
Maximum Matching in General GraphsWithout Explicit Consideration of BlossomsNorbert BlumInformatik IV, Universit�at BonnR�omerstr. 164, D-53117 Bonn, Germanyemail: blum@cs.uni-bonn.deOctober 26, 1999AbstractWe reduce the problem of �nding an augmenting path in a generalgraph to a reachability problem in a directed, bipartite graph. Fur-thermore, we show that a slight modi�cation of depth-�rst search leadsto an algorithm for �nding such paths. This new point of view enablesus to develop algorithms for the solution of matching problems with-out explicit analysis of blossoms, nested blossoms, a.s.o. A variantof Edmonds' primal-dual method for the weighted matching prob-lem which uses the modi�ed depth-�rst search instead of Edmonds'maximum matching algorithm as a subroutine is described. Further-more, a straightforwardO(nm logn)-implementation of this algorithmis given.
1

1 Introduction and motivationSince Berge's theorem in 1957 [4] it has been well known that for construct-ing a maximum matching, it su�ces to search for augmenting paths. Butuntil 1965, only exponential algorithms for �nding a maximum cardinalitymatching in nonbipartite graphs were known. The reason was that one didnot know how to treat odd cycles, the socalled \blossoms" in alternatingpaths. In his pioneering work, Edmonds [7] solved this problem by shrinkingthese odd cycles. In [2, 10, 16, 19], it is shown how to avoid explicit shrinkingof odd cycles. All these algorithms need O(n3) or O(nm) time, where n isthe number of nodes, and m is the number of edges in the graph.The �rst polynomial algorithm for the weighted matching problem alsodepends on Edmonds [8]. Its run time is O(n4). Gabow [9] and Lawler [16]have develloped O(n3) implementations of Edmonds algorithm. Ball andDerigs [3] gave an O(nm log n) implementation. The best implementationof Edmonds algorithm uses O(n(m + n log n)) time and is also given byGabow [11]. For a more detailed description of the known weighted matchingalgorithms see [14, 16, 17].Our goal is to avoid sophisticated explicit analysis of (nested) blossoms.For getting this, we reduce the problem of �nding an augmenting path to areachability problem in a directed, bipartite graph. It is shown, how to solvethis reachability problem by a modi�ed depth-�rst search. The algorithmobtained is not fundamentally di�erent from previous algorithms which useEdmonds' traditional terminology of blossoms. But we believe that this newpoint of view, which avoids the explicit consideration of blossoms, simpli�esthe situation considerably. We have described a simpli�ed realization of theHopcroft-Karp approach [15] for the computation of a maximum cardinalitymatching in general graphs in [6]. Furthermore, we show how to use themodi�ed depth-�rst search algorithm in the primal step of Edmonds' maxi-mum weighted matching algorithm. This approach allow to implement Ed-monds' algorithm without shrinking and expanding the socalled \blossoms".A straightforward O(nm log n) implementation will be described, too.In Section 2, de�nitions and the general method are given. We will de-scribe the reduction to a reachability problem in a directed, bipartite graphin Section 3. This reachability problem is solved in Section 4. We will provethe correctness in Section 5. In Section 6, we will present an e�cient imple-2

mentation of the solution. In Section 7, we show how to use the modi�eddepth �rst search as subroutine in Edmonds' maximum weighted matchingalgorithm. The implementation of this approach will be given in Section 8.2 De�nitions and the general methodA graph G = (V;E) consists of a �nite, nonempty set of nodes V and a setof edges E. G is either directed or undirected . In the (un-)directed case,each edge is an (un-)ordered pair of distinct nodes. A graph G = (V;E) isbipartite if V can be partitioned into disjoint nonempty sets A and B suchthat for all (u; v) 2 E, u 2 A and v 2 B, or vice versa. Then we oftenwrite G = (A;B;E). A path P from v 2 V to w 2 V is a sequence of nodesv = v0; v1; : : : ; vk = w, which satis�es (vi; vi+1) 2 E, for 0 � i < k. Thelength jP j of P is the number k of edges on P . P is simple if vi 6= vj, for0 � i < j � k. For conveniences, P will denote the path v0; v1; : : : ; vk, the setof nodes fv0; v1; : : : ; vkg, and the set of edges f(v0; v1); (v1; v2); : : : ; (vk�1; vk)g.If there exists a path from v to w (of length 1) v is called a (direct) predecessorof w, and w is called a (direct) successor of v.Let G = (V;E) be an undirected graph. M � E is a matching of Gif no two edges in M have a common node. A matching M is maximal ifthere exists no e 2 E nM such that M [feg is a matching. A matchingM is maximum if there exists no matching M 0 � E of larger size. Given anundirected graph G = (V;E), the maximum matching problem is �nding amaximum matching M � E. A path P = v0; v1; : : : ; vk is M-alternating, ifit contains alternately edges in M and in E nM . A node v 2 V is M-freeif v is not incident to an edge in M . Let P = v0; v1; : : : ; vk be a simpleM -alternating path. P is M-augmenting if v0 and vk are M -free. Let P bean M -augmenting path in G. Then M �P denotes the symmetric di�erenceof M and P ; i.e.M � P =M n P [P nM . It is easy to see that M �P is amatching of G, and jM � P j = jM j+ 1.The key to most algorithms for �nding a maximum matching in a graphis the following theorem of Berge [4].Theorem 1 Let G = (V;E) be an undirected graph and M � E be a match-ing. Then M is maximum if and only if there exists no M-augmenting pathin G. 3

Berge's theorem directly implies the following general method for �nding amaximum matching in a graph G.Algorithm 1Input: An undirected graph G = (V;E), anda matching M � E (possibly M = ;)Output: A maximum matchingMmaxMethod:while there exists an M -augmenting pathdo construct such a path P ;M :=M � Pod;Mmax := M .The key problem is now this: How to �nd an M -augmenting path P , if sucha path exists? We solve this key problem in the following way.1. We reduce the key problem to a reachability problem in a directed,bipartite graph GM = (V 0; EM).2. We solve this reachability problem constructively.3 Reduction to a reachability problemIn the bipartite case, we construct from G = (A;B;E) and a matchingM � E a directed graph GM = (V 0; EM) by directing the edges inM from Ato B, and directing the edges in E nM from B to A. Additionally, we addtwo new nodes s and t to A [B, add for each M -free node b 2 B the edge(s; b) to EM , and add for eachM -free node a 2 A the edge (a; t) to EM . It iseasy to prove that there is an M -augmenting path in G if and only if thereis a simple path from s to t in GM . This reachability problem can be solvedby performing a depth-�rst search (DFS) of GM with start node s.Now we will consider the general case. Let G = (V;E) be an undirectedgraph, and M � E be a matching. Let VM = fx 2 V j x is M -freeg. For thede�nition of GM we have the following di�culty.4

A priori, we cannot divide the set of nodes V into two sets A and Bsuch that an M -augmenting path exists in G if and only if there exists anM -augmenting path, using alternately nodes from A and from B. Hence, forde�ning GM we introduce for each node v 2 V two nodes [v;A] and [v;B]such that an analogous construction of a graph GM is possible. Both edges([v;A]; [w;B]) and ([w;A]; [v;B]) are in GM if and only if (v;w) 2M . Bothedges ([x;B]; [y;A]) and ([y;B]; [x;A]) are in GM if and only if (x; y) 2 EnM .Additionally, we add for each M -free node v 2 V the edges (s; [v;B]) and([v;A]; t) to GM , where s and t are two new nodes. More formally, letGM = (V 0; EM) whereV 0 = f[v;A]; [v;B] j v 2 V g [fs; tg s; t 62 V; s 6= tEM = f([v;A]; [w;B]); ([w;A]; [v;B]) j (v;w) 2Mg[f[x;B]; [y;A]); ([y;B]; [x;A]) j (x; y) 2 E nMg[f(s; [v;B]); ([v;A]; t) j v 2 VMg :Analogously to the bipartite case, we have directed the edges in M \from Ato B" and the edges in E nM \from B to A". Since the distinct nodes [v;A]and [v;B] in V 0 correspond to the same node v in V , it does not su�ce toconstruct a simple path from s to t in GM for �nding anM -augmenting pathin G. Hence, we de�ne strongly simple paths in GM which cannot containboth nodes [v;A] and [v;B], for all v 2 V . A path P in GM is strongly simpleif a) P is simple, andb) 8[v;A] 2 V 0 : [v;A] 2 P) [v;B] 62 P .Now we can formulate the reachability problem in GM which is equivalent tothe problem of �nding an M -augmenting path in G.Theorem 2 Let G = (V;E) be an undirected graph, M � E be a matching,and GM = (V 0; EM) be de�ned as above. Then there exists an M-augmentingpath in G if and only if there exists a strongly simple path from s to t in GM .Proof: \(": Let P = s; [v1; B]; [v2; A]; [v3; B]; : : : ; [vk�1; B]; [vk; A]; t be astrongly simple path in GM . Then vi 6= vj, 1 � i < j � k, and v1; vk 2 VM .Hence, P 0 = v1; v2; : : : ; vk is an M -augmenting path in G.5

\)": Let Q = w1; w2; : : : ; wl�1; wl be an M -augmenting path in G. Thenwi 6= wj, 1 � i < j � l, and w1; wl 2 VM . Hence, by the construction ofGM , Q0 = s; [w1; B]; [w2; A]; : : : ; [wl�1; B]; [wl; A]; t is a strongly simple pathin GM .4 The solution of the reachability problemDepth-�rst search (DFS) �nds simple paths in a directed graph. Hence,we cannot use DFS directly for the solution of the reachability problem inGM . We will modify the usual DFS such that the modi�ed depth-�rst search(MDFS) �nds precisely the strongly simple paths in GM . Let [v;A] = [v;B],and [v;B] = [v;A]. Remember that a DFS partitions the edges of the graphinto four categories [1]. Similarly, the edges of GM are partitioned into �vecategories by a MDFS of GM :1. Tree edges, which are edges leading to new nodes [v;X], X 2 fA;Bg,for which [v;X] is not a predecessor during the search.2. Weak back edges, which are edges leading to new nodes [v;A], for which[v;B] is a predecessor during the search.3. Back edges, which go from descendants to ancestors during the search.4. Forward edges, which go from ancestors to proper descendants but arenot tree edges.5. Cross edges, which go between nodes that are neither ancestors nordescendants of one another during the search.Like DFS, MDFS uses a stack K for the organization of the search. Anal-ogously to DFS, the MDFS-stack K de�nes a tree, the MDFS-tree T . Be-fore describing MDFS in detail, we will describe the algorithm informally.TOP(K) denotes the last node added to the MDFS-stack K. In each step,MDFS considers an edge (TOP(K); [w; Y]) which was not considered previ-ously. Let e = ([v;X]; [w;X]) be the edge under consideration. We distin-guish two cases:1. X = A, i.e. (v;w) 2M . tree edge6

2. X = B, i.e. (v;w) 2 E nM2.1 [w;A] 2 K back edge2.2 [w;A] 62 K but [w;B] 2 Ki) [w;A] has been in K previously cross edgeii) [w;A] has not been in K previously weak back edge2.3 [w;A] 62 K and [w;B] 62 Ki) [w;A] has been in K previously forward or cross edgeii) [w;A] has not been in K previously tree edgeMDFS di�ers from DFS only in Cases 2.2.ii and 2.3.i. Next, we will discussboth of these cases.Case 2.2.ii: Since [w;A] has not been in K before, DFS would performthe operation PUSH([w;A]). Since [w;B] 2 K, and MDFS should onlyconstruct strongly simple paths inGM , MDFS does not perform the operationPUSH([w;A]).Case 2.3.i: Since [w;A] has been inK before, DFS would perform no PUSH-operation. But the di�erent treatment of Case 2.2.ii can cause the followingsituation. MDFS has found a path from [w;A] to a node [u;A]. But thenode [u;B] was in K, and hence by Case 2.2.ii, the operation PUSH([u;A])has not been performed. But now, [u;B] 62 K. As we will prove later, thepaths P from s to [v;B] and Q from [w;A] to [u;A] are strongly disjoint ; i.e.there is no [r;X] 2 P , X 2 fA;Bg such that f[r;A]; [r;B]g\Q 6= ;. Hence,the path P ,Q is strongly simple. Since MDFS has found a strongly simplepath from s to [u;A], MDFS now performs the operation PUSH([u;A]).Note that with respect to depth-�rst search, the DFS-stack contains ex-actly the current search path. With respect to the modi�ed depth-�rst search,the situation is di�erent. In Case 2.3.i, the node [u;A] is pushed. But toobtain a current search path, between the nodes [v;B] and [u;A], we have toinsert any path [w;A]; Q such that a pathP = s; : : : ; [u;B]; [v;B]; [w;A]; Q; [u;A]with ([x;B]; [u;A]) 2 EM where Q = Q0; [x;B] is constructed by the algo-rithm. Since we do not want to forgot the information about the �rst node7

on the path which we have to add between the nodes [v;B] and [u;A], wecreate the arti�cial tree edge ([v;B]; [u;A])[w;A]. Such an edge is called ex-tensible edge. It is possible that there exists various such paths Q. Hence,after the performance of PUSH([u;A]), the number of corresponding currentsearch path can increase.Always if we consider one current search path we mean that we can takean arbitrary corresponding current search path. If we add to the constructedMDFS-tree T all forward and all cross edges and replace every extensibleedge ([v;B]; [u;A])[w;A] by all possible paths [w;A]; Q, then we obtain theexpanded MDFS-tree Texp.We say that MDFS has constructed a strongly simple path P if Texp con-tains P . We say that MDFS has found a strongly simple path P 0; [v;B]; [w;A]if the path P 0; [v;B] is constructed by MDFS and the edge ([v;B]; [w;A]) isa considered weak back edge.Next we shall describe MDFS more in detail. We have to solve the fol-lowing problem: How to �nd node [u;A] in Case 2.3.i? For the solution ofthis problem, we assume that MDFS is organized such that for all nodes[w;A] 2 V 0, the following holds true:After performing the operation POP([w;A]), MDFS has always computeda set L[w;A] of nodes such that L[w;A] contains exactly those nodes [u;A] 2 V 0satisfying the requirements that1. MDFS has found a path P = [w;A]; Q; [u;A] with [u;B] 62 Q,2. PUSH([u;A]) has never been performed, and3. POP([u;B]) has been performed.Before the performance of POP([w;A]), we �x L[w;A] = ;.In the description of MDFS we assume for all [w;A] 2 V 0 that L[w;A]is computed correctly. As we will prove later, always jL[w;A]j � 1. Thecomputation of L[w;A], as well as an e�cient implementation of MDFS, canbe found in Section 6. For v 2 V 0, N [v] denotes the adjacency list of v.Algorithm 2 (MDFS)Input: GM = (V 0; EM)Output: A strongly simple path P from s to t, if such a path exists.Method: 8

PUSH(s);while K 6= ; and no path from s to t is founddo SEARCHod.SEARCH is a call of the following procedure.procedure SEARCH;if TOP(K) = t thenreconstruct a strongly simple path P from s to twhich has been constructed by the algorithmelsemark TOP(K) \pushed";for all nodes [w; Y] 2 N [TOP (K)]do(Case 1) if Y = B thenPUSH([w;B]);SEARCH(Case 2) else(Case 2.1) if [w;A] 2 K thenno PUSH-operation is performedelse(Case 2.2) if [w;B] 2 K thenno PUSH-operation is performed(Case 2.3) else(Case 2.3.i) if [w;A] is marked \pushed" thenwhile L[w;A] 6= ;do choose any [u;A] 2 L[w;A];PUSH([u;A]);SEARCHod(Case 2.3.ii) elsePUSH([w;A]);SEARCH� 9

���odPOP�.5 The correctness proof of MDFSThe correctness proof of MDFS is inspired by the correctness proof of DFS.First we will prove some lemmas. The �rst lemma implies that the �rstPUSH-operation which destroys the property \strongly simple" must push anode with second component A.Lemma 1 As long as MDFS construct only strongly simple paths, the follow-ing holds true: After the operation PUSH([v;A]) where v is not M-free, theoperation PUSH([w;B]) where ([v;A]; [w;B]) 2 EM always follows withoutdestroying the property \strongly simple".Proof: After the performance of the operation PUSH([v;A]), MDFS alwaysconsider the unique edge ([v;A]; [w;B]) 2 EM and performs the operationPUSH([w;B]). If this operation destroys the property \strongly simple",then [w;A] and hence, [v;B] would be on a current search path. But then theoperation PUSH([v;A]) would have destroyed the property \strongly simple",a contradiction.The next lemma shows that MDFS constructs a path from s to a node[x;A] if in a speci�c situation a strongly simple path from s to this nodeexists.Lemma 2 Let [u;B] 2 V 0 be a node for which MDFS performs the operationPUSH([u;B]). Furthermore, at the moment when POP([u;B]) is performedby MDFS, only strongly simple paths have been constructed by MDFS. Let[x;A] 2 V 0 such that at the moment when PUSH([u;B]) is performed, there isa strongly simple path P = [u;B]; [v;A]; Q; [x;A] with [z;X]; [z;X] 62 K, forall [z;X] 2 P . Then PUSH([x;A]) has been performed before POP([u;B]).10

Remark: Lemma 2 implies that either PUSH([x;A]) and POP([x;A]) havebeen performed before the performance of PUSH([u;B]), or both operationshave been performed between the operations PUSH([u;B]) and POP([u;B]).Proof: Let P = [u;B]; [v;A]; [v0; B]; Q0; [x;A] be such a path of shortestlength for which PUSH([x;A]) has not been performed before POP([w;B]).It is clear that edge e = ([u;B]; [v;A]) has been considered before the perfor-mance of POP([u;B]). If the operation PUSH([v;A]) is performed accordingto this consideration of edge e, then by the assumption that P is a shortestpath such that the assertion is not ful�lled, PUSH([x;A]) has been performedbefore POP([v0; B]), and hence, before POP([u;B]). Hence, MDFS is in Case2.3.i and performs the corresponding while-statement. Consider the momentwhen MDFS �nishes this while-statement, i.e. L[v;A] = ;.Let [z;A] 2 P be the �rst node on P for which PUSH([z;A]) has notbeen performed. Since [x;A] has this property, node [z;A] exists. Let P =[u;B]; [v;A]; Q1; [z;A]; Q2; [x;A]. Then1. MDFS has found the path [v;A]; Q1; [z;A];2. PUSH([z;A]) has never been performed; and3. POP([z;B]) has been performed (since [z;B] 62 K when PUSH([u;B])is performed).Hence, [z;A] 2 L[v;A], and hence, L[v;A] 6= ;. But this contradicts L[v;A] = ;.For w 2 V 0, we denoter(w) = 8><>: [v;X] if w = [v;X]t if w = ss if w = tLet S = w1; w2; : : : ; wk be a path in GM . The backpath r(S) of S is de�nedby r(S) = r(wk); r(wk�1); : : : ; r(w1):Lemma 3 Let [u;B] 2 V 0 be a node for which MDFS performs the operationPUSH([u;B]). Furthermore, at the moment when POP([u;B]) is performedby MDFS, only strongly simple paths have been constructed by MDFS. If there11

exists a strongly simple path P = [v;A]; Q; [w;B] such that at the momentwhen PUSH([u;B]) is performed, [z;X]; [z;X] 62 K, for all [z;X] 2 P , and([u;B]; [v;A]); ([w;B]; [u;A]) 2 EM , then for all [z;X] 2 P , the operationsPUSH([z;X]) and PUSH([z;X]) have been performed before the operationPOP([u;B]).Proof: For the nodes [z;X] 2 P consider the path [u;B]; P and applyLemma 2. For the nodes [z;X] consider the path [u;B]; r(P) and applyLemma 2.By the de�nition of L[u;A] and Lemma 3, we obtain for all [u;A] 2 V 0:jL[u;A]j > 0 implies that PUSH([u;A]) and POP([u;A]) have been performed.Lemma 4 MDFS maintains the following invariants:Invariant 1: MDFS constructs only strongly simple paths.Invariant 2: jL[w;A]j � 1, for all [w;A] 2 V 0.Invariant 3: Assume that the algorithm performs the assignment L[w;A] := [u;A].Then after the performance of PUSH([u;A]), always L[w;A] = L[u;A].Remark: Invariant 2 and Invariant 3 are not needed for the correctness proofof MDFS. But we will need these invariants for the e�cient implementationof the algorithm. Moreover, the proof of Invariant 1 is easier if we prove allinvariants simultaneously.Proof: Consider the �rst situation in which one of the three invariants isnot maintained. Three cases are to be considered.Case 1: Invariant 1 is not maintained.Only a PUSH-operation can destroy the property \strongly simple". Notethat a PUSH-operation cannot a�ect Invariant 2 or Invariant 3.Lemma 1 implies that this PUSH-operation occurs during the consider-ation of an edge e = ([v;B]; [w;A]). Then e corresponds to edge (v;w) 2E nM .If [w;A] is not marked \pushed", then Case 2.3.ii of MDFS applies, andPUSH([w;A]) is performed. The only possible situation in which this PUSH-operation destroys the property \strongly simple" is the following:12

On a current search path there is a subpath Q which is caused by anapplication of Case 2.3.i of MDFS such that [w;B] 2 Q.Hence, there exists [u;A] 2 V 0 such that the addition of Q to this cur-rent search path is caused by the operation PUSH([u;A]). By construction,the assumptions of Lemma 3 are ful�lled with respect to [u;B]; [w;B] 2 P .Hence, by Lemma 3, PUSH([w;A]) has been performed before POP([u;B]),and hence, before PUSH([u;A]), a contradiction.Hence, [w;A] is marked \pushed". Therefore, Case 2.3.i of MDFS applies,and for node [u;A] = L[w;A], the operation PUSH([u;A]) is performed. (Notethat by Invariant 2, jL[w;A]j � 1. We thus write L[w;A] = [u;A] instead ofL[w;A] = f[u;A]g.) Hence, the algorithm extends the current search pathsby a path [w;A]; Q; [u;A]. Note that only [u;A] will be pushed. Later, thesubpath [w;A]; Qmust be reconstructed if needed. By the de�nition of L[w;A],and by Lemma 3, the operations PUSH([z;X]), POP([z;X]), PUSH([z;X]),and POP([z;X]) have been performed, for all [z;X] 2 Q. Hence, the onlypossible situation in which PUSH([u;A]) destroys the property \stronglysimple" is the following:There is a node [p;X] 2 [w;A]; Q; [u;A], and a subpath Q0 of a currentsearch path which is caused by an application of Case 2.3.i such that [p;X] 2Q0 or [p;X] 2 Q0. Since one end node of an edge in the current matchinguniquely determines the other end node, we can choose [p;X] such that[p;A] 2 Q0.Consider node [u0; A] 2 K with PUSH([u0; A]) is the operation which addsthe subpath Q0 to this current search path. By the de�nition of L[p;A], Lemma3 and Invariant 2, before the performance of PUSH([u0; A]), L[p;A] = [u0; A].Hence, by Invariant 3, after the performance of PUSH([u0; A]), always L[p;A] =L[u0 ;A]. By the choice of [p;A], L[p;A] = [u;A], and hence, L[u0 ;A] = [u;A] inthe situation under consideration. Hence, POP([u0; A]) is performed. Hence,[u0; A] 62 K, a contradiction.Case 2: Invariant 2 is not maintained.Then there is [w;A]; [p1; A]; [p2; A] 2 V 0 with the property that L[w;A] =f[p1; A]g before the performance of POP([p2; B]), and L[w;A] = f[p1; A]; [p2; A]gafter the performance of POP([p2; B]). Hence, MDFS has found a path P1 =[p1; B]; Q; [p1; A] with [w;A] 2 Q and found a path P2 = [p2; B]; Q0; [p2; A]with [w;A] 2 Q0. 13

If MDFS has found the path P2 after the performance of POP([p1; B]),then [w;A] can only be added to Q0 in the following way:An operation PUSH([u;A]), caused by an application of Case 2.3.i withrespect to a node [v;A] (i.e., [u;A] 2 L[v;A]) is performed such that the currentsearch path is extended by a path [v;A]; ~Q; [u;A] with [w;A] 2 ~Q. But then,[u;A] 2 L[w;A] before the performance of PUSH([u;A]). PUSH([u;A]) isperformed after POP([p1; B]). Hence, [u;A]; [p1; A] 2 L[w;A] between theperformance of these two operations. This contradicts the assumption thatwe consider the situation in which Invariant 2 is not maintained for the �rsttime.Hence, MDFS has found the path P2 before the performance of POP([p1; B]).Note that [p1; B] 62 Q0. Otherwise, by Lemma 3, PUSH([p1; A]) is performedbefore POP([p2; B]), and hence, [p1; A] 62 L[w;A] after POP([p2; B]). Let [r;A]be the �rst node on Q0 such that [r;A] 2 Q, or [r;B] 2 Q. Since node [w;A]has this property, node [r;A] exists. LetQ0 = Q01; [r;A]; Q02 and Q = (Q1; [r;A]; Q2 if [r;A] 2 QQ1; [r;B]; Q2 otherwiseConsider the pathR = (Q01; [r;A]; Q2; [p1; A] if [r;A] 2 QQ01; [r;A]; r(Q1); [p1; A] otherwiseThen Lemma 2 applies with respect to [p2; B], [p1; A], and the strongly simplepath R. Hence, PUSH([p1; A]) is performed before POP([p2; B]), and hence,[p1; A] 62 L[w;A] after POP([p2; B]), a contradiction.Case 3: Invariant 3 is not maintained.After the performance of PUSH([u;A]), there holds L[w;A] = L[u;A] =;. We will prove that L[w;A] = L[u;A] after the next POP-operation whichchanges L[w;A] or L[u;A]. Then, the assertion follows because of Invariant 2and the transitivity of the relation =.Let POP([p;B]) be the next POP-operation which enlarges L[w;A] orL[u;A]. K[w;A] denotes the current MDFS-stack, directly after the performanceof PUSH([w;A]). Let K 0 = K[w;A] \ K[u;A]. Note that [u;B] 2 K[w;A] n K 0.According to the location of [p;B] with respect to K[w;A] and to K[u;A], wedistinguish three cases. 14

By construction, [p;B] 62 K[w;A] n K 0. Otherwise, POP([p;B]) would beperformed before PUSH([u;A]).Assume that [p;B] 2 K[u;A] nK 0. Let [q;B] be the �rst node in K[w;A] nK 0such that [q;A] 2 K[u;A] n K[p;B]. Node [q;B] exists since [u;B] has theproperty that [u;B] 2 K[w;A] nK 0.Consider the backpath of the path from node [p;B] to node [q;A]. Thisbackpath implies that [q;B] and [p;A] ful�ll the assumptions of Lemma 2.Hence, PUSH([p;A]) occurs before POP([q;B]). Since [q;B] 2 K[w;A] n K 0,the operation PUSH([p;A]) is also performed before POP([p;B]). Hence,POP([p;B]) can enlarge neither L[w;A] nor L[u;A].It remains to consider [p;B] 2 K 0. Let [q;B] 2 K 0 be the node nearest tothe top of K 0 for which PUSH([q;A]) has not been performed at the momentwhen MDFS performs PUSH([u;A]). Since [p;B] has this property, [q;B]exists. By consideration of the backpath of the path from [q;B] to [u;B], itis easy to prove that MDFS �nds a path from [u;A] to [q;A] not containing[q;B]. Hence, L[u;A] = [q;A] after the performance of POP([q;B]), and hence,[q;B] = [p;B]. Since MDFS has found a path from [w;A] to [u;A] whichdoes not contain [q;B], there holds L[w;A] = [q;A] = [p;A].Now, the correctness of the algorithm MDFS can easily be derived fromLemma 2 and Lemma 4.Theorem 3a) MDFS constructs a path from s to t, if a strongly simple path from sto t exists.b) MDFS constructs only strongly simple paths.Proof: a) Let P = s; [v00; B]; [v1; A]; [v01; B]; : : : ; [v0r�1; B]; [vr; A]; t be a stronglysimple path from s to t. It is clear that MDFS considers the edge (s; [v00; B]),and performs the operation PUSH([v00; B]). (Note that v00 isM -free.) Hence,[v00; B], [vr; A] ful�ll the assumptions of Lemma 2 with respect to the path[v00; B]; [v1; A]; : : : ; [v0r�1; B]; [vr; A]. Hence, by Lemma 2, MDFS performsPUSH([vr; A]), and hence, PUSH(t). Hence, MDFS constructs a path froms to t.b) is a direct consequence of Invariant 1 of Lemma 4.15

6 An implementation of MDFSNow we will describe how to implement MDFS e�ciently. Only two parts ofthe algorithm are nontrivial to implement.1. The manipulation of L[w;A]; [w;A] 2 V 0.2. The reconstruction of a strongly simple path P from s to t which isconstructed by the algorithm.For the solution of both subproblems it is useful not to perform the POP-operations explicitly, and to maintain the whole MDFS-tree T . This can bedone as follows:The data structure is a tree T . A pointer TOP always points to TOP(K)in T . The current MDFS-stack K is represented by the unique path fromthe root s of T to TOP(K) in T . For performing the operation POP, pointerTOP is changed such that it points to the unique direct predecessor in T .When we perform a PUSH-operation, T obtains a new leaf to which TOPpoints.Invariant 2 and Invariant 3 are the key for the e�cient implementation ofour method. Now we will describe the update of L[w;A]. By the de�nition ofL[w;A], we have only to change L[w;A] after a PUSH- or after a POP-operation.More exactly, we have to perform:After PUSH([u;A]): L[w;A] := ; if L[w;A] = [u;A].After POP([u;B]): L[w;A] := [u;A] if1. PUSH([u;A]) has never been performed, and2. MDFS has found a path P = [w;A]; Q; [u;A] with [u;B] 62 Q.After the performance of POP([u;B]), eventually, MDFS has to �nd all nodes[w;A] which ful�ll Property 2. This can easily be done by any graph searchmethod like depth-�rst search, starting in node [u;A] and running the con-sidered edges backwards. When the node [u;B] is reached, a backtrack isperformed. But with respect to the e�ciency, it is useful to investigate theproperties of MDFS and to re�ne the graph search.First, we will characterize the paths P = [w;A]; Q; [u;A] with [u;B] 62 Q,found by MDFS. Let P = e1; e2; : : : ; et. Then, the following properties areful�lled: 16

1. et is a weak back edge.2. If we start in edge et and consider P backwards, then we see some treeedges followed by a single cross, forward or back edge, followed by asequence of tree edges, and so on.Hence, we need after the performance of POP([u;B]) the following sets ofedges: R[u;A] = f[v;B] 2 V 0 j ([v;B]; [u;A]) is a weak back edgegand for some [q;A] 2 V 0E[q;A] = f[v;B] 2 V 0 j ([v;B]; [q;A]) is a cross, forward, or back edgeg:According to Invariant 3, during the backward search some subpaths can beskipped over. Therefore, we need the following set of nodesD[q;A] = f[p;A] 2 V 0 j L[p;A] = [q;A] previouslyg:By Invariant 3, D[q;A] � D[q0;A] implies L[q;A] = L[q0;A]. Hence, the knowledgeof L[q0;A] and the fact D[q;A] � D[q0;A] implies the knowledge of L[q;A].We say thatD[q;A] is current ifD[q;A] 6� D[q0;A], for all [q0; A] 2 V 0nf[q;A]g.According to Invariant 3, we can compute L[p;A] in the following way.1. Compute [q;A] such that [p;A] 2 D[q;A], and D[q;A] is current.2. If [q;A] does not exist, then L[p;A] = ;. Otherwise,L[p;A] = ([q;A] if PUSH([q;A]) has never been performed; otherwiseAs described above, a correct manipulation of the current sets D[q;A] allowsthe solution of the �rst subproblem. Note that every [p;A] 2 V 0 is containedin at most one current set D[q;A].For the organisation of the backward search, we also need the knowledgeif L[p;A] 6= ; previously. This will be realized by the correct update of thefollowing set. L = f[p;A] 2 V 0 j L[p;A] 6= ; previouslyg:17

Now we can give a detailed description of the backward search which will beperformed after POP([u;B]).The consideration of those paths P = [w;A]; Q; [u;A] with [u;B] 62 Q isdone in several rounds. In the �rst round, we construct backwards all pathswithout any cross, forward, or back edge. In the second round, all paths withexactly one such edge are constructed implicitly, and so on. In the ith round,we consider the weak back edges ([v;B]; [u;A]) if i = 1, and we considerthose edges ([v;B]; [q;A]) 2 E[q;A] for which L[q;A] = [u;A] is computed inthe (i�1)th round, if i > 1. Starting in node [v;B], we follow backwards thetree edges as long as node [u;B] is reached. If we reach a node [p;A] 2 L,then we compute the current D[r;A] such that [p;A] 2 D[r;A], and we jump to[r;A] for the continuation of the backward search. According to Invariant 3,L[x;A] = L[r;A] and hence, L[x;A] = [u;A] for all [x;A] 2 D[r;A].For the reconstruction of a strongly simple path from s to t constructed bythe algorithm, we store in variable P[r;A] that edge in E[q;A] which concludesthat block of tree edges containing the tree edge with end node [r;A], for all[r;A] 2 V 0 with L[r;A] 6= ; for the �rst time. As soon as P[r;A] is de�ned, thenode [r;A] is inserted into L. Hence, node [q;A] is determined unambiguouslyby the algorithm.The implementation of MDFS must be done with attention to the cor-rect manipulation of the sets D[q;A]; R[q;A], and E[q;A]. The following tabledescribes in terms of the case of MDFS, and in terms of the operation whichis performed, how MDFS has to update these sets.case, operation set updatingCase 1 no updateCase 2.1 E[w;A] := E[w;A] [f[v;B]gCase 2.2.i E[w;A] := E[w;A] [f[v;B]gCase 2.2.ii R[w;A] := R[w;A] [f[v;B]gCase 2.3.iL[w;A] 6= ; no updateL[w;A] = ; E[w;A] := E[w;A] [f[v;B]g if [w;A] 62 LCase 2.3.ii no updatePUSH([u;A]) no updatePOP([v;B]) D[v;A] := f[p;A] j MDFS has found a path from[p;A] to [v;A], not containing [v;B]g18

In Case 2.1, it is clear that [w;A] 62 L since POP([w;A]) is not performed.In Case 2.2.i, [w;A] 62 L follows directly from [w;B] 2 K and Lemma 1.Note that in Case 2.3.i, subcase L[w;A] 6= ;, we have to store the informationthat edge ([v;B]; [w;A]) is used. In the implementation, we accomplish thisby adding the edge ([v;B]; [w;A]) to node [v;B] in K. Then we obtain anexpanded node h([v;B]; [w;A]); [v;B]i. The considerations above lead to thefollowing implementation of the procedure SEARCH.procedure SEARCH;if TOP(K) = t thenreconstruct a strongly simple path P from s to twhich has been constructed by the algorithmelsemark TOP(K) \pushed";for all nodes [w; Y] 2 N [TOP (K)]do(Case 1) if Y = B thenPUSH([w;B]);SEARCH(Case 2) else(Case 2.1) if [w;A] 2 K thenE[w;A] := E[w;A] [fTOP (K)gelse(Case 2.2) if [w;B] 2 K then(Case 2.2.i) if [w;A] is marked \pushed" thenE[w;A] := E[w;A] [fTOP (K)g(Case 2.2.ii) elseR[w;A] := R[w;A] [fTOP (K)g�(Case 2.3) else(Case 2.3.i) if [w;A] is marked \pushed" thenif L[w;A] 6= ; thenexpand TOP(K) in K toh(TOP (K); [w;A]);TOP (K)i;PUSH(L[w;A]); L[w;A] := ;;SEARCHelse19

if [w;A] 62 L thenE[w;A] := E[w;A] [fTOP (K)g��(Case 2.3.ii) elsePUSH([w;A]);SEARCH����od;(� let TOP(K) = [v;X]�)if TOP(K) = [v;B] and [v;A] is not marked \pushed" thenLact := [v;A];DLact := ;;Ldef := ;;(� Ldef will contain the start nodes for the next round. �)for all [q;B] 2 R[v;A]do CONSTRL(([q;B]; [v;A]); [v;B]);od;while Ldef 6= ;do choose any [k;A] 2 Ldef ;Ldef := Ldef n f[k;A]g;for all [q;B] 2 E[k;A]do CONSTRL(([q;B]; [k;A]); [v;B])odod�;POP;�.CONSTRL is a call of the following procedure.20

procedure CONSTRL(([q;B]; [u;A]); [x;B]);Pact := ([q;B]; [u;A]);[z;B] := [q;B];while [x;B] is not reacheddo for all [y;A] on the backpath from [z;B] to L [f[x;B]gdo DLact := DLact [f[y;A]g;L := L [f[y;A]g;P[y;A] := Pact;Ldef := Ldef [f[y;A]g;od;if the last considered [y;A] 2 L then(� Let D[r;A] be the current set containing [y;A] �)DLact := DLact [D[r;A];[z;B] := [r;B]�od.The reconstruction of a strongly simple path P from s to t constructed by thealgorithm remains to be explained. Beginning at the end of P , such a path Pcan be reconstructed by traversing the MDFS-tree T backwards. Note thatTOP points to the end of P , and that the father of each node in T is alwaysunique. As long as we traverse tree edges of the algorithm MDFS, we haveno di�culty. But every time we meet a node [u;A] which was added to P byan application of Case 2.3.i, we have to reconstruct a subpath [w;A]; Q; [u;A]which was joined to P . In this situation, the considered portion of T is theexpanded node h([v;B]; [w;A]); [v;B]i; i.e., the structure of T tells us thatMDFS has applied Case 2.3.i. It remains to reconstruct Q. Note that P[w;A]contains the non-tree edge of MDFS, which �nishes the block containingthe tree edge with end node [w;A]. Let P[w;A] = ([v0; B]; [v00; A]). ThenP 1[w;A] denotes [v0; B], and P 2[w;A] denotes [v00; A]. As long as [u;A] is met, wereconstruct Q block by block, beginning at node [w;A]. Each block can bereconstructed as the path P itself. These considerations lead to the followingprocedure for the reconstruction of an augmenting path, constructed by thealgorithm. 21

procedure RECONSTRPATH(t; s);ACTNODE := t;while ACTNODE 6= sdo if father(ACTNODE) is not expanded thenACTNODE := father(ACTNODE)else (� let father(ACTNODE) = h([v;B]; [w;A]); [v;B]i�)RECONSTRQ(ACTNODE; [w;A]);ACTNODE := [v;B]�od.RECONSTRQ is a call of the following procedure.procedure RECONSTRQ([u;A]; [w;A]);ANF := [w;A];RECONSTRPATH(P 1ANF ; ANF);while P 2ANF 6= [u;A]do ANF := P 2ANF ;RECONSTRPATH(P 1ANF ; ANF)od.Note that the correctness of the manipulation of L[w;A], [w;A] 2 V 0, and thecorrectness of the reconstruction of the M -augmenting path P follow fromLemma 4, and are straightforward to prove. The procedure RECONSTR-PATH resembles standard recursive methods used for the reconstruction ofaugmenting paths (i.e., see [18]).The time and space complexity of our implementation of MDFS remain tobe considered. It is easy to see that the time used by the algorithm MDFSis bounded by O(n + m) plus the total time needed for the manipulationof the sets D[q;A], [q;A] 2 V 0. If we use linear lists for the realization ofthe sets D[q;A] with a pointer to the node [q;A] for each element of D[q;A],the execution time for each union operation is bounded by O(n). Followingthe pointer corresponding to [p;A], we can �nd the set containing [p;A]22

in constant time. At most n union operations are performed by MDFS.Hence the total time used for the manipulation of the sets D[q;A] is boundedby O(n2). The time needed for the n union operations can be reduced toO(n log n) if we use the following standard trick, the socalled weighted unionheuristic:We store with each set the number of elements of the set. A unionoperation is performed by changing the pointer of the smaller of the twosets which are involved and updating the number of elements. Everytimewhen the pointer with respect to an element is changed, the size of the setcontaining this element is at least twice of the size of its previous set. Hence,for each element, its pointer is changed at most log n-times. Hence, the totaltime used for all union operations is O(n log n). Altogether, the total timeused for the augmentation of one augmenting path is O(m + n log n).If we use for the update of the sets D[u;A] disjoint set union [18], the totaltime can be bounded O((m + n)�(m;n)). Note that for each node [p;A]one �nd operation su�ces for the decision of L[p;A]. Further, we can reducethese bounds to O(m + n) using incremental tree set union [12]. The spacecomplexity of MDFS is bounded by O(m + n). The considerations abovelead to the following theorem.Theorem 4 MDFS can be implemented such that it uses only O(m+n) timeand O(m+ n) space.7 De�nitions and the primal-dual methodLetG = (V;E) be an undirected graph. If we associate with each edge (i; j) 2E a weight wij > 0 then we obtain a weighted undirected graph G = (V;E;w).The weight w(M) of a matchingM is the sum of the weights of the edges inM . A matching M � E has maximum weight if P(i;j)2M 0 wij � P(i;j)2M wijfor all matchingsM 0 � E. Given a weighted undirected graph G = (V;E;w),the maximum weighted matching problem is �nding a matching M � E ofmaximum weight.First, we will describe the primal-dual method for the computation ofa maximum weighted matching. Let G = (V;E) be a weighted undirectedgraph. Let F = fE1; E2; : : : ; Erg, Ei � E be a family of pairwise distinct23

subsets of E. With each node i 2 V we associate a node weight �(i) � 0.Furthermore, with each edge set El 2 F , we associate a set weight �(El) � 0.These new variables are called dual variables.Note that the primal-dual method for bipartite graphs only uses dualvariables with respect to the nodes of the graph. This su�ces since everynode v 2 A[B has the property that allM -alternating paths from anM -freenode in B to v have even length if v 2 B and odd length if v 2 A. But ingeneral graphs, with respect to a node v 2 V simultaneously, there can existM -alternating paths fromM -free nodes in B to v of odd and of even length.Moreover, both end nodes of an edge can have even or odd distances fromtheM -free nodes in B with respect to M -alternating paths. Hence, the dualvariables with respect to the edge sets are needed. The exact reasons for thiswill be clearer during the development of the method.The values of the dual variables are treated such that the following in-variant is always ful�lled:� For all (i; j) 2 E there hold w(i; j) � �(i) + �(j) +P(i;j)2El �(El).For each edge (i; j) 2 E, its dual weight d(i; j) is de�ned byd(i; j) = �(i) + �(j) + X(i;j)2El �(El):We de�ne the dual weight d(M) of a matching M byd(M) = X(i;j)2M d(i; j):Note that always w(M) � d(M) for all matchings M � E.With respect to an arbitrary matching M � E, the maximum contribu-tion of the node weight �(i) to its dual weight can be �(i) since i is adjacentto at most one edge inM . Note that jEl\M j � c(El) where c(El) is the sizeof a maximum cardinality matching with respect to El. Hence, the maximumcontribution of the set weight �(El) can be c(El)�(El). Hence,Xi2V �(i) + XEl2F c(El)�(El)24

will be always an upper bound for the dual weight of any matching of G.Therefore, with respect to a matchingM ,w(M) =Xi2V �(i) + XEl2F c(El)�(El)implies that the matching M is a maximum weighted matching.The question is now, when with respect to a matching M , this equalityholds. Since the dual weight of an edge is at least as large as its weight,we obtain the necessary condition d(i; j) = w(i; j) for all edges (i; j) 2 M .Since all summands in both sums are nonnegative, the node weight �(i)has to be 0 for all M -free nodes i 2 V . Furthermore, for all El such thatjM \Elj < c(El) the set weight �(El) has to be 0. Altogether, we obtain thefollowing necessary and su�cient conditions:1. r(i; j) = d(i; j)� w(i; j) = 0 for all (i; j) 2M ,2. �(i) = 0 for all M -free nodes i 2 V , and3. �(El) = 0 for all El 2 F with jEl \M j < c(El).The value r(i; j) is called the reduced cost of the edge (i; j).The primal-dual method for the weighted matching problem can be sepa-rated into rounds. The input of every round will be a matchingM and valuesfor the dual variables which ful�ll the Conditions 1 and 3 with respect to thematching M . Our goal within the round is to modify M and the values ofthe dual variables such that Conditions 1 and 3 remain valid and the numberof nodes violating Condition 2 is strictly decreased.One round devides into two steps, the search step and the extension step.The search step try to improve the current matching by �nding an augment-ing path P such that the number of free nodes with node weight larger than0 can be decreased by the augmentation of P . If this is not possible then theextension step decreases the values of some dual variables by an appropriatevalue �. The extension step can decrease the reduced cost of some edges to0. Hence, the next search step possibly �nds an augmenting path.During the search step, we will use MDFS. Hence, we de�ne with respectto the current matching M the directed bipartite graph GM = (V 0; EM ; w)25

as follows:V 0 = f[v;A]; [v;B] j v 2 V g [fs; tg s; t 62 V; s 6= tEM = f([v;A]; [w;B]); ([w;A]; [v;B]) j (v;w) 2Mg[f([x;B]; [y;A]); ([y;B]; [x;A]) j (x; y) 2 E nMg[f(s; [v;B]); ([v;A]; t) j v 2 V is M -freeg :Both copies ([i;X]; [j;X]) and ([j;X]; [i;X]), X 2 fA;Bg obtain weightw(i; j) and reduced cost r(i; j). We arrange that edges with tail s or headt have always reduced cost 0. According to Condition 1, it is only allowedto consider augmenting paths where all edges on these paths have reducedcost 0. Hence, the input graph G�M = (V 0; E�M ; w) will be the subgraphof GM containing exactly those edges in EM having reduced cost 0. I.e.,E�M = f([i;X]; [j;X]) 2 EM j r(i; j) = 0g. Note that M � E�M .We start with the emptymatching ; and de�ne the graph G; = (V 0; E;; w)as described above. Let W = max(i;j)2E wij. We initialize all node weights�(i) by W=2. At the beginning, the family F of subsets of E will be theempty set such that no set weight has to be de�ned. In dependence to thealgorithm, the needed elements of F and the corresponding set weights willbe de�ned. As soon as �(El) becomes zero for an edge set El 2 F , we willdelete El from F .Altogether, we obtain the input graph G�; = (V 0; E�; ; w) for the �rst searchstep, whereE�; = f([i; B]; [j;A]); ([j;B]; [i;A]) j ([i; B]; [j;A]) 2 E;; w(i; j) = Wg[f(s; [i; B]); ([i; A]; t) j i 2 V g:A search step terminates with a matching M , a weighted directed graphGM = (V 0; EM ; w) and a current subgraph G�M = (V 0; E�M ; w) such that G�Mcontains no M -augmenting path P . It is not hard to see that no augmentingpath P with the property that after the augmentation of P , Condition 3would be not ful�lled, exists. Otherwise, another M -augmenting path wouldalso exist.For the treatment of the extension step, consider the expanded MDFS-tree Texp, computed by the last modi�ed depth-�rst search on G�M . Notethat this MDFS was unsucessful; i.e., no path from the start node s to thetarget node t was found. The goal of the extension step is to add edges to26

Texp such that possibly an augmenting path is found. Therefore, we have todecrease the reduced cost of edges with positive reduced cost. Such edges(i; j) have to be in E nM . Moreover, [i; B] has to be in Texp. But accordingto the conditions which we have to maintain, some nodes in VB \ Texp arenot allowed. Let Bf denote the set of these nodes. The exact de�nition ofBf will be given during the development of the method. LetBT = VB \ Texp nBf and AT = VA \ Texp:The idea is to decrease the reduced cost r(i; j) of all edges (i; j) with positivereduced cost and [i; B] 2 BT by the appropriate value �. With respect to theother end node j of edge (i; j), the following four cases can arise:1. [j;B] 62 BT and [j;A] 62 AT ,2. [j;B] 62 BT and [j;A] 2 AT ,3. [j;B] 2 BT and [j;A] 62 AT , and4. [j;B] 2 BT and [j;A] 2 AT .We decrease r(i; j) by decreasing �(i) by the appropriate value �; i.e., wedecrease �(i) by � for all nodes i with [i; B] 2 BT . As a consequence of thedecrease of the node weights �(i), the reduced cost of edges e in G�M with endnode [i; A] or [i; B] becomes negative. According to Condition 1, we have toincrease such reduced cost. We distinguish two cases:1. The other end node of e corresponds to AT but not to BT .2. The other end node of e corresponds to BT .If Case 1 is ful�lled then we can increase the reduced cost of edge e byincreasing the node weight of the other end node of e by �; i.e., we increase�(j) by � for all nodes j such that [j;A] 2 AT and [j;B] 62 BT .If Case 2 is ful�lled then the reduced cost r(i; j) is decreased by 2�. Thiscan be corrected by increasing the set weight �(El) of exactly one set Elcontaining the edge (i; j) by 2�. El will have the property that all edges inEl are in E�M and both end nodes of these edges are contained in BT . Twoquestions have to be answered: 27

1. What is the accurate edge set El for increasing its set weight?2. What is the appropriate value �?To answer the �rst question let use consider MDFS which is used as sub-routine during the search step. Review the de�nitions and the properties ofthe sets L[w;A] and D[q;A] as given at Pages 8 and 17, respectively. First, it isuseful to investigate the structure of a set D[q;A]. LetD0[q;A] = fp 2 V j [p;A] 2 D[q;A] [f[q;A]gg:Furthermore, let ~D[q;A] = f[p;A]; [p;B] j p 2 D0[q;A]g:The unique node p 2 D0[q;A] such that p is end node of an edge (r; p) 2 Mwith r 62 D0[q;A] is the node q. Let (r; q) 2 M be the unique matched edgewith end node q. We say that a path P enters or leaves ~D[q;A] via an edge([x;B]; [y;A]) in E nM if (x; y) 2 E nM . During the performance of MDFS,for an M -augmenting path P there are three possibilities to run through aset ~D[q;A].1. P enters and leaves ~D[q;A] via an edge in E nM .2. P enters ~D[q;A] via the matched edge ([r;A]; [q;B]) and leaves ~D[q;A] viaan edge in E nM .3. P enters ~D[q;A] via an edge in E nM and leaves ~D[q;A] via the matchededge ([q;A]; [r;B]).If an M -alternating path R enters ~D[q;A] via the edge ([r;A]; [q;B]) then, byLemma 3, for all v 2 D0[q;A], [v;B] 2 BT . Then, with respect to each edge inÊ�M = f(i; j) j ([i; A]; [j;B]) 2 E�M or ([i; B]; [j;A]) 2 E�Mgwith both end nodes in D0[q;A], we have to increase exactly one edge setcontaining this edge. Note that for all v 2 V there exists at most one currentD[q;A] such that v 2 D0[q;A]. Hence, we de�ne the edge set Eq correspondingto D0[q;A] by Eq = (D0[q;A] �D0[q;A]) \ Ê�M :28

Note that Eq changes when Ê�M changes. If we have to increase the setweight with respect to an edge (i; j), then we choose the edge set Eq whereD[q;A] is the current set with the property that i; j 2 D0[q;A]. Note that[i; B]; [j;B] 2 BT implies that D[q;A] exists.Let us examine the e�ect of the augmentation of P to the number ofedges in the current matching with both end nodes in D0[q;A]. If the crossingof P through D0[q;A] is of Type 1, then this number decreases by 1. In theother cases, this number does not change. Hence, the augmentation of anaugmenting path of Type 2 or 3 is always allowed but the augmentation ofan augmenting path of Type 1 is only allowed if �(Eq) = 0.Next, we will determine the accurate value for �.Since all node weights have to be nonnegative, � cannot be larger thanthe node weight of an M -free node i. Note that with respect to an M -freenode i, always [i; B] 2 BT is ful�lled. Hence, all free nodes have the samenode weight and � � �(i), i M -free implies that after the change of the dualvalues, all node weights are nonnegative.If edge ([i; B]; [j;A]) is of Type 1, we have to choose � = r(i; j) for de-creasing r(i; j) to 0. If ([i; B]; [j;A]) is of Type 2, independently from thechoice of �, r(i; j) doesn't change.If ([i; B]; [j;A]) is of Type 3 or 4, we have to choose � = 1=2r(i; j), sinceboth node weights �(i) and �(j) will be decreased. Note that � has to bechosen in such a way that after the extension step r(i; j) � 0 for all edges(i; j) 2 E. Hence, � should not be larger than the minimal reduced cost withrespect to edges (i; j) with [i; B] 2 BT and [j;A] 62 AT , and also not largerthan the half of the minimal reduced cost with respect to edges (i; j) with[i; B]; [j;B] 2 BT and r(i; j) > 0.Since Invariant 3 has to be maintained, with respect to current D[q;A] thefollowing holds: Let E0q be the latest created edge set with respect to D[q;A]with �(E0q) > 0. We call this edge set E 0q current with respect to D[q;A]. Ifduring the MDFS, no path enters D0[q;A] via ([r;A]; [q;B]) but there is a pathR entering D0[q;A] via an edge in EnM , R has to leaveD0[q;A] via ([q;A]; [r;B]),independently if [q;A] is already pushed or not. Since (q; r) 2 M and hence,([q;A]; [r;B]) 2 E�M , this is always possible. Note that R entersD0[q;A] througha node in AT and leaves D0[q;A] through a node in AT .29

In dependence which nodes in D[q;A] are entering nodes of such paths R,with respect to a node v 2 D0[q;A] the following can happen:a) [v;B] 2 BT ,b) [v;B] 62 BT but [v;A] 2 AT , orc) [v;B] 62 BT and [v;A] 62 AT .The problem to solve is the following: How to change the node weights ofthe nodes in D0[q;A]?It is clear that according to Condition 1, we have to increase �(q) and also�(v) for all entering nodes [v;A] by �. Possibly there are edges in E0q withexactly one end node is an entering node, with both end nodes are enteringnodes or with no end node is an entering nodes. With respect to all thesecases, the node weights and �(E0q) have to be changed in such a manner thatthe invariants remain valid. For doing this, we increase �(v) by � for allv 2 D0[q;A]. Since we have increased the reduced cost of every edge in E0q by2�, we decrease �(E0q) by 2�. Since �(E0q) has to be nonnegative, � has to bechosen such that before the change of the dual variables, �(E 0q) � 2�.Note that there can exist nodes [i; B] 2 ~D[q;A] which are also in Texp. Thisare exactly those nodes in VB which are not allowed to be in BT . Hence, wecan give the exact de�nition of the node set Bf as follows:Bf = f[i; B] j [i; B] 2 ~D[q;A];D[q;A] current and [q;B] 62 Texpg:Altogether, we can de�ne � in the following way:�0 = �(i); where i is M -free;�1 = minfr(i; j) j [i; B] 2 BT and [j;A] 62 ATg;�2 = minfr(i; j) j [i; B]; [j;B] 2 BT and r(i; j) > 0g; and�3 = minf�(E0q) j D[q;A] current; E0q current; [q;B] 62 BT and [q;A] 2 ATg:Then we de�ne � = minf�0; �1; �2=2; �3=2g:Altogether, we have obtained the following extension step:30

�0 := �(i) for an M -free node i;�1 := minfr(i; j) j [i; B] 2 BT and [j;A] 62 ATg;�2 := minfr(i; j) j [i; B]; [j;B] 2 BT and r(i; j) > 0g;�3 := minf�(E0q) j D[q;A] current; E 0q current; [q;B] 62 BT and [q;A] 2 ATg;� := minf�0; �1; �2=2; �3=2g;for all [i; B] 2 BTdo �(i) := �(i)� �od;for all [i; B] 62 BT , [i; A] 2 AT and i 62 D0[q;A] for any current D[q;A]do �(i) := �(i) + �od;for all D[q;A] current with [q;B] 62 BT but [q;A] 2 ATdo �(i) := �(i) + �od;for all D[q;A] current and [q;B] 2 BTdo �(Eq) := �(Eq) + 2�od;for all D[q;A] current, [q;B] 62 BT and [q;A] 2 ATdo �(E0q) := �(E0q)� 2�, where E0q is current with respect to D[q;A]od.The correctness of the described primal-dual method follows directly fromthe discussion done during the development of the method.8 An implementation of the primal-dualmethodFirst, we will determine the number of dual changes which can occur betweentwo augmentations in the worst case. We distinguish four cases.31

Case 1: � = �0After the change of the dual variables, �(i) = 0 for all M -free nodesi 2 V . Hence, the current matching M is of maximum weight and thealgorithm terminates. Hence, Case 1 occurs at most once.Case 2: � = �1Then, during the next search step, at least one new node [j;A] enters AT .Hence, Case 2 occurs at most n-times.Case 3: � = �2Then, during the next search step, at least one new edge enters Ê�M .Furthermore, [i; B]; [j;B] 2 BT as long as no augmentation is performed.Hence, this edge can leave Ê�M for the �rst time after the next augmentation.Hence, Case 3 occurs at most m-times.Case 4: � = �3Then at least one current edge set Eq disappears. As long as [q;B] 62 BT ,the reduced cost of edges in Eq cannot be decreased. Hence, such an edgecannot produce a new current edge set before the node [q;B] is put into BTby the algorithm. But [q;B] stays in BT at least until the next augmentation.Hence, such an edge set cannot contribute to the de�nition of �3 before thenext augmentation. Hence, Case 4 occurs at most m-times.First, we will discuss the implementation of the search steps between twoaugmentations. Note that after an extension step, the last MDFS can becontinued instead of to start a new MDFS. With respect to the primal-dualmethod, the following special situation has to be treated by the search step:If according to an extension step, �(Eq) becomes 0, the correspondingedge set leaves the family F . We distinguish two cases.Case 1: D[q;A] remains current.Then another set Eq 2 F corresponds to the current D[q;A] and it is notallowed that an augmenting path P enters and leaves ~D[q;A] via an edge in EnM . Nothing is to do with respect to the data structure for the manipulationof the sets D[p;A], [p;A] 2 V 0.Case 2: D[q;A] loss the property to be current.32

If �(Eq) becomes 0 for the last edge set Eq corresponding to D[q;A] thenit is allowed that an augmenting path P enters and leaves ~D[q;A] via an edgein E n M . Hence, D[q;A] loss its property to be current. Then, we haveto undo the union operation done with respect to D[q;A]. Note that thisunion operation has been performed before the last augmentation. Since[q;A] is already pushed, no set D[q;A] can become current before the nextaugmentation.Our goal is to extend the data structure which uses the weighted unionheuristic such that the time used for the deunion operations will be, up toa small constant factor, the same as the time used for the union operationsand each �nd operation uses only constant time. This can be done in thefollowing way:During the performance of an union operation, instead of changing apointer, we add a new pointer. The current pointer of an element will bealways the last created pointer. It is clear, that we use for each element atmost log n extra pointers. The time used for the union operations remainsessentially the same. A deunion can be performed by the deletion of thecurrent pointers created during the corresponding union operation and theupdate of the set sizes and of the name of the larger subset. It is not di�cultto see how to perform these changes such that the used time is, up to asmall constant factor, the same as the time used for the union operations.Furthermore, it is clear that a �nd operation needs only constant time.Altogether, we need for the search step between two augmentations onlyO(m+n log n) time. Next we will give an implementation for the computationof the �'s and the update of the dual variables.Note that all M -free nodes i have the same dual weight. Hence, �0 canbe computed by the consideration of any M -free node.For the computation of �1, we maintain a priority queue P1 which containsfor all [j;A] 62 AT an edge (i; j) with [i; B] 2 BT and the property that(i; j) has minimum reduced cost under all such edges, if such an edge exists.Furthermore, using an array of size n, we have direct access to the elementof P1 corresponding to the node [j;A]. The weight of this element will bethe reduced cost of the current edge ([i; j]) such that [i; B] 2 BT and r(i; j)is minimum under all such edges. We can use a heap for the realization ofthe priority queue. 33

Note that each extension step decreases all weights of the elements inthe priority queue by the current �. It is useful to maintain the propertythat always the weight of all elements in P1 has to be decreased by the sameamount. Hence, we maintain the sum �1 of all dual changes done so far andmodify the weights in the appropriate manner.We update P1 with respect to [i; B] 2 BT at the moment when [i; B] isadded to BT in the following way:For all edges (i; j) with [j;A] 62 AT perform the following update opera-tions:(1) If no element with respect to j is contained in the priority queue theninsert the element (i; j) with weight r(i; j) + �1.(2) If P1 contains an element with respect to j with larger weight thanr(i; j) + �1 then replace the corresponding edge by (i; j) and decreaseits weight such that its value becomes r(i; j) + �1.(3) If neither Case 1 nor Case 2 is ful�lled then do nothing.Note that Step 1 needs O(log n) time and is performed at most n times.Hence, the total time used for Step 1 is O(n log n). Step 2 is performed atmost m times. After the decrease, interchanging father and son, we followthe path from the element to the root of the heap as long as the weight ofthe father is strictly larger than the weight of its son. This can be done inO(log n) time. Hence, the total time used for Step 2 is O(m log n).If � = �1, we have to delete at least one minimal element from P1. Eachdeletion can be performed in O(log n) time and the number of deletionsis bounded by the number of nodes in V . Hence, the total time for suchdeletions is O(n log n).Altogether, with respect to the computation of all �1's between two aug-mentations, the used time is O(m log n).For the computation of all �2's, we maintain a priority queue P2 whichcontains all edges (i; j) such that [i; B]; [j;B] 2 BT and r(i; j) > 0. We canuse a heap for the realization of the priority queue.Similary to above, each extension step decreases all weights of the el-ements in P2. Now, the amount is two times the current �. Hence, wemaintain with respect to P2 the sum �2 of all dual changes done so far withrespect to edges in P2 and modify the weights in the appropriate manner.34

We update P2 with respect to [i; B] 2 BT at the moment when [i; B] isadded to BT in the following way:� For all [j;B] 2 BT with r(i; j) > 0, we insert the edge (i; j) with weightr(i; j) + �2 to the priority queue.Since at most m edges are inserted, the used time is O(m log n).If � = �2, we have to delete at least one minimal element from P2. Eachdeletion can be performed in O(log n) time and the number of deletions isbounded by the number of edges in E. Hence, the total time for such deletionsis O(m log n).Altogether, with respect to the computation of all �2's between two aug-mentations, the used time is O(m log n).For the computation of all �3's, we maintain a priority queue P3 whichcontains for all current D[q;A] with [q;B] 62 BT and [q;A] 2 AT the value�(E0q) where E 0q is current with respect to D[q;A]. We use a heap for therealization of the priority queue P3.Each extension step decreases all weights of the elements in P3. Theamount is two times the current �. Hence, we can use the value �2 de�nedabove and modify the weights in the appropriate manner.We update P3 before the computation of �. We have to insert for all[q;A] 2 VA such that D[q;A] is current and [q;A] was inserted to Texp after thelast dual change and the last augmentation, respectively but [q;B] 62 Texpthe value �(E0q) +�2 where E 0q is current with respect to D[q;A]. We have todelete for all [q;B] which are inserted to Texp after the last dual change andthe last augmentation, respectively the corresponding value if in P3 such avalue exists. Since between two augmentation, a value enters and leaves P3with respect to the same edge set at most once, the total time used by thealgorithm is O(m log n).If � = �3, we have to delete at least one minimal element from P3. If withrespect to the deleted element there exists another current edge set E0q withrespect to the same node set, then we have to insert the value �(E0q) + �2.Each deletion and each insertion can be performed in O(log n) time. Thenumber of deletions and insertions is bounded by the number of edges in E.Hence, the total time for such deletions is O(m log n).Altogether, with respect to the computation of all �3's between two aug-mentations, the used time is O(m log n).35

We have proven the following theorem:Theorem 5 The primal-dual method can be implemented in time O(nm log n).We can re�ne the implementation in several ways. We will sketch somepossibilities.Note a new edge (i; j) with [i; B]; [j;B] 2 BT but i; j 2 D0[q;A] where D[q;A]is a current set does not help for the construction of an augmenting path.If we add to the de�nition of �2 the condition that i and j correspond todi�erent node sets then the number of insertions and deletions in P2 wouldbe decreased to n. This would lead to the property that for all current D[q;A]there is exactly one corresponding edge set Eq. Hence, the computation ofall �3's would be simpli�ed, too.In [11], Gabow descibes essentially, how to perform the \blossom steps"in O(m + n log n) time between two augmentations. We have solved thecorresponding problem with respect to MDFS by the construction of a datastructure supporting the operations �nd, union and deunion. This is muchsimpler than Gabow's solution. With respect to the dual adjustment steps,we can use the same method as Gabow obtaining the same time bounds.Acknowledgment: I thank Henning Rochow and Marek Karpinski for help-ful discussions and valuable hints.References[1] Aho A. V., Hopcroft J. E, and Ullman J. D., The Design and Analysisof Computer Algorithms, Addison-Wesley (1974), 187{189.[2] Balinski M. L., Labelling to obtain a maximum matching, in Combina-torial Mathematics and its Applications (R. C. Bose and T. A. Dowling,eds.), University of North Carolina Press, Chapel Hill (1969), 585{602.[3] Ball M. O., and Derigs U., An analysis of alternative strategies for im-plementing matching algorithms, Networks 13 (1983), 517{549.[4] Berge C., Two theorems in graph theory, Proc. Nat. Acad. Sci. U.S.A.,43 (1957), 842{844. 36

[5] BlumN., A new approach to maximummatching in general graphs, 17thICALP (1990), LNCS 443, 586{597.[6] BlumN., A simpli�ed realization of the Hopcroft-Karp approach to max-imum matching in general graphs, Research report, Universit�at Bonn(1999) (available at www.cs.uni-bonn.de/IV/blum/).[7] Edmonds J., Paths, trees, and
owers, Canad. J. Math, 17 (1965), 449{467.[8] Edmonds J., Maximummatching and a polyhedron with 0,1-vertices, J.Res. Nat. Bur. Standards 69 B (1965), 125{130.[9] Gabow H. N., Implementations of algorithms for maximummatching onnonbipartite graphs, Doctoral thesis, Comp. Sci. Dept., Stanford Univ.,Stanford, Calif. (1973).[10] Gabow H. N., An e�cient implementation of Edmonds algorithm formaximum matching on Graph, J. ACM , 23 (1976), 221{234.[11] Gabow H. N., Data structures for weighted matching and nearest com-mon ancestors with linking, 1st SODA (1990), 434{443.[12] Gabow H. N., and Tarjan R. E., A linear-time algorithm for a specialcase of disjoint set union, J. Comput. Syst. Sci., bf 30 (1985), 209{221.[13] Gabow H. N., and Tarjan R. E., Faster scaling algorithms for generalgraph-matching problems, J. ACM 38 (1991), 815{853.[14] Gondran M., and Minoux M., Graphs and Algorithms, Wiley & Sons,(1984).[15] Hopcroft J. E., and Karp R. M., An n5=2 algorithm for maximummatch-ing in bipartite graphs, SIAM J. Comput., 2 (1973), 225{231.[16] Lawler E.: Combinatorial Optimization, Networks and Matroids, Holt,Rinehart and Winston, (1976).[17] Lov�asz L., and PlummerM. D.,Matching Theory, North-Holland Math-ematics Studies 121, North-Holland, New York (1986).37

[18] Tarjan J. E., Data Structures and Network Algorithms, SIAM (1983).[19] Witzgall C., and Zahn C. T. Jr., Modi�cation of Edmonds maximummatching algorithm, J. Res. Nat. Bur. Standards, 69 B (1965), 91{98.

38

