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1 IntroductionWe de�ne Ed-OCC-Ek-LIN-2 as a problem of constructing an assignment that maxi-mizes the number of satis�ed equations for a given system of linear equations modulo2 (hence LIN-2), where each equation has exactly k variables (hence Ek) and eachvariable occurs exactly d times. If we drop an E in the acronym of the problem thanwe have \at most d occurrences" or \at most k variables". Ed-MAX-CUT stands forthe MAX-CUT problem restricted to d-regular graphs.In [BK99] an approximation lower bound of 332/331 was proven for E3-OCC-E2-LIN-2 and 3-MAX-CUT, and in this paper we improve it to 152/151. Moreover, forE3-OCC-2-LIN-2 we obtain 121/120 lower bound, previously this problem had nobetter lower bound than E3-OCC-E2-LIN-2. We also obtain the approximation lowerbound of 788/787 for E3-OCC-MAX-2SAT, an improvement over 2012/2011 lowerbound of [BK99].We refer to [BK99] for a "wheel-ampli�er" method used to get some explicitbounded degree and bounded occurrence problems. For a survey on explicit approx-imation lower bounds for small degree (or small occurrence) optimization problemssee [K01], and for some recent work on asymptotic relations between hardness of ap-proximation and the bounds on a degree or the number of occurrences in optimizationproblems see [H00] and [T01].2 Ampli�ersThe notion of an ampli�er generalizes the concept of a speci�c variety of expandersthat are used in proving inapproximability results. This notion was introduced byPapadimitiou in [P94] (for directed graphs) and it formalizes the construction ofPapadimitriou and Yannakakis of [PY91]. Although not always called that way, theampli�ers are critical in reducing more \primary" MAX-SNP complete problems tothe problems with bounded degree or number of occurrences.De�nition 1. Consider an undirected graph G = (V;E). We de�neCut(U) = fe 2 E : e 6� U and e 6� V � Ug and cut(U) = jCut(U)j.We say that G is a strong expander if for every U � V we have cut(U) �min(jU j; jV � U j).We say that G is an ampli�er for X � V if it contains no bad sets for X. A setA � V is bad for X if cut(A) < min(jX \ Aj; jX �Aj).An ampli�er for X is B-regular if each node in X has B� 1 neighbors and eachnode in V �X has B neighbors.The goal of this section is to provide a construction of small 3-regular ampli�ers.In [PY91, P94] there is a description of B-regular strong expanders where B � 80.2



Figure 1: 3-regular ampli�ers for jXj = 4; 5; 6, solid dots are the elements of X.Arora and Lund [A95] (see also Ausiello et. al. [ACG+99]) uses a result of Lubotzkyet. al. [LPS88] to obtain a 14-regular strong expander.To convert a B-regular strong expander with node set X to a 3-regular ampli�erfor X, most of the above papers basically do the following: they replace each node xwith a connected node set Vx such that x 2 Vx, x becomes a node of degree 2, andcut(Vx) = B.This is however not always true as one can see in Fig. 2: a 3-regular strongexpander is transformed into a graph that is not a 3-regular ampli�er because itcontains a bad set A such that jA \Xj = 5 and cut(A) = 4.The simplest correction of the above error would be to replace each node x of aB-regular strong expander with a 3-regular ampli�er for a set Ux[fxg where jU j = B,and then replace an edge fx; yg with an edge between Ux and Uy. For example, ifwe pick 7 random matchings for the set X then with a high probability the resultinggraph is a 7-regular strong expander, and there exists an ampli�er for 8 nodes thatconsists of 14 nodes; as a result we can construct an 3 regular ampli�er with 14jXjnodes. nodereplacementFigure 2: Incorrect ampli�er for black dots obtained from a strong ex-pander, on the right, a bad set is shaded.However, we can show following [BK99] that an even simpler construction yieldsampli�ers with 7jXj nodes, i.e. twice smaller.The constructions equivalent (or very similar) to our notion of ampli�er can beused in lower approximability bounds of many combinatorial optimization problemswith bounded degree or bounded number of occurrences, and the obtained boundsare related to the ratio jV j=jXj. Therefore we will use the following de�nition.De�nition 2. 3



An ampli�er generator G is a randomized polynomial time algorithm that for agiven n returns, with probability at least 1� n�1, an ampli�er G(n) for the setf1; 2; : : : ; ng.A characteristic of ampli�er generator G is a number � such that the setfn : jV (G(n))j > �ng is �nite.The d-regular ampli�cation number �d is the largest lower bound of character-istics of d-regular ampli�er generators.For d > 7 we know that �d = 1 as there exist (d � 1)-regular strong expanders,for d < 3, �d is unde�ned because d-regular ampli�ers do not exist. In the remainingcases the value of �d remains an open problem. Below we prove that �3 � 7.De�nition 3. An n-wheel is a graph with 7�2n nodes W = Contacts [ Checkers,that contains 2n contacts and 12n checkers, and two sets of edges, C and M .C is a Hamiltonian cycle in which with consecutive contacts are separated bychains of 6 checkers, whileM is a random perfect matching for the set of checkers(see Fig. 3 for an example). contact nodechecker nodeFigure 3: A 4-wheel.In the remainder of this section we prove the followingTheorem 1. An n-wheel forms a 3-regular ampli�er for its set of 2n contacts withprobability 1�O(n�3).An n-wheel fails to be a 3-regular ampli�er only if there exists a bad set A, wherebeing bad means that jA \Contacts j � n and cut(A) < jA \Contacts j. We need toshow that a bad set exists with probability O(n�3).If a set A is bad, we say that B = A\Checkers is wrong. We need to characterizewrong sets. For the remainder of this proof we convertW to a graph with set of nodesequal to Checkers by replacing each contact u with an edge (later called a contactedge) that connects the checkers that were adjacent to u. From now on we consideronly this new graph.De�nition 4. For a set B, aiB is the number of contact edges that have exactly iendpoints in B; 4



aB = min(a1B + a2B; n);bB = jCut(B) \M j;cB = jCut(B)\ Cj;B is wrong if a2B � n and bB + cB < aB.Now it su�ces to show that the probability that a wrong subset ofW exists is O(n�3).As a preliminary step, we must have some tools to estimate the probabilities in therandom space consisting of perfect matchings. We will use the following de�nitions.De�nition 5. A set A � W is M -closed i� cA = 0, i.e. Cut(A)\M = ?;the function �(m) denotes the number of perfect matchings in a clique with 2mnodes.Lemma 2. �(m) = mYi=1(2i� 1) = (2m)!m!2mProof. By induction on m. For m = 0, there exists exactly one perfect matching.Now consider a clique with 2m nodes. A �xed node can be matched using any ofthe 2m � 1 incident edges. We can complete the construction of the matching bychoosing any of �(m � 1) matchings of the remaining 2m � 2 nodes, thus �(n) =(2m� 1)�(m� 1).
❐Lemma 3. The probability that a set of 2d checkers is M-closed is p(d) = �(d)�(n�d)=�(n), or dYi=1 2i� 12n � 2i + 1Proof. Straightforward consequence of Lemma 2.
❐Lemma 4. If B is a wrong set, B contains an M-closed subset of size 2dB, wheredB = d(sB � aB + cB + 1)=2e.Proof. An M -closed set must have even size. We obtain an M -closed set S byremoving from B all endpoints of the edges from Cut(B) \M , and jSj = sB � bB.Because B is wrong, �bB � �aB + cB, hence jSj � sB � aB + cB + 1. If S is toolarge, we can decrease its size by removing endpoints of some edges of M that arecontained in S.
❐5



Our general method of estimating the probability of a wrong set existing, is toconsider separately cases when a wrong set B has a particular vector of parametersaB, bB and sB = jBj. For each of them we willa) estimate the numbers of candidates for a wrong set, such that if a wrong setexists, than one of the candidates must be wrong as well;b) �nd the number of subsets of a candidate B, each of size 2dB, such that if B iswrong, than one of these subsets must be M -closed;c) multiply the product of the results of a) and b) with the probability p(dB).While discussing a candidate for a wrong set, say B, we will refer to fragments ofB, connected components of B within cycle C (note that in the modi�edW , the cycleC consists of checkers only). The following lemma limits the number of candidatesfor an M -closed subset.We will use two ways of estimating the probability that a wrong set exists. The�rst one is applied to su�ciently small candidates.Lemma 5. For a < n=9, the probability that there exists a wrong set B with aB = ais O(n�30:6a).Proof. We formulate the proof for odd value of a, the case of even a is very similar.We use the following notation: a = aB is the number of contacts of B (incidentcontact edges), f = cB=2 is the number of fragments of B, s = sB is the size of Band b satis�es the identity a = 1 + 2f + b (note that b � bB).First we will the upper and lower bounds for s. Consider a fragment of B thatis incident to, say, ao contact edges. This fragment must contain ao � 1 chains of 6nodes, and portions (possibly empty) of two other such chains on its fringes. Thus itcontains between 6(ao � 1) and 6(ao +1) nodes. By adding sizes of all fragments, weobtain 6(a� f) � s � 6(a+ f).One conclusion that we can draw is that s < 9a � n. Another is that s �6(a � f) = 6(1 + 2f + b � f)) = 6f + 6b + 6. The latter implies that B contains anM -closed set of size 2d = s� b where d � 3f + 2b + 3.We can generate a candidate B as follows. First, we select f of the \left ends" ofthe fragments; this can be done in at most C(12n; f) ways, where C is our notationfor the binomial coe�cient. Next, we distribute the sizes of the fragments; becausethe sum of sizes is less than n, and all of them are positive, this can be done in lessthan C(n; f) ways.Given a candidate, we can obtain an M -closed set by removing some b nodes, thiscan be done in less than C(n; b) ways. Altogether, we generate an M -close set in lessthan C(12n; f)C(n; f)C(n; b) many ways, i.e.fYi=1 12r � i+ 1i fYi=1 r � ii bYi=1 r � ii : < fYi=1 12ri fYi=1 ri bYi=1 ri = ��
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By Lemma 3, each of these candidates is M -closed with probability at most3f+2b+3Yi=1 2i� 112r � (2i� 1) < 3f+2b+3Yi=1 2i� 111r = �:Note that the latter product has more terms than the �rst three combined, and thateven the largest of these terms is less than 4a=11:5n < 4a=100a < 1=25.We set aside the �rst three terms of � to get factor O(n�3). Then we combine theith factors of �, � and 
 with the factors of � with numbers 3i+ 1, 3i+ 2 and 3i+ 3respectively. We have still at least f + b factors of � left, and since we estimate themby 1=25 = 1=15 � 3=5, we get the following overestimate of our probability:fYi=1� 115 12ri 6i+ 111r � fYi=1�35 ri 6i+ 311r � bYi=1 115 �35 ri 6i+ 511r � < � 611�a�1� 115�b :Thus the probability that a set with aB = a is wrong is O(n�3)(6=11)a�1(Pbi=1 15�i).
❐To tackle the case of larger values of aB we will need another lemma.Lemma 6. In a wrong set B of minimum size nodes of CB are not incident to edgesof Cut(B) \ C.Proof. Suppose that a node of CB is incident to an edge of Cut(B) \ C. If weremove it from B, bB remains unchanged, cB is decreased by 1 and aB is decreasedby at most 1 (the later decrease occurs if the edge in question is a contact edge).Thus we have obtain a smaller wrong set, a contradiction.
❐The next lemma �nishes the proof of our theorem.Lemma 7. The probability that there exists a wrong set B with aB = a > n=9 isO(n30:81a).Proof. We use variables a; s; c and f as in the proof of Lemma 5. We will overestimatethe number of such candidates for a wrong set B with these parameters in three waysand take them minimum. The �rst method, counting in how many ways we can select2f edges of Cut(B) \ C, yields C(12n; 2f).To understand the second method, imagine that we label each edge of Cut(B)\C;if this edge has its right endpoint in B, we label it <, and otherwise (left endpointin B) we label it >. Next, we move each < label to the nearest contact edge to itsright, and each > label to its left. Finally, we move the labels back to their originalpositions. The positions of the labels at the time when they are all placed on thecontact edges provides a lower bound on the size of B; a fragment that is incidentto ao contact edges will have its size estimated as 6(ao � 1). (Note that fragments ofB that do not have incident contact edges will obtain the size estimate of �6; this7



is because its < label is at this time positioned 6 edges to the right of its < label.)Therefore the sum of distances that the labels will traverse from their positions onthe contact edges to their correct positions is s�6(a�f) = d. This allows us to selectany B with parameters b and d as follows: �rst we select the positions of 2f labelson 2n contact nodes, this can be done in C(2n + 2f � 1; 2f) ways; subsequently wedistribute d \units of displacement" to 2f labels, this can be done in C(d+2f �1; d)ways. Summarizing, the second method is to compute d = s � 6(a � f) and returnC(2n + 2f � 1; b)C(d+ 2f � 1; d).The third method is very similar, except that we move the labels in the oppositedirections. The resulting formula is identical, except that we compute d di�erently:d = 6(a+ f)� s.Note that if we obtain negative d while using the second method, we can concludethat s is too low to be compatible with a and f , similarly, negative d in the thirdmethod implies that s is too large. If s is neither too large nor too small, we estimatethe number of the candidates for a wrong set using the minimum of the results of thethree methods described here.By Lemma 4, B contains an M -closed subset S of size s + 2f � a (plus minusone). Moreover, by Lemma 6, we may assume that no elements of B�S are adjacentin C to the complement of B, hence only s� b nodes may be considered for removal.Our goal is to show that the probability computed according to the above princi-ples, and raised to power 1=a, is bounded by 0.81. We achieved this goal as follows.We de�ne the real parameters of B as follows:� � such that a = �n;� � such that 2f = ��n; because we are looking at the parameters of wrong sets,we know that 0 < � � 1 and 0 < � � 1;� � such that d = ���n, if a respective counting method (second or third) isapplicable, 0 � � � 3.Using Stirling's formula, and the above estimation formula, we can computethe 1=a power of our probability from the parameters �; � and �. To consider allpossible cases, we can use parameter values that are multiples of some fraction, say�; then, in a subexpression that is an decreasing functions of a parameter, we usethe current multiple, say i�, and in an subexpression that is an increasing function,we use (i + 1)�. This covers the case of all values between i� and (i + 1)�. In ourprogram, we used the following values for �: 1/20 for �, 1/100 for � and 1/2000 for�. The worst case was obtained for � = 1, � = 0:77 and � = 1:15 (d = 4:5755n) andit equals e�0:2181 = 0:8041.
❐It remains open whether the same approach may prove a similar result for wheelswith 5 checkers between each pair of contacts. In our attempts we introduced severalparameters, like the number of fragments that are not incident to any contacts. Even8



though we were not successful, the logarithm of the target number was estimated tobe 0.03. We believe that with an improved counting method this estimate can bedecreased below 0.3 Eq-ReductionsFor the purposes of this paper we introduce the following notion that is applicable toMAX-SNP hard combinatorial optimization problems:(f(n); g(n)) gap property of problem A means that for every su�cientlysmall positive " it is NP-hard to distinguish between two groups of in-stances of A of size n: those that have no solutions with score abovef(n) + "n< and those that have solutions with score at least g(n)� "n.Of course, this notion of gap property can be easily modi�ed for minimization prob-lems as well. While not formalized in exactly this fashion, gap properties were widelyused in proving lower bounds on approximation ratios that can be attained by poly-nomial time algorithms.For example, H�astad [H97] has shown that if 0 < " < 0:5 then for systems of nlinear equations modulo 2 with 3 variables per equation it is NP-hard to distinguishbetween instances where a solution does satisfy n� " equations and instances whereno solution satis�es more then n=2 + " equations. Thus the problem E3-LIN-2 has(n=2; n) gap property.Eq-reductions are tools to prove gap properties.Consider two maximization problem, A and B with objective functions a andb. An Eq-reduction from A to B has 5 randomized polynomial time computablefunctions, �; t; �; � and r, in its description:� instance translation � and parameter translation t; if x is an instance of A withparameter n then � (x) is an instance of B with parameter t(n);� solution normalization �; if y is a solution of � (X), then �(u) is another solutionof � (X) such that b(�(y)) � b(y);� solution equivalence � and value equivalence r; let SP (x) be the set of solutionsof an instance x of problem P , � is 1-1 onto function from SA(x) to �(SB(� (x)))such that b(�(s)) = r(a(s); n).Observation 8. Assume that problem A has (f(n); g(n)) gap property and that thereexists an Eq-reduction fromA to B with the parameters described above. Then problemB has (t�1(r(f(n)); n); r(t�1(g(n)); n)) gap property.9



3.1 Reducing E3-LIN-2 to 2-LIN-2We will describe the reduction of H�astad [H97], and later we will alter this reductionfor our purposes.Consider the following equation modulo 2: x0 + x1 + x2 + x3 = 0. We de�ne thecorresponding system of equations S as follows. We will use indices i; j with range0,1,2,4; original variables xi, auxiliary variables ai and 16 equations xi + aj = bijwhere bij = 1 if i = j and bij = 0 if i 6= j.For a particular value of x = (x0; x1; x2; x3) let s(x) be the maximum, over di�erentvalues of a, of the number of satis�ed equations in S. Because of symmetries of S,s(x) depends only on jjxjj =P3i=0 xi. Moreover, if we replace all variables with theirnegations, the set of satis�ed equations does not change, thus it su�ces to considerthe cases when jjxjj � 2.Case: jjxjj = 0, i.e. x = (0; 0; 0; 0). We have to set aj = 0 to satisfy equationsxi + aj = 0 for i 6= j, which fails to satisfy xj + aj = 1. Thus s(x) = 12.Case: jjxjj = 1, e.g. x = (1; 0; 0; 0). We have to set a0 = 0 which satis�es all equationsxi + a0 = bi0. The equations xi + a1 = bi1 have the form 1 + a1 = 0, 0 + a1 = 1,0 + a1 = 0 and 0 + a1 = 0, thus however we set a1, two of them will be not satis�ed.Because the same happens with a2 and a3, we have s(x) = 16 � 3� 2 = 10.Case: jjxjj = 2, e.g. x = (1; 1; 0; 0). We have to set a0 = 0 which satis�es all equationsthat include a0 except x1 + a0 = 0. One can see that each auxiliary variables is asimilar situation, thus, like in case jjxjj = 0, we have s(x) = 16 � 4 = 12.One can see that s(x) = 12 if x0 + x1 + x2 + x3 = 0 and otherwise sS(x) = 10.Now we can describe a reduction from E3-LIN-2 into 2-LIN-2. Consider a systemE of n equations modulo 2 with 3 variables per equation. We de�ne � (E) by replacing,one by one, each equation in E. Given an equation w + x + y = b, we view it asw+x+y+b = 0, we create 4 new auxiliary variables and replace it with 16 equationsas described above. Because one of the 4 original variables is actually a constant, wehave 12 equations with 2 variables and 4 equations with 1 variable (which must bean auxiliary one), thus t(n) = 16(n).Let x be the vector of the variables of E and a be the vector of the auxiliaryvariables of � (E). Given a value of (x; a) we can compute �(x; a) by setting each aiin such a way that a maximal number of equation is satis�ed, if the two choices areequally good, we set ai = 0. Because no equation involves two auxiliary variables,these value selections can be performed independently and they cannot con
ict.The solution equivalence is �(x) = �(x; a0), observe that �(x; a0) does not dependin a0. It is easy to see that the value equivalence is r(k; n) = 10n + 2k.Value equivalence 10n+k translates (n=2; n) gap property of E3-LIN-2 into (10n+n; 10n + 2n) = (11n; 12n) gap property of 2-LIN-2; of we wish n to refer to the sizeof the new instance, i.e. 16n, we got (11=16 n; 12=16 n) gap.Remark, The system � (E) consists of equations that have 1 or 2 variables. We cande�ne a similar reduction where we introduce a new variable z, and we �rst replaceeach equation w+x+y = b with w+x+y+ z = b and then replace the new equation10



with a system of 16 equations as described above. We will use � 0(E) to denote theresulting system of equations with exactly 2 variables each. This � 0 is used in theoriginal reduction of H�astad [H97].3.2 Hardness of E3-OCC-2-LIN-2 and E3-OCC-E2-LIN-2The results of this sections follow from the existance of Eq-reductions that are de-scribed in the following lemma.Lemma 9. There exists an Eq-reduction R from E3-LIN-2 to E3-OCC-2-LIN-2 withvalue equivalence function 119n + 2k and an Eq-reduction R0 from E3-LIN-2 to E3-OCC-E2-LIN-2 with value equivalence 150n + 2k.Proof. Given a system of equations E we describe the instance transformation inseven steps.(i) Replicate each equation n times (may be less). View the new system as theoriginal one (for parameter translation).(ii) For R0 only: add z to each equation, view z as an original variable.(iii) For each equation, form a four copies of each original variable it contains and 4auxiliary variables a0; : : : ; a3, each with 4 copies. Create 16 equations.(iv) For a variable x that has m occurrences, create a 3-regular ampli�er with 2mcontacts. Every node in this ampli�er is a variable, and each edge is an equationof the form xi + xj = 0.(v) Connect m disjoint pairs of contact of the ampli�er of x with chorded cyclesmade of 8 variables, as shown in Fig. 4, the edges inside the chorded cycles andthat connect the cycles with the ampli�ers again have the form xi + xj = 0.Four nodes of a such chorded cycle that still have only two neighbors form agroup of copies of x.(vi) For each equation of E form 4 auxiliary groups of variable, connect each groupinto a 2-regular strong expander (which happens to be a simple cycle).(vii) Replace each equation of E with 16 equations as in � (for R) or in � 0 (for R0).In these equations, each variable occurs 4 times, replace each occurrence witha copy from the same group.The solution normalization is described in four stages.(i) In each ampli�er/expander make all values equal to the value that is the major-ity among the contacts, this cannot decrease the number of satis�ed equationby the very de�nition of an ampli�er.11



a0 a1 a2 a3 chorded cycle of xtoampli�erof xFigure 4: Part of the gadget replacing an equation with 3 variables. Theother two variables also have their chorded cycles of 8 variables. Emptycircles indicate variables, solid circles indicate equations with just 1 vari-able, edges indicate equations. We can add variable z to the originalequation to eliminate the equations with 1 variable only.(ii) Consider a chorded cycle in which not all values are equal. (a) Suppose that outof 6 edges/equations that contact this cycle, at least 4 can be made true withthe same value. Then we can convert entire cycle to this value, we will cease tosatisfy at most 2 or the contacting equations and we will start satisfying at least2 equations inside the cycle. (b) Suppose then that at most 5 of the contactequations are true. We can convert the cycle to a single value that satis�es atleat 3 of them, and thus we gain at least two equations inside the chorded cycleand loose at most two contact ones. (c) All contact equations are true, butthree of them are made true with 0s, and three with 1s. If we convert the entirecycle to the value of the adjacent big ampli�er we gain three equations insidethe cycle. The latter follows from the fact that the chord does not separateszeros from ones the values in each ampli�er are all equal.(iii) Now each cycle and each ampli�er is consistent. We normalize the values in thecycles/ampli�ers of auxiliary variables as in the normalization of � , to maximizethe number of satis�ed equations.(iv) Suppose that a chorded cycle of an occurrence of a variable is inconsistentwith the ampli�er of this variable. We convert this cycle to be consistent, andrenormalize the auxiliary variables. We gain 2 equations that form the contactof the cycle with the variable ampli�er, and we loose at most 2 equations (among16 equations that replaced an equation with 3 variables, we satisfy 10 or 12, sowe could drop by at most 2).The solution equivalence is simple: the value of x is given to all variables in itsampli�er and in the chorded cycles of its occurrences, once this is done for everyoriginal variables, we compute the values of the auxiliary variables to maximize thenumber of satis�ed equations.It remains to calculate the value equivalence.12



We started with E that had n2 equations and 3n2 variable occurrences. In reduc-tion R0, we add z to each equations, which makes 4n2 variable occurrences.For each equation, we made 16 equations, of which 12 are satis�ed if the equationwas satis�ed, and otherwise only 10.In these 16 equations, we have 16 occurrences of auxiliary variable that are con-nected into simple cycles, thus creating 16 satis�ed equations.An occurrence of an original variable has a chorded cycle with 9 equations, 2equations connecting it with its ampli�er. A wheel ampli�er has 10 equations foreach contact, so this occurrence needs 20. The total number of equations for anoccurrence is 9 + 2 + 20 = 31.In Eq-reduction R, for each original equation we created 16+16+4+3�31+16 =125 equations. In a normalized solution that satis�es the original equation we satisfy12 + 16 + 3� 31 = 121, and otherwise we satisfy two equations less. Thus the valueequivalence is r(k; n) = 119nn + 2kn.In Eq-reduction R0 we have need to add 31 satis�ed equations, thus we produced156n2 equations and the value equivalence is r(k; n) = 150n2 + 2kn.
❐We conclude that (n=2; n) gap property of E2-LIN-2 implies (120=125n; 121=125n)gap property of E3-OCC-2-LIN-2. and (151=156n; 152=156n) gap property of E3-OCC-2-LIN-2.By using the same approach as in [BK99], we can extend the result for E3-OCC-E2-LIN-2 to an identical result for 3-MAX-CUT. Thus we can formulate this conclu-sion as follows.Theorem 10. For every " 2 (0; 1=302), it is NP hard to approximate E3-OCC-E2-LIN-2 and E3-MAX-CUT to within a factor 152=151 � " and to approximateE3-OCC-2-LIN-2 to within a factor of 121=120 � ".3.3 Hardness of E3-OCC-MAX-2SATTheorem 11. For every " 2 (0; 1=787), it is NP hard to approximate E3-OCC-MAX-2SAT to within a factor 788=787 � "Proof. We will use a modi�cation of Eq-reduction from E3-LIN-2 to E3-OCC-E2-LIN-2. The description of this Eq-reduction is simpler if we represent it as a com-position of two reductions by introducing a special problem 1-E2-LIN-2-IM. In thisproblem we maximize the number of satis�ed Boolean constraints in a given mixedset of constraints being linear equations mod 2 and implications, where each variableoccurs in exactly 3 constraints and each constraint depends on exactly 2 variables;the following restriction is crucial: each variable occurs once in equation modulo 2,once as a left-hand-side of an implication and once as a righ-hand-side.Lemma 12. There exists an Eq reduction from 1-E2-LIN-2-IM to E3-OCC-MAX-2SAT with value equivalence n+ k. 13



Proof. We replace, one by one, each equation. Suppose that we have equationx1 + y1 = b and implications x0 ! x1 ! x2 and y0 ! y1 ! y2. We describe the caseof b = 1 in detail, the case b = 0 is similar.The replacement clauses are x0 ! x1 ! xa1 ! x2, y0 ! y1 ! ya1 ! y2, x1 _ y1and :xaa _:ya1 (in the case of b = 0, the latter two clauses are xa1 ! y1 and ya1 ! x1).Here, the superscript a indicates the auxiliary copies.The size translation is the following: 2=3 n clauses are implications and they areunchanged, and 1=3 n clauses are equations, and they are replaced with 4=3 n clauses,thus we get a system with 2n clauses.The solution normalization also proceeds step by step (in reverse order). Withoutchanging the values of other variable we will assure that x1 = xa1 and y1 = ya1. Ifx0 6= x2 then we can set x1 = xa1 to be either 0 or 1 without decreasing the numberof satis�ed implications in the chain of x0s. If x0 = x2, we set x0 = x1 = xa1, and allimplications in the chain are satis�ed. We do the same for y0s. If either x1 or y1 hasfreedom of choice, we can assure x1 6= y1 and both x1_y1 and :xaa_:ya1 are satis�ed.If neither x1 nor y1 is free to choose, exactly one of the last two clauses is unsatis�ed,and all other clauses are. It is easy to see that however we would alter the values ofx's and y's, we would fail to satisfy one of the implications, so such alteration cannotbe superior.The solution equivalence is obvious|make each xa equal to x. It is also ease tocheck that if we start with a solution that satis�ed k clauses, we get a solution thatsatis�es n+ k.
❐Now consider an instance of E3-OCC-E2-LIN-2 that was obtained as � 0(S) in theproof of Lemma 9, where S is a system of n equations. For every equation of S with3 variables, � (S) contains(i) 16 equations that correspond to the equations used by H�astad;(ii) 4 4-tuples of equations that correspond to the auxiliary variables in the 16-tupleabove;(iii) 4 chorded cycles that contain 9 equations each;(iv) 4 times 2 equations that connect a chorded cycle to an ampli�er;(v) 4 times 20 equations in the ampli�er that correspond to occurrences of theoriginal variables (and the variable that is used as zero).We modify this plan as follows:� each 4-tuple (a square) of an auxiliary variable is replaced with a cycle of 8implications that has two equalities as chords (see Fig. 3.3, left);� each chorded cycle is replaced with a cycle of 18 implications that has �veequalities as chords (see Fig. 3.3, right);14



Figure 5: The implication/equation gadgets for a square of an auxiliaryvariable (on the right) and for a chorded cycles (on the left). Black dotsindicate the variable/nodes that are taking part in the external equations,arrow indicate implications and thick lines indicate internal equalities.� each node that does not belong to a square or a chorded cycle is replaced witha cycle of three implications.Let us compute the modi�ed parameter translation. We started with a system S ofn equations, � 0(S) has 156n equations, then 4 times we eliminated 2 equations froma square and 4 equations from a chorded cycle, thus we eliminated 24n equations toget 132n equations. Because the new system of clauses has two implications for everyequation, the total size is 396n. The goal of the solution normalization is to assurethat all implications are satis�ed, i.e. that each implication cycle has one value only.Our approach is to consider the cycles one at the time, and if needed, modify thevalues on the cycle, but without modifying any variable values outside.First, we make sure that all equations involving variables of the cycle are satis�ed.When we change a cycle variable to do so, we can decrease the number of satis�edimplications by at most 1, and we increase the number of satis�ed equations.Next, we convert all values on the cycle to the majority among contacts (variablesthat participate in the external equations) or to 0 if the value split is even. We needto show that the the minority among the contacts is not larger than the number ofcontiguous groups to which the minority belongs that the minority forms (the latteris the number of violated implications).We start with cycles of length 3. The correctness is obvious because the minority,if any, has only one contact. Once we are done with these cycles, we use the propertiesof the ampli�ers to make all values in each ampli�er equal.It is easy to see that a necessary condition for a minority of contacts to be bad| to belong to fewer contiguous groups than its size | we must have a contiguousgroup that contains at least 2 contacts of the minority. This reduces the analysis ofa square to one case only: two adjacent corners and the non-contact that separatesthem have the same value; because the equality of that noncontact is satis�ed, wehave the minority value between the two elements of the majority, thus at least twocontiguous groups.When we normalize a chorded cycle, the contacts that participate in the equalitieswith the ampli�er must have the same value, say 0, because the ampli�er was nor-15



malized. If the entire bottom row has value 0, then the other contacts are pairwiseseparated by the variables with value 0, so we cannot have a bad set of contacts. Thisshows that if the minority is formed just by the two bottom contacts, there must beat least two minority groups. Thus we may assume that the bottom contacts are inthe majority. Note that in the remaining case the minority must have at least twogroups: one that contains their contacts, and one in the bottom row. So the minoritycan be bad only if it has 3 contacts and only one group outside the bottom row.However, in this case we have the third minority group: the variable between thebottom and the majority element at the top.Now we can �nish the normalization in the same manner as in reduction R0. Onecan see that the value equivalence is similar as in reduction R0, except that we havefewer satis�ed equalities in a normalized solution, fewer by 24n, and we have moresatis�ed implications (there were none before), more by 264n, so instead of 150n+2kwe got 390n + 2k.Our actual reduction composes this reduction with the one in Lemma 12, so weneed to compose the two value equivalences, i.e. apply n+ k to 390n + 2k. The newk, the number of satis�ed clauses, is 390n + k, and the new n, the number of allclauses, is 396n. Therefore the overall value equivalence is 786n+2k, which translates(1=2 n; n) gap into (787n; 788n) gap, or, after normalization, (787=792 n; 788=792 n)gap.
❐4 Open ProblemsThe 3-regular ampli�ers were not studied extensively yet, and little is known about theleast possible size of a 3-regular ampli�er, i.e. the exact value of �3. Any improvementbelow 7 would instantaneously improve lower bounds for numerous combinatorialoptimization problems. The same question applies for d-regular ampli�ers for 3 <d < 7.AcknowledgementsWe thank Sanjeev Arora and Lars Engebretsen for stimulating remarks and discus-sions on the subject of this paper.References[A95] S. Arora, C. Lund, Hardness of Approximations, in Approximation Algorithms,D. S. Hochbaum (ed.), PWS Publishing, Boston 1997, 399-446.[ACG+99] G. Ausiello, P. Crescenzi, G. Gambiosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, Complexity and Approximation, Springer, 1999.16
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