Then there is a strongly simple path Q = @', [v, 4] from s to [v, A] with
|Q| < |P’|. Consider

R=Q" [v,A], [z, B],r(P),[w, A].

By construction |R| < |P,[w, A]|. Since we consider the first situation in
which one of the four invariants is not maintained, the following holds true:
Q' and P, [x, A] are not strongly disjoint.
Let [z, X] be the first node on @’ such that [z, X] or [z, X] is on Py, [z, A].
Let

/ [
Q' = Q' [2 X], Q4 and Py, [v, 4] = { % E{],Pz if [z, X] on 15, [z, 4]
20 1%

|, Py otherwise

If [z, X] € Py, [z, A] then @, [z, X], Py, [v, B] would be a shorter strongly

simple path from s to [v, B] than P. Hence [z, X| € P, [z, A]. Consider
R =Q,[z, X],r(Py),[w, A].

R is a strongly simple path from s to [w, A]. Furthermore, |R| < |P|. But this
contradicts the construction. Hence, Invariant 1 cannot be the first invariant
which is not maintained by MBFS.

Case 2: Invariant 2 is not maintained.

If Invariant 2 is not maintained for node [u, B], then Invariant 2 is also not
maintained for that node [v, A] with ([v, A], [u, B]) € E’. Hence, it suffices to
consider case X = A. Let P be any shortest strongly simple path from s to
[u, A]. We will show that P is constructed by MBFS not later than during

Part 1 of Round [ if level([u, A]) < level([u, B])
Part 2 of Round [ if level([u, A]) > level([u, B])

where [ = min{level([u, A]), 1/2(level([u, B]) 4 level([u, A]) — 1)}.

Let [x, B] be the direct predecessor of [u, A] on P. If level([u, A]) <
level([u, B]), then level([z, B]) = level([u, A]) — 1. Since Invariant 2 has
been maintained in previous rounds, edge ([, B], [u, A]) is considered during
Part 1 of Round . The edge ([z, B],[u, A]) is inserted into Ejs, and P is

constructed, a contradiction. Hence, level([u, A]) > level([u, B]).

Let P = P, [y, X], [z, X], P, [u, A]. Starting in [u, A], we follow r(P)

until, for node [z, X] which is reached, one of the following two cases arises.
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a) There is a shortest strongly simple path @ from s to [u, B] such that
Q,r(P), [z, X] is not strongly simple.

b) For all shortest strongly simple paths @ from s to [u, B], path R =
Q,r(P), [z, X] is strongly simple, and has length 1/2(level([u, B]) +
level([u, A]) — 1).

Case a)

If Case a) is fulfilled, then X = A. Since Q,r(Fz),[z, A] is not strongly
simple, but @, r(FP,) is strongly simple, path @ contains node [z, B]. Let
Q = Q1,[z, B],Qs. By construction, R = @1, [z, B], P, [u, A] is strongly
simple. Moreover, |R| < 1/2(level([u, A]) + level([u, B]) — 1) < level([u, A], a

contradiction.
Case b)

Consider any shortest strongly simple path @) from s to [u, B]. By construc-
tion, R = Q,r(P,), [z, X] is strongly simple. By assumption, the invariant
has been maintained in previous rounds. Hence, the level of every node on
r(P2) has been defined. Furthermore, level([r, B]) < level([r, A]), for all nodes
[r, A] on r(Py) with larger distance from s on R than level([r, A]). Hence, the
ingoing edges of such a node [r, A] on r(P;) have been added to Ej; during
Part 2 of a previous round. Hence, path R has been constructed before the
termination of Part 1 of Round [. Analogously, the levels of all nodes on
P1, [y, X] have been computed before the termination of Part 1 of Round [,
and path Pp, [y, X] has been constructed, too. Therefore, path P has been
constructed after the termination of Part 2 of Round /.

Case 3: Invariant 3 is not maintained.

By the construction of the algorithm MBF'S, at least one of [v, Z], [w, Z] has
level [. W.l.o.g., let level([v, Z]) = L.

If level([w, Z]) < [, then level([u, A]) + level([u, B]) = level([v, Z]) +
level([w, Z])4+1 < 20+ 1. By assumption, Invariant 2 has been maintained in
previous rounds. Hence, level([u, X]) has been defined in a previous round,
a contradiction.

If level([w, Z]) > [, then level(w, Z]) has been computed during Part 2
of a previous Round {’. Since Invariant 3 has been maintained in previous

rounds, level([w, Z]) = 2I' + 1 —level([w, Z]). Hence, level([w, Z]) < 21"+ 1 —
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(I+2) < {—1. Consider any shortest strongly simple path P from s to [w, Z].
Let Q = P,[v, Z]. Since |Q| < [ we obtain [v,Z] € P. Let P = Py, [v, Z], P,.
By construction, R = Py, [v, Z], [w, Z] would be a strongly simple path from
s to [w, Z] shorter than [, a contradiction. Alltogether, we have obtained

level([w, Z]) = 1.
Case 4: Invariant 4 is not maintained.

If Invariant 4 is violated for node [u, B], then Invariant 4 is also violated for
that node [v, A] with ([v, A, [u, B]) € L. Hence, it suffices to consider case
X = A

Assume level([u, A]) < level([u, B]). Let [z, B] be the direct predeces-
sor of [u, A] on any shortest strongly simple path from s to [u, A]. By
the assumption that Invariant 2 and Invariant 4 have been maintained pre-
viously, level([x, B]) has been computed correctly after the termination of
Part 1 of Round level([z, B]), or after the termination of Part 2 of Round
1/2(level([x, B]) + level([z, A]) — 1). In both cases, edge ([z, B], [u, A]) has
been considered in a previous round, and therefore, level(u, A]) has been
computed correctly, a contradiction.

Hence, level([u, A]) > level([u, B]). Let level([u, B]) be maximal such
that level([u, A]) is computed incorrectly during Part 2 of Round [. Let

[v, Z], [w, Z] be the corresponding pair of nodes. Then the following proper-
ties are fulfilled.

L. DOM({[v. 7], i, Z]}) # [u. B]
2. MBFS inserts [u, A] into Level 2] + 1 — level([u, B]), but all strongly

simple paths from s to [u, A] are strictly longer.

We will show that Property 2 cannot be fulfilled. By Properties 1 and 2,
there is a shortest strongly simple path from s to [v, Z], containing [u, B],
and there is a shortest strongly simple path from s to [w, Z], not containing
[u, B], or vice versa. W..o.g., let P = Py [u, B], P, [v,Z] be a shortest
strongly simple path from s to [v, Z], and let @, [w, Z] be a shortest strongly
simple path from s to [w, Z], not containing [u, B]. By Property 2, P, and
Q cannot be strongly disjoint. Otherwise, R = Q. [w, Z], [v, Z], 7( ), [u, A]
would be a strongly simple path from s to [u, A] of length 2]+ 1 —level([u, B]).
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Let [g, X] be the first node on @ with [¢, X] or [¢, X]| on P». Let

Pa1, g, X], Py if [q, X] on Py
Q = Q1.[9,X), Qs and P, = { o {%7}7 o
If [q, X] is on Py, then R = Q1, [q, X], 7(Pa1), [u, A] would be a strongly simple
path from s to [u, A], shorter than 2] + 1 — level([u, B]). Hence, [¢, X] is on
Py. [q, X] is the reference node, and [u, B] is the critical node. The path P,
is the eritical path, and the path )y is the reference path.
Since [u, A] is a node violating Invariant 4 with maximal level([u, B]),

level([p, Y]) has been computed correctly for all nodes [p, Y] on P». Moreover,

level([p, Y]) + level([p, Y]) <20+ 1.

Our goal is the following. We will construct a situation such that the
only case not leading to a contradiction will produce a new critical node and
a new reference node such that

L. level([v/, B]) + level([u’, A]) > 2l + 1, where [u/, B] is the critical node;

2. level([¢/, X])+level([¢/, X]) < 2[4+ 1, where [¢/, X] is the reference node;

3. for all nodes [p,Y] on the critical path, level([p,Y]) + level([p, Y]) <
20+ 1;

4. the critical path is the end of a shortest strongly simple path to a node;
and

5. the length of the reference path decreases strictly.

Starting with a critical node and a reference node fulfilling Properties 1-4,
we will obtain a critical node and a new reference node fulfilling Properties
1-5. During the construction, we will only use Properties 1-4. Since the
length of the reference path decreases strictly, after a finite number of such
constructions, the case described by Properties 1-5 cannot happen, leading
to a contradiction.

In the beginning, Properties 1-4 are fulfilled with respect to the critical
node, the reference node, the critical path, and the reference path defined

above. Let R,[q, X] be any shortest strongly simple path from s to [¢, X].
We distinguish two cases.
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Case 1: [u, B] is on R.
Consider [u/, B] € R such that

a) level([u/, B]) + level([u/, A]) > 2l + 1, and

b) [, B] is the node on R nearest to [¢, /] such that a) is fulfilled.

Since [u, B] € R fulfills a), node [/, B] exists. Let R = Ry,[v, B], Ra.
By Property a), Ry and @; cannot be strongly disjoint. Otherwise, S =
Q1,[q, X],r(R2), [v', A] would be a strongly simple path from s to [u/, A]
shorter than 2] + 1 — level([u’, B]), a contradiction. Let [¢/, X] be the first
node on @ with [¢/, X] or [¢/, X] on R,. Similarly to above, we can exclude

¢, X] € Ry. Let

@1 = Qu1, [C]/aX]anz and Iy = Ry, [qle]vRQQ'

Next we will define the new critical node and the new reference node, leading
to a new critical path and a new reference path.

Let [v/, B] be the critical node, and let [¢/, X] be the new reference node.
Then, R, is the new critical path, and ()11 is the new reference path. By
construction, it is easy to see that Properties 1-5 are fulfilled.

Case 2: [u, B] is not on R.
Then R and Py cannot be strongly disjoint. Otherwise,

S=R,[q, X],r(Pa), [u, A]

would be a strongly simple path from s to [u, A] of length at most 2/ + 1 —
level([u, B]), a contradiction. B

Let [¢/, X] be the first node on Py with [¢/, X] or [¢/, X] on R. Similarly

to above, we can exclude [¢/, X] € R. Let
Py = P2/17 [qlv X]v P2”1 and R = Rlv [qlv X]v Rs.

Node [u, B] remains the critical node and path P, remains the critical path,
too. Let [¢/, X] be the new reference node, and let R; be the new reference
path. By construction, it is easy to see that properties 1-4 are fulfilled. It
remains to prove that the new reference path is strictly shorter than the old
reference path. We will prove the following assertions.
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L. |Py, [u, B], Py| < |Q], and
2. |Rl| S |P17[U7B]7P2/1|'

Both assertions imply |R;| < |@Q4] directly.

The first assertion follows directly from the observation that the path
Q1, ¢, X], Paa, [v, Z] is a strongly simple path from s to [v, Z] and the prop-
erty that P is a shortest strongly simple path from s to [v, Z].

For proving the second assertion, assume |Ry| > | Py, [u, B], Py;|. Consider

S = P17 [uvB]7P2/17 [qle]vR% [%7]'

Since |S| < |R,[¢, X]|, and R,[q, X] is a shortest strongly simple path from
s to [g, X], the paths P, and R, cannot be strongly disjoint. Let [p,Y] be

the first node on Py with [p,Y] or [p,Y] on Rs. Let

_ _ ) Ray[p, Y], Roy if [p, Y] on Ry
b= P, [p, Y], Pro and By = { Ro1,[p, Y], Ryy otherwise

If [p,Y] € Ry, then Pii,[p,Y], B2, [q, X] would be a strongly simple path

from s to [¢, X| shorter than R, [¢, X|. Hence [p,Y] € R,. Consider

S = P117 [pv Y]vr(RQI)v [qlv X]vr(lel)v [uvA]

By construction, S is a strongly simple path from s to [u, A] shorter than
2l + 1 —level([u, B]), a contradiction.
Altogether, we have obtained |Ry| < | Py, [u, B], Py|. 11

From Invariant 2 and Invariant 4, we obtain the following theorem directly.

Theorem 1 MBFS computes correctly the graph Gy = (V', Eyp).

4 An implementation of an entire phase

First we will describe the implementation of MBFS, and then show how to
combine MBFS and MDF'S for an implementation of an entire phase.

Obviously, Part 1 of all rounds can be implemented in such a way that the
total time is bounded by O(m + n). For the implementation of Part 2 of all
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rounds, we have to describe how to implement the search on the backpaths,
starting in [v, Z] and [w, Z], until DOM({[v, Z], [w, Z]}) is reached. Most im-
portantly, since we do not know DOM({[v, 7], [w, Z]}) in advance, meaning
that DOM({[v, Z], [w, Z]}) has to be computed simultaneously, we have to
take care that the search does not continue beyond DOM({[v, Z], [w, Z]}).
This can be done in the following way.

1. In the front of the search, continue the search always in a node [u, X]
such that there is another node [p, Y] in the front of the search with

level([p, Y] < level([u, X]).
2. If the front of the search contains only one node, then stop the search.

Note that at the moment when Property 2 is fulfilled, DOM({[v, 7], [w, Z]})
is reached on all backpaths, starting in [v, Z] or [w, Z]. The search can be
organized by performing simultaneously a depth-first search on the back-
paths, starting in [v, Z], and a depth-first search on the backpaths starting
in [w, Z]. In each step, one of the depth-first searches is continued such that
with respect to its head [u, X] there holds that level([u, X]) > level([p, Y]),
where [p, Y] is the head of the other depth-first search. If the heads of the
two depth-first searches become equal, then a backtrack with respect to one
of the two depth-first searches is performed, which obtains a new head. If
the heads of both depth-first searches are equal, and no backtrack is possible,
then the search is terminated.

With respect to the efficiency, at the moment when the search meets a
node [u, X] for which level([u, X]) has been defined, we have to efficiently
compute the next node of the search having the property that its level is
not defined. By definition, this node is DOM([u, X]). As a consequence of
Lemma 6, we can maintain these nodes by disjoint set union such that for
the computation of DOM([u, X]) one find operation would suffice. Using
incremental tree set union [6], we obtain a total time bound of O(m + n) for
the computation of the next node during the search such that its level is not

defined.

The search procedure described above is exactly the double depth-first
search described by Micali and Vazirani [11].

Note that edges, found during the search on backpaths in Part 2 of a
round, do not need to be inserted explicitly into £y, since the corresponding
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reversed edge is already in Fy;. We only have to mark the nodes [v, Z] and
[w, Z] as start nodes of a backward search.

As a consequence of Invariant 3 in Lemma 3, we can combine Part 2 of a
round with Part 1 of the subsequent round.

Next, we will combine MBFS and MDFS for the implementation of an
entire phase. Note that also with respect to Gy, a simple path from s to ¢
must not be strongly simple. Hence, we cannot compute a maximal set of
up to s and ¢ pairwise disjoint strongly simple paths from s to ¢ using DFS.

Knowing (py, it is easy to compute a maximal set of shortest strongly
simple paths of G using MDFS in O(m + n) time. Every time a strongly
simple path P from s to ¢ is found, all nodes [v, A], [v, B] with [v, A] € P or
[v, B] € P and all incident edges are deleted from Gjs. If a node becomes
zero indegree or zero outdegree, then this node, too, and all incident edges,
are deleted. Altogether, we have obtained the following theorem.

Theorem 2 A maximum matching in a general graph G = (V, E) can be
computed in O(y/n(m + n)) time and O(m + n) space, where |V| = n and
|E| =m.

Acknowledgment: I thank Andreas Decker, Marek Karpinski and Henning
Rochow for helpful discussions and valuable hints.
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