Approximating Optimal Binary Trees in
Parallel

Piotr Berman™ Marek Karpinskit Yakov Nekrich?*

July 4, 2001

Abstract

In this paper we present new results on an approximate construc-
tion of Huffman trees. Our algorithms match asymptotically the time
and work needed by known sorting algorithms. For example, we show
that an almost-optimal Huffman tree can be constructed in O(logn)
time with n processors on a CREW PRAM improving the O(log nlog™ n)
time and n processors result of Kirkpatrick and Przytycka. We also de-
scribe an O(n loglogn) work algorithm that works on a CRCW PRAM
with n/logn processors. This is the first parallel algorithm for the
problem with time and work being nearly optimal.

*Dept.of Computer Science and Engineering, The Pennsylvania State University. Re-
search done in part while visiting Dept. of Computer Science , University of Bonn. Work
partially supported by NSF grant CCR-9700053 and DFG grant Bo 56/157-1. E-mail
berman@cs.uni-bonn.de

"Dept. of Computer Science, University of Bonn. Work partially supported by DFG
grants , DIMACS and IST grant 14036 (RAND-APX). E-mail marek@cs.uni-bonn.de

‘Dept. of Computer Science, University of Bonn. Work partially supported by IST
grant 14036 (RAND-APX). E-mail yasha@cs.uni-bonn.de

1 Introduction

A Huffman code for an alphabet ay,aq,...,a, with weights py,p2, ..., pa
is a prefix code that minimizes the average codeword length, defined as
>y pil;. The problem of construction of Huffman codes is closely related
to the construction of Huffman trees.

A problem of constructing a binary Huffman tree for a sequence w =
Wy, Ws, . .., W, consists in constructing a binary tree T with leaves, corre-
sponding to the elements of the sequence, so that the weighted path length of
T is minimal. The weighted path length of T', wpl(T) is defined as follows:

n

wpl(T,w) = Z wil;

=1

where [; is depth of the leave corresponding to the element w;.

The classical sequential algorithm, described by Huffman ([H51]) can be
implemented in O(nlogn) time. If elements are sorted according to their
weight, Huffman code can be constructed in O(n) time (see [vL76]). How-
ever, no optimal parallel algorithm is known. Teng [T87] has shown that
construction of a Huffman code is in NC. His algorithm, uses the parallel dy-
namic programming method of Miller et al. [MR85] and works in O(log® n)
time on n® processors. Attalah et al. have proposed an n? processor algo-
rithm, working in O(log?n) time. This algorithm is based on multiplication
of concave matrices. The best n-processor algorithm is due to Larmore and
Przytycka [LP95]. Their algorithm, based on reduction of Huffman tree con-
struction problem to the concave least weight subsequence problem runs in
O(y/nlogn) time.

Kirkpatrick and Przytycka [KP96] proposed to investigate approximate,
so called almost optimal codes, i.e. the problem of finding a tree T’ that is
related to the Huffman tree T according to the formula wpl(T") < wpl(T) +
n~F. (assuming 3" p; = 1). In practice nearly optimal codes are as useful
as the Huffman codes. Kirkpatrick and Przytycka [KP96] propose several
algorithms for this problem. In particular, they present an algorithm that
works in O(klognlog*n) with n CREW processors and an O(k?log n) time
algorithm that works with n?> CREW processors.

The problems considered in this paper are also partially motivated by
the work of one the authors on decoding of Huffman codes [NOOb], [NOOa].

In this paper we improve the previous results by presenting an algorithm
that works in O(klogn) time with n processors. As we will see in the next
section the crucial step in computing a nearly optimal tree is merging of two

sorted arrays and this operation must be repeated O(logn*) times. We have

developed a method for performing each such merging in constant time.
We will also describe an algorithm that constructs almost-optimal codes

in time

O(lognloglogn) with n/logn processors. The later algorithm works on a

priority CRCW PRAM. This is the first parallel algorithm for the problem

with time and work being nearly optimal.

2 Basic Construction Schema

Our algorithm uses the following tree data structure. A single element is
a tree, and if ¢; and t3 are two trees, then ¢ = meld(t1,t2) is also a tree,
so that weight(t) = weight(t;) + weight(tz). Initial elements will be called
leaves.

In the classical Huffman algorithm the set of trees is initialized with the
set of weights. Then we consecutively meld two smallest elements in the set
of trees until only one tree is left. This tree can be proven to be optimal.

Kirkpatrick and Przytycka [KP96] presented a scheme for paralleliza-
tion of the Huffman algorithm. The set of element weights py, pa, ..., p, is
partitioned into sorted arrays Wiy, ..., W,,, such that elements of array W;
satisfy the condition 1/2° < p < 1/2°~'. In this paper we will view (sorted)
arrays as an abstract data type with the following operations: extracting of
subarray Ala,b], measuring the array length [(A) and merging two sorted
arrays merge(A, B). The result of operation merge(A, B) is a sorted array
C' which consists of elements of A and B. If we use n processors, then each
entry of our sorted array has an associated processor.

Since in the Huffman algorithm lightest elements are processed first and
sum of any two elements in class W; is less than any element in class
W;,j < i, elements of the same class can be processed in parallel before
the elements of classes with smaller indices are processed. The scheme for
the parallelization is shown on Figure 1. We refer the reader to [KP96] for
a more detailed description of this algorithm.

Because the total number of iterations of algorithm Oblivious-Huffman
equals to the number of classes W; and the number of classes is linear in the
worst case, this approach does not lead to any improvements, if we want to
construct an exact Huffman tree.

Kirkpatrick and Przytycka [KP96] also describe an approximation algo-
rithm, based on Oblivious-Huffman. In this paper we convert Oblivious-
Huffman into approximation algorithm in a different way. We replace each

Algorithm Oblivious- Huffman
for ¢ := m downto 1 do

if (W) =1)
Wi_1 :=merge(W;,W;_1)

else
t == meld(W;[1], W;[2])
Wi == merge(t, W;[3,[(W;)])
a:=1(W;)
b:=|a/2]
for 2 := 1 to b pardo

Wili] := meld(W;[27 — 1], Wi[2i])

Wi := merge(W;(1,b), W,[2b+ 1, a])
Wi_1 :=merge(W;_1, W;)

©ONRIdH WD

= e
N2 Q

Figure 1: Huffman tree construction scheme

weight p; with p® = [pmk]n_k. Let T™ denote an optimal tree for weights
P1y-- oy i Since p;}ew <pi+ n_kv

YoPEL <Y pili+ Yy 0T <Y pili e

because all /; are smaller than n. Hence wpl (T, Ppew) < wpl(T(p)) +nF+?
Let T4 denote the (optimal) Huffman tree for weights p*¢*. Then

wpl(Ta. p) < wpl(Ta, 57°") < wpl (1%, """} < wpl(T*, p) + n~"+?

Therefore we can construct an optimal tree for weights p™®”, than replace
with p; and the resulting tree will have an error of at most n=*+2,

If we apply algorithm Oblivious- Huffman to the new set of weights, then
the number of iterations of this algorithm will be [klog, n|, since new ele-
ments will be divided into at most [klog, n| arrays. An additional benefit
is that we will use registers only with polynomially bounded values. Note
that in [KP96] PRAM with unbounded register capacity was used. This
advantage of our algorithm will be further exploited in section 4.

new

b;

3 An O(klogn) algorithm

In this section we will describe an O(klogn) time n-processor algorithm
that works on CREW PRAM machines.

Algorithm Oblivious- Huffman performs klog n iterations and in each it-
eration only merge operations are difficult to implement in constant time.
All other operations can be performed in constant time. We will use the
following simple property:

Statement 1 If array A has a constant number of elements and array B
has at most n elements, than arrays A and B can be merged in constant
time with n processors.

Proof: Let C'= merge(A, B). We assign a processor to every possible pair
Al],B[jl,i=1,...,cand B=1,...,n. If A[i] < B[j] < A[i+ 1], then B[]
will be the ¢+ j-th element in array C. Also if B[j] < A[i] < B[j + 1], then
A[7] will be the ¢ + j-th element in array C'. O

Statement 1 allows to implement operation merge(W;(1,b), W,[2b41, a])
(line 11 of Figure 1) in constant time.

Operation merge(W;_1, W;) is the slowest one, because array W; can
have linear size and merging of two arrays of size n requires log log n oper-
ations in general case (see [V75]). In this paper we propose a method, that
lets us perform every merge of Oblivious-Huffman in constant time. The
key to our method is that at the time of merging both elements of both
arrays know they predecessor in the other array and can thus compute their
position in the resulting array in constant time. Merging operation itself
is performed without comparisons. Comparisons will be used for the initial
computation of predecessors and to update predecessors after each merge
and meld.

We will use the following notation. We will say that element e is of
rank k, if |logw(e)] = k, where w(e) is the weight of e. Relative weight
r(p) of element p of rank k is r(p) = p-2F. We will denote by r(i, c) the
relative weight of the c-th element in array W;, w[e] will denote the weight
of element e and pos[e] will denote the position of element e in its array
Wi, so that W;[posle]] = e. To make description more convinient we will
say that in every array Wy Wi[0] = 0 and Wy[l[(Wy) + 1] = oo At the
beginning we construct a list R of all elements, sorted according to their
relative weight. We observe that elements of the same class Wy, will appear
in R in non-decreasing order of their weight. We will assume that whenever
e £ €, r(e) # r(€), this can be “enforced” by introducing a tie-breaking
rule. Besides that, if leaf ¢ and tree ¢t are of rank &k and t is the result

of melding two elements ¢; and ty of rank k&, such that r(t;) > r(e) and
r(tz) > r(e) (r(t1) < r(e) and r(tz) < r(e)) then weight of ¢ is bigger
(smaller) than weight of e.

We also compute for every leaf e and every class 7 the value of pred(e, i) =
Wiljl, s.t. r(i,j) < r(e) < r(i,j+ 1). In other words, pred(e,i) is the
biggest element in class ¢, whose relative weight is smaller or equal than
r(e). To find values of pred(e,j) for some j we compute array C7 with
elements corresponding to all leaves, such that C?[i] = 1 if R[i] € W; and
C7[i] = 0 otherwise and compute prefix sums for elements of C7. Prefix sum
for any class k can be computed on an arithmetic circuit in linear depth
and logarithmic time (see [B97]). In our case we have to solve d = O(log n)
instances of prefix sum problems. Since total work for every single instance
is linear we can pipeline all instances in such a way that all problems are
solved in O(d + logn) = O(logn) time with n processors. Thus we can
iterate j = 1,..., klogn and for each value of j we compute C7 and sent its
content to the prefix sum circuit.

We use an algorithm from Figure 2 to update values of pred(e, ¢) for all
e € Wi_y,..., Wy and values of pred(e,t) foralle e W and t =i —1,...,1
after melding of elements from W; .

First we store the tentative new value of pred(e, i) foralle € W;_q,..., W,
in array temp (lines 1-3 of Figure 2). The values stored in temp[] differ from
the correct values by at most 1.

Next we meld the elements and change the values of w[s] and pos[s] for
all s € W; (lines 4-8 of Figure 2).

Finally we check whether the values of pred(s,i) fors € Wy UW,U. ..U
W;_1 are the correct ones. In order to achieve this we compare the relative
weight of the tentative predecessor with the relative weight of s. If the
relative weight of s is smaller, pred(s, ¢) is assigned to the previous element
of W;. (lines 10-14 of Figure 2). In lines 15 and 16 we check whether the
predecessor of elements in W; have changed.

If number of elements in W, is odd then last element of W, must be
inserted into W; (line 11 of Figure 1). Using Statement 1 we can perform
this operation in constant time. We can also correct values of pred(e, ¢) in
constant time with linear number of processors.

When the elements of W; are melded and predecessor values pred(e, 1)
are recomputed pos[pred(W;[j],7 — 1)] equals to the number of elements in
W;_1 that are smaller or equal to W;[j]. Analogically pos[pred(W;_1[j],)]
equals to the number of elements in W; that are smaller or equal to W;_1[j].
Therefore indices of all elements in the merged array can be computed in
constant time.

w N

0 N O U1

10:
11:
12:
13:
14:
15:
16:

s:= W,[b]
temp[s] := [pos[pred(s,i)]/2]

for a < i, b < l(W,) pardo

for ¢ < I(W;)/2 pardo

s = W;[2¢ — 1]

w(s] := w[s] + w[W;[2¢]]
pos|s] := ¢

Wile] :=s

for a < i, b < l(W,) pardo
s 1= W,[b]

¢ :=temp[s]
if 7(i,¢) > r(a,b)
ci=c—1

if r(a,b4+1) > r(i,c+1)
pred(Wilc+1],a) :=s
pred(s, 1) = W;[c]

After melding of elements from W, every element of W, U W, 5 U
... Wy has two predecessors of rank ¢ — 1. We can find the new predecessor
of element e by comparing pred(e,i) and pred(e,i — 1). The pseudocode
description of operation merge(W;_1, W;) (line 12 of Figure 1) is shown on

Figure 3.

Since all operations of algorithm Oblivious- Huffman can be implemented
to work in constant time, each iteration takes only a constant time. There-

fore we have

Theorem 1 An almost optimal tree with error 1/n* can be constructed in

Figure 2: Melding operation

O(klogn) time with n processors on a CREW PRAM.

do simultaneously:

1: for j < {(W;_1) pardo for j < (W) pardo

2: t:=W;_1[j] t = Wilj]

3: k := pos[pred(t,i)] k := pos[pred(t,i — 1)]
4: pos[t] :=j+ k pos[t] :=j+k

5: Wilj+ k=t Wilj+ k=t

6: for a < i, b <I[(W,) pardo

7: s 1= W,[b]

8: if (wlpred(s,i—1)] > w[pred(s,1)])

9: pred(s,i) := pred(s,i — 1)

Figure 3: Operation merge(W;, W;_1)

4 An O(knloglogn)-work algorithm

In this section we will describe a modification of the merging scheme, pre-
sented in the previous section. The modified algorithm works on a CRCW
PRAM in O(lognloglogn) time with n/logn processors.

The main idea of this modification is to compute statistics pred(e, ¢) for
only n/logn elements. Further in this section L = [logn|. We construct an
array S that contains all elements sorted according to their weight. .S will
denote an array, consisting of every L-th element of S, such that S[i] = S[iL],
and R contains all elements of R sorted accorted to relative weigh (see Figure
4).

Then we compute the values of pred(e,) for every element e of S. For
this purpose we use an array C", such that C"[4] equals to 1if R[j] € W;. Ar-
rays C* can be constructed in logarithmic time with n/logn processors. Us-
ing the same procedure as in the previous section we can compute pred(e, 7)
in logarithmic time with n/logn processors.

Let W; denote a (sorted) array, consisting of every L-th element of W;,
so that W;[s] = W;[sL]. Using pred(e,i) we can merge every |logn]-th
element of W/ with W/_,. When elements of W; are melded every element
from W/ is melded with an element from W; — W/. Predecessors of the
melded elements can be computed in constant time in the same way as in
the previous section.

9]
~

Wi “y
\

Figure 4: Structure of sample array S

Now we can merge W, and W;_{, using W, and W;_;.. Supposed
Will] < Wiq[s] < Wil +1] and W;[r] < W,_4[s+ 1] < W;[r + 1]. Then
we have to merge W;_4[sL, (s + 1)L] with W;[IL,(r + 1)L]. Using algo-
rithm of Valiant (see [V75]) we can merge two arrays of size n; and ng
(n1 < ng) in O(loglog ny) time with ny + ny processors. Therefore W; and
W;_1 can be merged in O(logloglogn) time with n/logn processors. Hence,
if elements in classes W; are sorted, our algorithm can be implemented in
O(klog nlogloglogn) time with n/log n processors . Using a parallel bucket
sort algorithm described in [H87] we can sort polynomially bounded inte-
gers in O(lognloglogn) time with n/logn processors on a priority CRCW
PRAM. Using the algorithm described by Bhatt et al. [BDH*91] we can
also sort polynomially bounded integers with the same time and proces-
sor bounds on arbitrary CRCW PRAM. Combining these results with our
modified algorithm we get

Theorem 2 An almost optimal tree with error 1/n* can be constructed in
O(klog nloglogn) time with n/logn processors on a priority CRCW PRAM
or on an arbitrary CRCW PRAM.

Hagerup [H87] describes an algorithm for sorting random uniformly dis-
tributed integers in O(logn) time with n/logn processors with probability

1—CVr
Applying the algorithm of Hagerup [H87] we can get the following result

Theorem 3 An almost optimal tree with error 1/n* can be constructed for
the set of n uniformly distributed random numbers with n/logn processors
in time O(klog nlogloglog n) with probability 1/C~V" for any constant C' .

5 Conclusion

In this paper we have described several algorithms for construction of al-
most optimal trees. These algorithms have a polynomially bounded error.
The described algorithms are based on sorting initial set of elements. We
show in this paper that construction of almost optimal tree for n elements
is not slower than the best known deterministic algorithms for sorting n
elements. In particular, we can construct an almost optimal tree in loga-
rithmic time with linear number of processors in CREW PRAM model or
in O(lognloglogn) time with n/logn processors in CRCW PRAM model.
The question of existence of algorithms that can sort polynomially bounded
integers with linear time-procesor product and achieve optimal speed-up re-
mains open. It is also interesting, whether we can construct almost optimal
trees without sorting of the initial set of elements.

Acknowledgments

We thank Larry Larmore for stimulating comments and discussions.

References

BDH'91] Bhatt, P., Diks, K., Hagerup, T., Prasad, V., T.Radzik, Saxena,
g
S., Improved deterministic parallel integer sorting, Information
and Computation 94 (1991), pp. 29-47.

[B97] Blelloch, G., Prefiz Sums and Their Applications, Reif, J., ed,
Synthesis of Parallel Algorithms, pp. 35-60, 1997.

[HR7] Hagerup, T., Toward optimal parallel bucket sorting, Information
and Computation 75 (1987), pp. 39-51.

[H51] Huffman, D. A.; A method for construction of minimum redun-
dancy codes, Proc. IRE,40 (1951), pp. 1098-1101.

10

[KP96]

[LP95]

[MRS5]

[N0OOa]

[NOOb]

[T87]

[V75]

[VL76]

Kirkpatrick, D., Przytycka, T., Parallel Construction of Binary
Trees with Near Optimal Weighted Path Length, Algorithmica
(1996), pp. 172-192.

Larmore, L., Przytycka, T., Constructing Huffman trees in par-
allel, SIAM Journal on Computing 24(6) (1995), pp. 1163-1169.

Miller, G., Reif, J., Parallel tree contraction and its applica-
tions, Proc. 26th Symposium on Foundations of Computer Sci-
ence (1985), pp. 478-489.

Nekrich, Y., Byte-oriented Decoding of Canonical Huffman
Codes, Proc. Proceedings of the IEEE International Symposium
on Information Theory 2000, (2000), p. 371.

Nekrich, Y., Decoding of Canonical Huffman Codes with Look-
Up Tables, Proc. Proceeding of the IEEE Data Compression
Conference 2000 (2000), p. 342.

Teng, S., The construction of Huffman equivalent prefiz code in

NC, ACM SIGACT 18 (1987), pp. 54-61.

Valiant, L., Parallelism in Comparison Problems, STAM Journal
on Computing 4 (1975), pp. 348-355.

van Leeuwen, J., On the construction of Huffman trees, Proc.
3rd Int. Collogium on Automata, Languages and Programming
(1976), pp. 382-410.

11

