
A Simpli�ed Realization of the Hopcroft-KarpApproach to Maximum Matching in GeneralGraphsNorbert BlumInformatik IV, Universit�at BonnR�omerstr. 164,D-53117 Bonn, Germanyemail: blum@cs.uni-bonn.deOctober 26, 1999AbstractIn [2, 3], we have reduced the problem of �nding an augmenting pathin a general graph to a reachability problem in a directed, bipartitegraph, and we have shown that a slight modi�cation of depth-�rstsearch leads to an algorithm for �nding such paths. This new point ofview enables us to give a simpli�ed realization of the Hopcroft-Karpapproach for the computation of a maximum cardinality matching ingeneral graphs. We show, how to get an O(n+m) implementation ofone phase leading to an O(pnm) algorithm for the computation of amaximum cardinality matching in general graphs.
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1 Introduction and motivationIn 1973, Hopcroft and Karp [9] proved the following fact. If one computesin one phase a maximal set of shortest augmenting paths, then O(pn) suchphases would be su�cient. For the bipartite case they showed that a phasecan be implemented by a breadth-�rst search followed by a depth-�rst search.This led to an O(n + m) implementation of one phase, and hence, to anO(pnm) algorithm for the computation of a maximummatching in bipartitegraphs.In 1975, Even and Kariv [5, 10] presented an O(minfn2;m log ng) imple-mentation of a phase, leading to an O(minfn2:5;pnm log ng) algorithm forthe computation of a maximummatching in general graphs. In 1978, Bartnik[1] gave an alternative O(n2) implementation in his unpublished Ph.D. thesis(see [8]). In 1980, Micali and Vijay Vazirani [11] have presented an O(m+n)implementation of a phase without the presentation of a correctness proof.In 1994, Vijay Vazirani [13] provided a correctness proof. Gabow and Tarjan[7] gave another O(m + n) implementation of a phase in 1989.We have reduced the problem of �nding an augmenting path to a reach-ability problem in a directed, bipartite graph [3]. Moreover, we have shownhow to solve this reachability problem by a modi�ed depth-�rst search. Wewill show, how to use this latter fact for getting a simpli�ed O(n + m) im-plementation of one phase leading to a simpli�ed O(pnm) algorithm for thecomputation of a maximum matching in general graphs.We assume the reader's familiarity with [3] and we do not repeat anyresults presented in this paper.In Section 2, the simpli�ed realization of one phase is described. We willprove its correctnes in Section 3, and outline an e�cient implementation ofan entire phase in Section 4.2 A simpli�ed implementation of one phaseIn the bipartite case, Hopcroft and Karp [9] have described an elegant, simpleO(m+ n) implementation of an entire phase of the matching algorithm. Letus sketch this implementation. First they have reduced the problem of �ndingaugmenting paths to a reachability problem. Then, by performing a breadth-�rst search (BFS) on GM with start node s until the target node t is reached,2



they have obtained a layered and directed graph �GM for which the pathsfrom s to t correspond exactly to the shortest M -augmenting paths in G.Using depth-�rst search, they �nd a maximal set of disjoint M -augmentingpaths. Whenever an M -augmenting path is found, the path and all incidentedges are deleted and the depth-�rst search is continued. Breadth-�rst searchand depth-�rst search take O(m + n) time. Hence, the implementation ofHopcroft and Karp has time complexity O(m+ n).With respect to general graphs, the following question suggests itself.Can we get an implementation of an entire phase by performing somethinglike breadth-�rst search followed by something like depth-�rst search? Wewill give an a�rmative answer to this question.Let G = (V;E) be an undirected graph, M be a matching of G, andGM = (V 0; EM) be the directed graph as de�ned in [3]. Our goal is toconstruct from GM a layered and directed graph �GM = (V 0; �EM ) such that1. the lth layer contains exactly those nodes [v;X] 2 V 0 such that ashortest strongly simple path from s to [v;X] in GM has length l, and2. �GM contains all shortest strongly simple paths from s to t in GM .It is clear that s is the only node in Layer 0, i.e. level(s) = 0. Note that by thestructure of GM , X = B (X = A) implies level([v;X]) is odd (even). Sincebreadth-�rst search (BFS) on GM with start node s �nds shortest simpledistances from s, and not shortest strongly simple distances, BFS cannotbe used directly for the construction of �GM . But we can modify BFS suchthat the modi�ed breadth-�rst search (MBFS) �nds shortest strongly simpledistances. Remember that for the construction of the (l + 1)th level, BFSneeds only to consider the nodes in Level l, and to insert into the (l + 1)thlevel all nodes w which ful�ll the following properties.1. There is a node v in the lth level with (v;w) 2 E.2. Level(w) has not been de�ned.With respect to �nding strongly simple distances from s, the construction ofthe (l+1)th level is a bit more di�cult. By the structure of GM , the level ofa non-free node [w;B] is well-de�ned by the level of the unique node [v;A]with ([v;A]; [w;B]) 2 EM . Hence, the construction of odd levels is trivial.3



For odd l we will describe the construction of the (l + 1)th level under theassumption that Levels 0; 1; 2; : : : ; l are constructed. It is clear that similarto BFS, MBFS has to insert into the (l + 1)th level all nodes [w;A] 2 V 0which ful�ll the following properties.1. There is a node [v;B] in Level l with ([v;B]; [w;A]) 2 EM , and thereis a strongly simple path from s to [v;B] of length l which does notcontain [w;B].2. Level([w;A]) has not been de�ned.Hence, the �rst part of Round l + 1 of MBFS is similar to BFS.Part 1 of Round l+ 1 of MBFS:After the construction of the lth level, l odd, all edges ([v;B]; [w;A]) withlevel([v;B]) = l are considered. We distinguish three cases.Case 1: Level([w;A]) > l, and there is a strongly simple path P from s to[v;B] of length l not containing [w;B].MBFS inserts node [w;A] into the (l+1)th level, and adds edge ([v;B]; [w;A])to �EM .Case 2: Level([w;A]) > l, and all strongly simple paths from s to [v;B] oflength l contain [w;B].MBFS does not enlarge Level l + 1.Case 3: level([w;A])� l.MBFS does not enlarge Level l + 1. 2But these are not all the nodes which MBFS has to insert into Level l + 1.Consider the example described in Figure 1. Note that level([v7; B]) = 7,but level([v3; A]) 6= 8, since the unique shortest strongly simple path from sto [v7; B] contains [v3; B]. The unique strongly simple path P from s to [v3; A]has length 14. Hence level([v3; A]) = 14. Furthermore, level([v7; A]) = 4,level([v6; B]) = 5, level([v17; A]) = 6, and so on. Moreover, level([v3; A]) =(level([v17; B])+level([v6; B])+1)�level([v3; B]). P is found when level([v6; B])and level([v17; B]) have been de�ned. Hence, our goal will be to �nd suchpaths P at the moment when for two adjacent nodes [vi; A]; [vi+1; B] or[vi; B]; [vi+1; A], level([vi;X]) and level([vi+1;X]) are de�ned, forX 2 fA;Bg.4
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[v17; B][v3; A][v7; B][v6; A] [v16; A][v9; B][v8; A]
[v5; B][v4; A] [v3; B][v2; A][v1; B] Figure 1:Therefore, MBFS also has to insert nodes [w;A] 2 V 0 into Level l+1, forwhich there is a shortest strongly simple path P = s; [v1; B]; : : : ; [vl; B]; [w;A]with level([vl; B]) < l. Obviously, level([w;B]) < l. For the treatment ofthese nodes, the following notation is useful.Let T � V 0 such that level([v;X]) is de�ned, for all [v;X] 2 T . Wedenote by DOM(T ) the set of those nodes [u;B] 2 V 0, which satis�es:a) All shortest strongly simple paths from s to [v;X] contain [u;B], forall [v;X] 2 T ;b) Level([u;A]) has not been de�ned; andc) Level([w;B])� level([u;B]) for all [w;B] 2 V 0 satisfying a) and b).If node [u;B] does not exist, then DOM(T ) denotes node s. Furthermore,DOM(s) denotes node s. Note the fact that level([u;B]) is de�ned butlevel([u;A]) is not de�ned implies DOM([u;B]) = f[u;B]g. We will useDOM(T ) only for subsets of V 0 of size at most 2. We will show that5



jDOM(T )j = 1 later. Next, we will describe the second part of Round l + 1of MBFS, which is needed for even l, too.Part 2 of Round l+ 1 of MBFS:�Gl+1 = (V 0l+1; �El+1) denotes the subgraph of �GM , constructed after the ter-mination of Part 1 of Round l + 1. After the termination of Part 1, MBFSconsiders all pairs of nodes [v; Z]; [w;Z], Z = B (Z = A) if l even (odd) suchthat:i) ([v; Z]; [w;Z]) 2 EM ;ii) level([v;Z]) and level([w;Z]) have been de�ned; andiii) level([v;Z]) or level([w;Z]) is l + 1.Starting in [v; Z], [w;Z], MBFS performs a search on the backpaths of �Gl+1until DOM(f[v; Z]; [w;Z]g) is reached. All visited nodes [u;X] such thatlevel([u;X]) has not been de�ned, and [u;X] 6= DOM(f[v; Z]; [w;Z]g), areinserted into Level (level([v; Z]) + level([w;Z]) + 1 � level([u;X])). All tra-versed edges not in �Gl+1, and not incident to DOM(f[v; Z]; [w;Z]g), areadded to �El+1. 2A nice property of MBFS is that with respect to Part 1 of any round, itsu�ces to consider only edges ([v;B]; [w;A]) which have not been consideredin Part 2 of a previous round. For the subsequence, we assume that we havechanged MBFS in that way. I.e., during Part 1 of Round l + 1 only edges([v;B]; [w;A]) such that level([v;B]) = l and edge ([v;B]; [w;A]) has notbeen traversed during an earlier round are considered.3 The correctness proof of MBFSNext we will prove the correctness of MBFS. First we will show jDOM(T )j =1, for nonempty T � V 0. This will be a simple conclusion from the followinglemma.Lemma 1 Let P = s; [v1; B]; [v2; A]; : : : ; [vl; B] be a shortest strongly simplepath from s to [vl; B], i.e. level([vl; B]) = l. Let [vj; B] 2 P be a node withlevel([vj; A]) > l. Then for all odd i < j, level([vi; B]) < level([vj; B]).6



Proof: Assume that the assertion does not hold. We will obtain a contradic-tion by the construction of a strongly simple path from s to [vj; A] of lengthless than l.Consider [vi; B] 2 P; i < j with level([vi; B]) � level([vj; B]). Let P =P1; [vi; B]; P2; [vj; B]; P3. Since level([vj; B]) � level([vi; B]), there exists astrongly simple path Q = Q1; [vj; B] from s to [vj; B] such that jQ1j � jP1j.Note that Q1 and P3 are not strongly disjoint. Otherwise, R = Q1; [vj; B]; P3would be a strongly simple path from s to [vl; B] shorter than P . Let [q;X]be the �rst node on Q1 such that [q;X] 2 P3 or [q;X] 2 P3. LetQ1 = Q01; [q;X]; Q001 and P3 = ( P 03; [q;X]; P 003 if [q;X] 2 P3P 03; [q;X]; P 003 otherwiseIf [q;X] 2 P3, then R = Q01; [q;X]; P 003 would be a strongly simple pathfrom s to [vl; B] shorter than P . Hence, [q;X] 2 P3. Consider R =Q01; [q;X]; r(P 03); [vj; A]. By the choice of [q;X], path R is a strongly sim-ple path from s to [vj; A]. Furthermore,jRj = jQ01j+ 2 + jP 03j+ 1� jQ1j+ jP3j+ 1< jP jThis contradicts level([vj; A]) > l.The following lemma is a simple consequence of Lemma 1.Lemma 2 Let T � V 0, T 6= ; such that level([v;X]) is de�ned for all[v;X] 2 T . Then the following statements hold true:a) jDOM(T )j = 1.b) Let DOM(T ) = [u;B]. Then, after the de�nition of level([u;A]), alwaysDOM(T ) = DOM([u;B]).Proof: a) Assume that jDOM(T )j > 1. Let [u1; B]; [u2; B] 2 DOM(T ).By considering any shortest strongly simple path from s to [v;X] for any[v;X] 2 T , applying Lemma 1, we obtain level([u1; B]) < level([u2; B]) orlevel([u2; B]) < level([u1; B]), a contradiction.b) is obvious by the de�nition of DOM(T ).7



We say that, a path P is constructed by MBFS if all edges on P are added to�EM . The correctness proof for MBFS is a direct conclusion of the followinglemma.Lemma 3 MBFS maintains the following invariants:Invariant 1: Case 2 of the algorithm MBFS never occurs.Invariant 2: For all [u;X]; [u;X] 2 V 0, level([u;X]) < level([u;X] the followingholds true:Level([u;X]) has been de�ned, and all corresponding shortest stronglysimple paths have been constructed after the termination of Part 1 ofRound level([u;X]). Level([u;X]) has been de�ned, and all correspond-ing shortest strongly simple paths have been constructed after the termi-nation of Part 2 of Round l, where l = 1=2(level([u;B])+level([u;A])�1).Invariant 3: If, during Part 2 of Round l, level([u;X]) is de�ned according to theconsideration of the pair of nodes [v; Z]; [w;Z], then level([v; Z]) =level([w;Z]) = l.Invariant 4: For all [u;X] 2 V 0, level([u;X]) is computed correctly.Proof: Consider the �rst situation in which one of the four invariants is notmaintained. Four cases are to be considered.Case 1: Invariant 1 is not maintained.Assume that [v;B] has been inserted into Level l � 1, edge ([v;B]; [w;A]) isconsidered during Part 1 of Round l, and Case 2 occurs with respect to theconsideration of this edge. Note that level([v;B]) = l � 1.Consider any shortest strongly simple path P = P1; [w;B]; P2; [x;A]; [v;B]from s to [v;B]. Since Case 2 of MBFS is ful�lled, the node [w;B] must beon P . Consider path P 0 = P1; [w;B]; [v;A]. By construction, P 0 is stronglysimple. Hence, level([v;A]) � jP 0j < l� 1. We distinguish two cases.Case i: ([w;B]; [v;A]) 2 �EM .Since, level([x;A]) < l � 1, and ([x;A]; [v;B]) is an edge in E0, edge([v;B]; [w;A]) has been considered during Part 2 of a previous round. Hence,this edge cannot be considered during Part 1 of Round l, a contradiction.8



Case ii: ([w;B]; [v;A]) 62 �EM .Then there is a strongly simple path Q = Q0; [v;A] from s to [v;A] withjQj < jP 0j. Consider R = Q0; [v;A]; [x;B]; r(P2); [w;A]:By construction jRj < jP; [w;A]j. Since we consider the �rst situation inwhich one of the four invariants is not maintained, the following holds true:Q0 and P2; [x;A] are not strongly disjoint.Let [z;X] be the �rst node on Q0 such that [z;X] or [z;X] is on P2; [x;A].LetQ0 = Q01; [z;X]; Q02 and P2; [x;A] = ( P 02; [z;X]; P 002 if [z;X] on P2; [x;A]P 02; [z;X]; P 002 otherwiseIf [z;X] 2 P2; [x;A] then Q01; [z;X]; P 002 ; [v;B] would be a shorter stronglysimple path from s to [v;B] than P . Hence [z;X] 2 P2; [x;A]. ConsiderR = Q01; [z;X]; r(P 02); [w;A]:R is a strongly simple path from s to [w;A]. Furthermore, jRj < jP j. But thiscontradicts the construction. Hence, Invariant 1 cannot be the �rst invariantwhich is not maintained by MBFS.Case 2: Invariant 2 is not maintained.If Invariant 2 is not maintained for node [u;B], then Invariant 2 is also notmaintained for that node [v;A] with ([v;A]; [u;B]) 2 E0. Hence, it su�ces toconsider case X = A. Let P be any shortest strongly simple path from s to[u;A]. We will show that P is constructed by MBFS not later than during( Part 1 of Round l if level([u;A]) < level([u;B])Part 2 of Round l if level([u;A]) > level([u;B])where l = minflevel([u;A]); 1=2(level([u;B]) + level([u;A])� 1)g.Let [x;B] be the direct predecessor of [u;A] on P . If level([u;A]) <level([u;B]), then level([x;B]) = level([u;A]) � 1. Since Invariant 2 hasbeen maintained in previous rounds, edge ([x;B]; [u;A]) is considered duringPart 1 of Round l. The edge ([x;B]; [u;A]) is inserted into �EM , and P isconstructed, a contradiction. Hence, level([u;A]) > level([u;B]).Let P = P1; [y;X]; [z;X]; P2; [u;A]. Starting in [u;A], we follow r(P )until, for node [z;X] which is reached, one of the following two cases arises.9



a) There is a shortest strongly simple path Q from s to [u;B] such thatQ; r(P2); [z;X] is not strongly simple.b) For all shortest strongly simple paths Q from s to [u;B], path R =Q; r(P2); [z;X] is strongly simple, and has length 1=2(level([u;B]) +level([u;A])� 1).Case a)If Case a) is ful�lled, then X = A. Since Q; r(P2); [z;A] is not stronglysimple, but Q; r(P2) is strongly simple, path Q contains node [z;B]. LetQ = Q1; [z;B]; Q2. By construction, R = Q1; [z;B]; P2; [u;A] is stronglysimple. Moreover, jRj < 1=2(level([u;A])+ level([u;B])� 1) < level([u;A], acontradiction.Case b)Consider any shortest strongly simple path Q from s to [u;B]. By construc-tion, R = Q; r(P2); [z;X] is strongly simple. By assumption, the invarianthas been maintained in previous rounds. Hence, the level of every node onr(P2) has been de�ned. Furthermore, level([r;B]) < level([r;A]), for all nodes[r;A] on r(P2) with larger distance from s on R than level([r;A]). Hence, theingoing edges of such a node [r;A] on r(P2) have been added to �EM duringPart 2 of a previous round. Hence, path R has been constructed before thetermination of Part 1 of Round l. Analogously, the levels of all nodes onP1; [y;X] have been computed before the termination of Part 1 of Round l,and path P1; [y;X] has been constructed, too. Therefore, path P has beenconstructed after the termination of Part 2 of Round l.Case 3: Invariant 3 is not maintained.By the construction of the algorithm MBFS, at least one of [v; Z]; [w;Z] haslevel l. W.l.o.g., let level([v; Z]) = l.If level([w;Z]) < l, then level([u;A]) + level([u;B]) = level([v; Z]) +level([w;Z])+1 < 2l+1. By assumption, Invariant 2 has been maintained inprevious rounds. Hence, level([u;X]) has been de�ned in a previous round,a contradiction.If level([w;Z]) > l, then level([w;Z]) has been computed during Part 2of a previous Round l0. Since Invariant 3 has been maintained in previousrounds, level([w;Z]) = 2l0+1� level([w;Z]). Hence, level([w;Z]) � 2l0+1�10



(l+2) < l�1. Consider any shortest strongly simple path P from s to [w;Z].Let Q = P; [v; Z]. Since jQj < l we obtain [v; Z] 2 P . Let P = P1; [v; Z]; P2.By construction, R = P1; [v; Z]; [w;Z] would be a strongly simple path froms to [w;Z] shorter than l, a contradiction. Alltogether, we have obtainedlevel([w;Z]) = l.Case 4: Invariant 4 is not maintained.If Invariant 4 is violated for node [u;B], then Invariant 4 is also violated forthat node [v;A] with ([v;A]; [u;B]) 2 E0. Hence, it su�ces to consider caseX = A.Assume level([u;A]) < level([u;B]). Let [x;B] be the direct predeces-sor of [u;A] on any shortest strongly simple path from s to [u;A]. Bythe assumption that Invariant 2 and Invariant 4 have been maintained pre-viously, level([x;B]) has been computed correctly after the termination ofPart 1 of Round level([x;B]), or after the termination of Part 2 of Round1=2(level([x;B]) + level([x;A])� 1). In both cases, edge ([x;B]; [u;A]) hasbeen considered in a previous round, and therefore, level([u;A]) has beencomputed correctly, a contradiction.Hence, level([u;A]) > level([u;B]). Let level([u;B]) be maximal suchthat level([u;A]) is computed incorrectly during Part 2 of Round l. Let[v; Z]; [w;Z] be the corresponding pair of nodes. Then the following proper-ties are ful�lled.1. DOM(f[v; Z]; [w;Z]g) 6= [u;B].2. MBFS inserts [u;A] into Level 2l + 1 � level([u;B]), but all stronglysimple paths from s to [u;A] are strictly longer.We will show that Property 2 cannot be ful�lled. By Properties 1 and 2,there is a shortest strongly simple path from s to [v; Z], containing [u;B],and there is a shortest strongly simple path from s to [w;Z], not containing[u;B], or vice versa. W.l.o.g., let P = P1; [u;B]; P2; [v; Z] be a shorteststrongly simple path from s to [v; Z], and let Q; [w;Z] be a shortest stronglysimple path from s to [w;Z], not containing [u;B]. By Property 2, P2 andQ cannot be strongly disjoint. Otherwise, R = Q; [w;Z]; [v; Z]; r(P2); [u;A]would be a strongly simple path from s to [u;A] of length 2l+1�level([u;B]).11



Let [q;X] be the �rst node on Q with [q;X] or [q;X] on P2. LetQ = Q1; [q;X]; Q2 and P2 = ( P21; [q;X]; P22 if [q;X] on P2P21; [q;X]; P22 otherwiseIf [q;X] is on P2, thenR = Q1; [q;X]; r(P21); [u;A] would be a strongly simplepath from s to [u;A], shorter than 2l + 1 � level([u;B]). Hence, [q;X] is onP2. [q;X] is the reference node, and [u;B] is the critical node. The path P2is the critical path, and the path Q1 is the reference path.Since [u;A] is a node violating Invariant 4 with maximal level([u;B]),level([p; Y ]) has been computed correctly for all nodes [p; Y ] on P2. Moreover,level([p; Y ]) + level([p; Y ]) � 2l + 1.Our goal is the following. We will construct a situation such that theonly case not leading to a contradiction will produce a new critical node anda new reference node such that1. level([u0; B]) + level([u0; A]) > 2l + 1, where [u0; B] is the critical node;2. level([q0;X])+level([q0;X]) � 2l+1, where [q0;X] is the reference node;3. for all nodes [p; Y ] on the critical path, level([p; Y ]) + level([p; Y ]) �2l + 1;4. the critical path is the end of a shortest strongly simple path to a node;and5. the length of the reference path decreases strictly.Starting with a critical node and a reference node ful�lling Properties 1{4,we will obtain a critical node and a new reference node ful�lling Properties1{5. During the construction, we will only use Properties 1{4. Since thelength of the reference path decreases strictly, after a �nite number of suchconstructions, the case described by Properties 1{5 cannot happen, leadingto a contradiction.In the beginning, Properties 1{4 are ful�lled with respect to the criticalnode, the reference node, the critical path, and the reference path de�nedabove. Let R; [q;X] be any shortest strongly simple path from s to [q;X].We distinguish two cases. 12



Case 1: [u;B] is on R.Consider [u0; B] 2 R such thata) level([u0; B]) + level([u0; A]) > 2l + 1, andb) [u0; B] is the node on R nearest to [q; Z] such that a) is ful�lled.Since [u;B] 2 R ful�lls a), node [u0; B] exists. Let R = R1; [u0; B]; R2.By Property a), R2 and Q1 cannot be strongly disjoint. Otherwise, S =Q1; [q;X]; r(R2); [u0; A] would be a strongly simple path from s to [u0; A]shorter than 2l + 1 � level([u0; B]), a contradiction. Let [q0;X] be the �rstnode on Q1 with [q0;X] or [q0;X ] on R2. Similarly to above, we can exclude[q0;X] 2 R2. LetQ1 = Q11; [q0;X]; Q12 and R2 = R21; [q0;X]; R22:Next we will de�ne the new critical node and the new reference node, leadingto a new critical path and a new reference path.Let [u0; B] be the critical node, and let [q0;X] be the new reference node.Then, R2 is the new critical path, and Q11 is the new reference path. Byconstruction, it is easy to see that Properties 1{5 are ful�lled.Case 2: [u;B] is not on R.Then R and P21 cannot be strongly disjoint. Otherwise,S = R; [q;X]; r(P21); [u;A]would be a strongly simple path from s to [u;A] of length at most 2l + 1 �level([u;B]), a contradiction.Let [q0;X] be the �rst node on P21 with [q0;X] or [q0;X] on R. Similarlyto above, we can exclude [q0;X] 2 R. LetP21 = P 021; [q0;X]; P 0021 and R = R1; [q0;X]; R2:Node [u;B] remains the critical node and path P2 remains the critical path,too. Let [q0;X] be the new reference node, and let R1 be the new referencepath. By construction, it is easy to see that properties 1{4 are ful�lled. Itremains to prove that the new reference path is strictly shorter than the oldreference path. We will prove the following assertions.13



1. jP1; [u;B]; P21j � jQ1j, and2. jR1j � jP1; [u;B]; P 021j.Both assertions imply jR1j < jQ1j directly.The �rst assertion follows directly from the observation that the pathQ1; [q;X]; P22; [v; Z] is a strongly simple path from s to [v; Z] and the prop-erty that P is a shortest strongly simple path from s to [v; Z].For proving the second assertion, assume jR1j > jP1; [u;B]; P 021j. ConsiderS = P1; [u;B]; P 021; [q0;X]; R2; [q;X]:Since jSj < jR; [q;X]j, and R; [q;X] is a shortest strongly simple path froms to [q;X], the paths P1 and R2 cannot be strongly disjoint. Let [p; Y ] bethe �rst node on P1 with [p; Y ] or [p; Y ] on R2. LetP1 = P11; [p; Y ]; P12 and R2 = ( R21; [p; Y ]; R22 if [p; Y ] on R2R21; [p; Y ]; R22 otherwiseIf [p; Y ] 2 R2, then P11; [p; Y ]; R22; [q;X] would be a strongly simple pathfrom s to [q;X] shorter than R; [q;X]. Hence [p; Y ] 2 R2. ConsiderS = P11; [p; Y ]; r(R21); [q0;X]; r(P 021); [u;A]:By construction, S is a strongly simple path from s to [u;A] shorter than2l + 1 � level([u;B]), a contradiction.Altogether, we have obtained jR1j � jP1; [u;B]; P 021j.From Invariant 2 and Invariant 4, we obtain the following theorem directly.Theorem 1 MBFS computes correctly the graph �GM = (V 0; �EM).4 An implementation of an entire phaseFirst we will describe the implementation of MBFS, and then show how tocombine MBFS and MDFS for an implementation of an entire phase.Obviously, Part 1 of all rounds can be implemented in such a way that thetotal time is bounded by O(m+ n). For the implementation of Part 2 of all14



rounds, we have to describe how to implement the search on the backpaths,starting in [v; Z] and [w;Z], until DOM(f[v; Z]; [w;Z]g) is reached. Most im-portantly, since we do not know DOM(f[v; Z]; [w;Z]g) in advance, meaningthat DOM(f[v; Z]; [w;Z]g) has to be computed simultaneously, we have totake care that the search does not continue beyond DOM(f[v; Z]; [w;Z]g).This can be done in the following way.1. In the front of the search, continue the search always in a node [u;X]such that there is another node [p; Y ] in the front of the search withlevel([p; Y ] � level([u;X]).2. If the front of the search contains only one node, then stop the search.Note that at the moment when Property 2 is ful�lled, DOM(f[v; Z]; [w;Z]g)is reached on all backpaths, starting in [v; Z] or [w;Z]. The search can beorganized by performing simultaneously a depth-�rst search on the back-paths, starting in [v; Z], and a depth-�rst search on the backpaths startingin [w;Z]. In each step, one of the depth-�rst searches is continued such thatwith respect to its head [u;X] there holds that level([u;X]) � level([p; Y ]),where [p; Y ] is the head of the other depth-�rst search. If the heads of thetwo depth-�rst searches become equal, then a backtrack with respect to oneof the two depth-�rst searches is performed, which obtains a new head. Ifthe heads of both depth-�rst searches are equal, and no backtrack is possible,then the search is terminated.With respect to the e�ciency, at the moment when the search meets anode [u;X] for which level([u;X]) has been de�ned, we have to e�cientlycompute the next node of the search having the property that its level isnot de�ned. By de�nition, this node is DOM([u;X]). As a consequence ofLemma 6, we can maintain these nodes by disjoint set union such that forthe computation of DOM([u;X]) one �nd operation would su�ce. Usingincremental tree set union [6], we obtain a total time bound of O(m+ n) forthe computation of the next node during the search such that its level is notde�ned.The search procedure described above is exactly the double depth-�rstsearch described by Micali and Vazirani [11].Note that edges, found during the search on backpaths in Part 2 of around, do not need to be inserted explicitly into �EM , since the corresponding15



reversed edge is already in �EM . We only have to mark the nodes [v; Z] and[w;Z] as start nodes of a backward search.As a consequence of Invariant 3 in Lemma 3, we can combine Part 2 of around with Part 1 of the subsequent round.Next, we will combine MBFS and MDFS for the implementation of anentire phase. Note that also with respect to �GM , a simple path from s to tmust not be strongly simple. Hence, we cannot compute a maximal set ofup to s and t pairwise disjoint strongly simple paths from s to t using DFS.Knowing �GM , it is easy to compute a maximal set of shortest stronglysimple paths of �GM using MDFS in O(m + n) time. Every time a stronglysimple path P from s to t is found, all nodes [v;A], [v;B] with [v;A] 2 P or[v;B] 2 P and all incident edges are deleted from �GM . If a node becomeszero indegree or zero outdegree, then this node, too, and all incident edges,are deleted. Altogether, we have obtained the following theorem.Theorem 2 A maximum matching in a general graph G = (V;E) can becomputed in O(pn(m + n)) time and O(m + n) space, where jV j = n andjEj = m.Acknowledgment: I thank Andreas Decker, Marek Karpinski and HenningRochow for helpful discussions and valuable hints.References[1] Bartnik G.W., Algorithmes de couplages dans les graphes, Th�ese Doc-torat 3e cycle, Universit�e Paris VI (1978).[2] BlumN., A new approach to maximummatching in general graphs, 17thICALP (1990), LNCS 443, 586{597.[3] Blum N., Maximummatching in general graphs without explicit consid-eration of blossoms, Research report, Universit�at Bonn (1999), availableat www.cs.uni-bonn.de/IV/blum/.[4] Edmonds J., Paths, trees, and 
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