
Approximating Optimal Binary Trees inParallelPiotr Berman� Marek Karpinskiy Yakov NekrichzJuly 4, 2001AbstractIn this paper we present new results on an approximate construc-tion of Hu�man trees. Our algorithms match asymptotically the timeand work needed by known sorting algorithms. For example, we showthat an almost-optimal Hu�man tree can be constructed in O(logn)time with n processors on a CREWPRAM improving the O(logn log� n)time and n processors result of Kirkpatrick and Przytycka. We also de-scribe an O(n log logn) work algorithm that works on a CRCW PRAMwith n= logn processors. This is the �rst parallel algorithm for theproblem with time and work being nearly optimal.
�Dept.of Computer Science and Engineering, The Pennsylvania State University. Re-search done in part while visiting Dept. of Computer Science , University of Bonn. Workpartially supported by NSF grant CCR-9700053 and DFG grant Bo 56/157-1. E-mailberman@cs.uni-bonn.deyDept. of Computer Science, University of Bonn. Work partially supported by DFGgrants , DIMACS and IST grant 14036 (RAND-APX). E-mail marek@cs.uni-bonn.dezDept. of Computer Science, University of Bonn. Work partially supported by ISTgrant 14036 (RAND-APX). E-mail yasha@cs.uni-bonn.de

1 IntroductionA Hu�man code for an alphabet a1; a2; : : : ; an with weights p1; p2; : : : ; pnis a pre�x code that minimizes the average codeword length, de�ned asPni=1 pili. The problem of construction of Hu�man codes is closely relatedto the construction of Hu�man trees.A problem of constructing a binary Hu�man tree for a sequence �w =w1; w2; : : : ; wn consists in constructing a binary tree T with leaves, corre-sponding to the elements of the sequence, so that the weighted path length ofT is minimal. The weighted path length of T , wpl(T) is de�ned as follows:wpl(T; �w) = nXi=1wiliwhere li is depth of the leave corresponding to the element wi.The classical sequential algorithm, described by Hu�man ([H51]) can beimplemented in O(n logn) time. If elements are sorted according to theirweight, Hu�man code can be constructed in O(n) time (see [vL76]). How-ever, no optimal parallel algorithm is known. Teng [T87] has shown thatconstruction of a Hu�man code is in NC. His algorithm, uses the parallel dy-namic programming method of Miller et al. [MR85] and works in O(log2 n)time on n6 processors. Attalah et al. have proposed an n2 processor algo-rithm, working in O(log2n) time. This algorithm is based on multiplicationof concave matrices. The best n-processor algorithm is due to Larmore andPrzytycka [LP95]. Their algorithm, based on reduction of Hu�man tree con-struction problem to the concave least weight subsequence problem runs inO(pn logn) time.Kirkpatrick and Przytycka [KP96] proposed to investigate approximate,so called almost optimal codes, i.e. the problem of �nding a tree T 0 that isrelated to the Hu�man tree T according to the formula wpl(T 0) � wpl(T)+n�k . (assuming P pi = 1). In practice nearly optimal codes are as usefulas the Hu�man codes. Kirkpatrick and Przytycka [KP96] propose severalalgorithms for this problem. In particular, they present an algorithm thatworks in O(k logn log� n) with n CREW processors and an O(k2 log n) timealgorithm that works with n2 CREW processors.The problems considered in this paper are also partially motivated bythe work of one the authors on decoding of Hu�man codes [N00b], [N00a].In this paper we improve the previous results by presenting an algorithmthat works in O(k logn) time with n processors. As we will see in the nextsection the crucial step in computing a nearly optimal tree is merging of two2

sorted arrays and this operation must be repeated O(lognk) times. We havedeveloped a method for performing each such merging in constant time.We will also describe an algorithm that constructs almost-optimal codesin timeO(logn log logn) with n= logn processors. The later algorithm works on apriority CRCW PRAM. This is the �rst parallel algorithm for the problemwith time and work being nearly optimal.2 Basic Construction SchemaOur algorithm uses the following tree data structure. A single element isa tree, and if t1 and t2 are two trees, then t = meld(t1; t2) is also a tree,so that weight(t) = weight(t1) + weight(t2). Initial elements will be calledleaves.In the classical Hu�man algorithm the set of trees is initialized with theset of weights. Then we consecutively meld two smallest elements in the setof trees until only one tree is left. This tree can be proven to be optimal.Kirkpatrick and Przytycka [KP96] presented a scheme for paralleliza-tion of the Hu�man algorithm. The set of element weights p1; p2; : : : ; pn ispartitioned into sorted arrays W1; : : : ;Wm, such that elements of array Wisatisfy the condition 1=2i � p < 1=2i�1. In this paper we will view (sorted)arrays as an abstract data type with the following operations: extracting ofsubarray A[a; b], measuring the array length l(A) and merging two sortedarrays merge(A;B). The result of operation merge(A;B) is a sorted arrayC which consists of elements of A and B. If we use n processors, then eachentry of our sorted array has an associated processor.Since in the Hu�man algorithm lightest elements are processed �rst andsum of any two elements in class Wi is less than any element in classWj ; j < i, elements of the same class can be processed in parallel beforethe elements of classes with smaller indices are processed. The scheme forthe parallelization is shown on Figure 1. We refer the reader to [KP96] fora more detailed description of this algorithm.Because the total number of iterations of algorithmOblivious-Hu�manequals to the number of classes Wi and the number of classes is linear in theworst case, this approach does not lead to any improvements, if we want toconstruct an exact Hu�man tree.Kirkpatrick and Przytycka [KP96] also describe an approximation algo-rithm, based onOblivious-Hu�man. In this paper we convertOblivious-Hu�man into approximation algorithm in a di�erent way. We replace each3

Algorithm Oblivious-Hu�man1: for i := m downto 1 do2: if l(Wi) = 1)3: Wi�1 :=merge(Wi;Wi�1)4: else5: t := meld(Wi[1];Wi[2])6: Wi :=merge(t;Wi[3; l(Wi)])7: a := l(Wi)8: b := ba=2c9: for i := 1 to b pardo10: Wi[i] :=meld(Wi[2i� 1];Wi[2i])11: Wi :=merge(Wi(1; b);Wi[2b+ 1; a])12: Wi�1 :=merge(Wi�1;Wi)Figure 1: Hu�man tree construction schemeweight pi with pnewi = dpinken�k . Let T � denote an optimal tree for weightsp1; : : : ; pi. Since pnewi < pi + n�k ,X pnewi li <X pili +Xn�kli <X pili + n2n�kbecause all li are smaller than n. Hence wpl(T �; �pnew) < wpl(T (�p))+n�k+2.Let TA denote the (optimal) Hu�man tree for weights pnewi . Thenwpl(TA; �p) < wpl(TA; �pnew) � wpl(T �; �pnew) < wpl(T �; �p) + n�k+2Therefore we can construct an optimal tree for weights pnew , than replacepnewi with pi and the resulting tree will have an error of at most n�k+2.If we apply algorithm Oblivious-Hu�man to the new set of weights, thenthe number of iterations of this algorithm will be dk log2 ne, since new ele-ments will be divided into at most dk log2 ne arrays. An additional bene�tis that we will use registers only with polynomially bounded values. Notethat in [KP96] PRAM with unbounded register capacity was used. Thisadvantage of our algorithm will be further exploited in section 4.4

3 An O(k log n) algorithmIn this section we will describe an O(k log n) time n-processor algorithmthat works on CREW PRAM machines.Algorithm Oblivious-Hu�man performs k log n iterations and in each it-eration only merge operations are di�cult to implement in constant time.All other operations can be performed in constant time. We will use thefollowing simple property:Statement 1 If array A has a constant number of elements and array Bhas at most n elements, than arrays A and B can be merged in constanttime with n processors.Proof: Let C = merge(A;B). We assign a processor to every possible pairA[i]; B[j], i = 1; : : : ; c and B = 1; : : : ; n. If A[i] < B[j] < A[i+1], then B[j]will be the i+ j-th element in array C. Also if B[j] < A[i] < B[j + 1], thenA[i] will be the i+ j-th element in array C. 2Statement 1 allows to implement operationmerge(Wi(1; b);Wi[2b+1; a])(line 11 of Figure 1) in constant time.Operation merge(Wi�1;Wi) is the slowest one, because array Wi canhave linear size and merging of two arrays of size n requires log logn oper-ations in general case (see [V75]). In this paper we propose a method, thatlets us perform every merge of Oblivious-Hu�man in constant time. Thekey to our method is that at the time of merging both elements of botharrays know they predecessor in the other array and can thus compute theirposition in the resulting array in constant time. Merging operation itselfis performed without comparisons. Comparisons will be used for the initialcomputation of predecessors and to update predecessors after each mergeand meld.We will use the following notation. We will say that element e is ofrank k, if blogw(e)c = k, where w(e) is the weight of e. Relative weightr(p) of element p of rank k is r(p) = p � 2k. We will denote by r(i; c) therelative weight of the c-th element in array Wi, w[e] will denote the weightof element e and pos[e] will denote the position of element e in its arrayWi, so that Wi[pos[e]] = e. To make description more convinient we willsay that in every array Wk Wk[0] = 0 and Wk[l(Wk) + 1] = +1 At thebeginning we construct a list R of all elements, sorted according to theirrelative weight. We observe that elements of the same class Wk will appearin R in non-decreasing order of their weight. We will assume that whenevere 6= e0, r(e) 6= r(e0), this can be \enforced" by introducing a tie-breakingrule. Besides that, if leaf e and tree t are of rank k and t is the result5

of melding two elements t1 and t2 of rank k, such that r(t1) > r(e) andr(t2) > r(e) (r(t1) < r(e) and r(t2) < r(e)) then weight of t is bigger(smaller) than weight of e.We also compute for every leaf e and every class i the value of pred(e; i) =Wi[j], s.t. r(i; j) < r(e) < r(i; j + 1). In other words, pred(e; i) is thebiggest element in class i, whose relative weight is smaller or equal thanr(e). To �nd values of pred(e; j) for some j we compute array Cj withelements corresponding to all leaves, such that Cj [i] = 1 if R[i] 2 Wj andCj [i] = 0 otherwise and compute pre�x sums for elements of Cj . Pre�x sumfor any class k can be computed on an arithmetic circuit in linear depthand logarithmic time (see [B97]). In our case we have to solve d = O(logn)instances of pre�x sum problems. Since total work for every single instanceis linear we can pipeline all instances in such a way that all problems aresolved in O(d + logn) = O(logn) time with n processors. Thus we caniterate j = 1; : : : ; k log n and for each value of j we compute Cj and sent itscontent to the pre�x sum circuit.We use an algorithm from Figure 2 to update values of pred(e; i) for alle 2 Wi�1; : : : ;W1 and values of pred(e; t) for all e 2 Wi and t = i� 1; : : : ; 1after melding of elements from Wi .First we store the tentative new value of pred(e; i) for all e 2 Wi�1; : : : ;W1in array temp (lines 1-3 of Figure 2). The values stored in temp[] di�er fromthe correct values by at most 1.Next we meld the elements and change the values of w[s] and pos[s] forall s 2 Wi (lines 4-8 of Figure 2).Finally we check whether the values of pred(s; i) for s 2 W1[W2 [: : :[Wi�1 are the correct ones. In order to achieve this we compare the relativeweight of the tentative predecessor with the relative weight of s. If therelative weight of s is smaller, pred(s; i) is assigned to the previous elementof Wi. (lines 10-14 of Figure 2). In lines 15 and 16 we check whether thepredecessor of elements in Wi have changed.If number of elements in Wi is odd then last element of Wi must beinserted into Wi (line 11 of Figure 1). Using Statement 1 we can performthis operation in constant time. We can also correct values of pred(e; i) inconstant time with linear number of processors.When the elements of Wi are melded and predecessor values pred(e; i)are recomputed pos[pred(Wi[j]; i� 1)] equals to the number of elements inWi�1 that are smaller or equal to Wi[j]. Analogically pos[pred(Wi�1[j]; i)]equals to the number of elements in Wi that are smaller or equal toWi�1[j].Therefore indices of all elements in the merged array can be computed inconstant time. 6

1: for a < i, b � l(Wa) pardo2: s := Wa[b]3: temp[s] := dpos[pred(s; i)]=2e4: for c � l(Wi)=2 pardo5: s := Wi[2c� 1]6: w[s] := w[s] + w[Wi[2c]]7: pos[s] := c8: Wi[c] := s9: for a < i, b � l(Wa) pardo10: s := Wa[b]11: c := temp[s]12: if r(i; c) > r(a; b)13: c := c� 114: if r(a; b+ 1) > r(i; c+ 1)15: pred(Wi[c+ 1]; a) := s16: pred(s; i) := Wi[c]Figure 2: Melding operationAfter melding of elements from Wi every element of Wi�1 [Wi�2 [: : :W1 has two predecessors of rank i� 1. We can �nd the new predecessorof element e by comparing pred(e; i) and pred(e; i � 1). The pseudocodedescription of operation merge(Wi�1;Wi) (line 12 of Figure 1) is shown onFigure 3.Since all operations of algorithm Oblivious-Hu�man can be implementedto work in constant time, each iteration takes only a constant time. There-fore we haveTheorem 1 An almost optimal tree with error 1=nk can be constructed inO(k log n) time with n processors on a CREW PRAM.7

do simultaneously:1: for j � l(Wi�1) pardo for j � l(Wi) pardo2: t :=Wi�1[j] t := Wi[j]3: k := pos[pred(t; i)] k := pos[pred(t; i� 1)]4: pos[t] := j + k pos[t] := j + k5: Wi[j + k] := t Wi[j + k] := t6: for a < i, b � l(Wa) pardo7: s :=Wa[b]8: if (w[pred(s; i� 1)] > w[pred(s; i)])9: pred(s; i) := pred(s; i� 1)Figure 3: Operation merge(Wi;Wi�1)4 An O(kn log logn)-work algorithmIn this section we will describe a modi�cation of the merging scheme, pre-sented in the previous section. The modi�ed algorithm works on a CRCWPRAM in O(logn log logn) time with n= logn processors.The main idea of this modi�cation is to compute statistics pred(e; i) foronly n= logn elements. Further in this section L = blog nc. We construct anarray S that contains all elements sorted according to their weight. S willdenote an array, consisting of every L-th element of S, such that S[i] = S[iL],and R contains all elements of R sorted accorted to relative weigh (see Figure4).Then we compute the values of pred(e; i) for every element e of S. Forthis purpose we use an array Ci, such that Ci[j] equals to 1if R[j] 2 Wi. Ar-rays Ci can be constructed in logarithmic time with n= logn processors. Us-ing the same procedure as in the previous section we can compute pred(e; i)in logarithmic time with n= logn processors.Let W i denote a (sorted) array, consisting of every L-th element of Wi,so that W i[s] = Wi[sL]. Using pred(e; i) we can merge every blog nc-thelement of W 0i with W 0i�1. When elements of Wi are melded every elementfrom W 0i is melded with an element from Wi � W 0i . Predecessors of themelded elements can be computed in constant time in the same way as inthe previous section. 8

6 @@@@@@@@I HHHHHHHHHHHHHHHY�������������
����7

�������������
�����

EEEEEEEEEEEEE
EEEESW1Wi| {z }| {z }| {z }| {z }Figure 4: Structure of sample array SNow we can merge Wi and Wi�1, using W i and W i�1.. SupposedW i[l] < W i�1[s] < W i[l + 1] and W i[r] < W i�1[s + 1] < W i[r + 1]. Thenwe have to merge Wi�1[sL; (s + 1)L] with Wi[lL; (r + 1)L]. Using algo-rithm of Valiant (see [V75]) we can merge two arrays of size n1 and n2(n1 < n2) in O(log log n1) time with n1 + n2 processors. Therefore Wi andWi�1 can be merged in O(log log logn) time with n= logn processors. Hence,if elements in classes Wi are sorted, our algorithm can be implemented inO(k log n log log logn) time with n= logn processors . Using a parallel bucketsort algorithm described in [H87] we can sort polynomially bounded inte-gers in O(logn log logn) time with n= logn processors on a priority CRCWPRAM. Using the algorithm described by Bhatt et al. [BDH+91] we canalso sort polynomially bounded integers with the same time and proces-sor bounds on arbitrary CRCW PRAM. Combining these results with ourmodi�ed algorithm we getTheorem 2 An almost optimal tree with error 1=nk can be constructed inO(k log n log logn) time with n= logn processors on a priority CRCW PRAMor on an arbitrary CRCW PRAM.Hagerup [H87] describes an algorithm for sorting random uniformly dis-tributed integers in O(logn) time with n= logn processors with probability9

1� C�pn.Applying the algorithm of Hagerup [H87] we can get the following resultTheorem 3 An almost optimal tree with error 1=nk can be constructed forthe set of n uniformly distributed random numbers with n= logn processorsin time O(k logn log log log n) with probability 1=C�pn for any constant C .5 ConclusionIn this paper we have described several algorithms for construction of al-most optimal trees. These algorithms have a polynomially bounded error.The described algorithms are based on sorting initial set of elements. Weshow in this paper that construction of almost optimal tree for n elementsis not slower than the best known deterministic algorithms for sorting nelements. In particular, we can construct an almost optimal tree in loga-rithmic time with linear number of processors in CREW PRAM model orin O(logn log log n) time with n= logn processors in CRCW PRAM model.The question of existence of algorithms that can sort polynomially boundedintegers with linear time-procesor product and achieve optimal speed-up re-mains open. It is also interesting, whether we can construct almost optimaltrees without sorting of the initial set of elements.AcknowledgmentsWe thank Larry Larmore for stimulating comments and discussions.References[BDH+91] Bhatt, P., Diks, K., Hagerup, T., Prasad, V., T.Radzik, Saxena,S., Improved deterministic parallel integer sorting, Informationand Computation 94 (1991), pp. 29{47.[B97] Blelloch, G., Pre�x Sums and Their Applications, Reif, J., ed,Synthesis of Parallel Algorithms, pp. 35{60, 1997.[H87] Hagerup, T., Toward optimal parallel bucket sorting, Informationand Computation 75 (1987), pp. 39{51.[H51] Hu�man, D. A., A method for construction of minimum redun-dancy codes, Proc. IRE,40 (1951), pp. 1098{1101.10

[KP96] Kirkpatrick, D., Przytycka, T., Parallel Construction of BinaryTrees with Near Optimal Weighted Path Length, Algorithmica(1996), pp. 172{192.[LP95] Larmore, L., Przytycka, T., Constructing Hu�man trees in par-allel, SIAM Journal on Computing 24(6) (1995), pp. 1163{1169.[MR85] Miller, G., Reif, J., Parallel tree contraction and its applica-tions, Proc. 26th Symposium on Foundations of Computer Sci-ence (1985), pp. 478{489.[N00a] Nekrich, Y., Byte-oriented Decoding of Canonical Hu�manCodes, Proc. Proceedings of the IEEE International Symposiumon Information Theory 2000, (2000), p. 371.[N00b] Nekrich, Y., Decoding of Canonical Hu�man Codes with Look-Up Tables, Proc. Proceeding of the IEEE Data CompressionConference 2000 (2000), p. 342.[T87] Teng, S., The construction of Hu�man equivalent pre�x code inNC, ACM SIGACT 18 (1987), pp. 54{61.[V75] Valiant, L., Parallelism in Comparison Problems, SIAM Journalon Computing 4 (1975), pp. 348{355.[vL76] van Leeuwen, J., On the construction of Hu�man trees, Proc.3rd Int. Colloqium on Automata, Languages and Programming(1976), pp. 382{410.
11

