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21 IntroductionA reversal � = �(i; j) applied to a permutation � = �1 : : : �i�1�i : : : �j�j+1 : : : �nreverses the order of elements �i : : : �j and transforms � into permutation � � �= �1 : : :�i�1�j : : :�i�j+1 : : : �n. Reversal distance d(�; �) is de�ned as the min-imum number of reversals �1; : : : ; �t needed to transform � into the permuta-tion �, i.e., � � �1 � � � �t = �. Let id = 12::n be the identity permutation, thend(�; �) = d(� � ��1; id). The problem of computing the reversal distance for giventwo permutation is equivalent to the problem of Sorting by reversal, MIN-SRB,where for a given � we compute d(�; id). This problem received a lot of attentionbecause it models global genome rearrangements. The importance of computa-tional methods to analyze genome rearrangements was �rst recognized by Sanko�et al. [SCA90]. See Sanko� et al. [SLA92], Hannenhalli et al. [HCK95] andBafna and Pevzner [BP95a] for applications of MIN-SBR to analyze genome re-arrangements. Similar combinatorial problems were investigated by Gates andPapadimitriou [GP79], Amato et al. [ABIR89] and Cohen and Blum [CB95].Biologists derive gene orders either by sequencing entire genomes or by com-parative physical mapping. Sequencing provides information about directions ofgenes and allows one to represent a genome by a signed permutation (Kececiogluand Sanko� [KS93]). Most of currently available experimental data on gene ordersare based on comparative physical maps. Physical maps usually do not provideinformation about directions of genes and, therefore lead to representation of agenome as an unsigned permutation �.Kececioglu and Sanko� [KS93] gave the �rst algorithm with a proven perfor-mance guarantee for MIN-SBR by giving a 2-approximation algorithm and conjec-tured that the problem is NP-hard. They were �rst to exploit the link between thereversal distance and the number of breakpoints in a permutation. Since Sortingby Reversals as well as other genome rearrangements problems were believed to beNP-hard, most of the e�orts in analyzing gene orders were directed towards approx-imation algorithms. Bafna and Pevzner [BP93] improved the performance ratio to1.75 for unsigned permutations and 1.5 for signed permutations. Hannenhalli andPevzner [HP95] found however an exact polynomial algorithm for sorting signedpermutations by reversals, a problem which also was believed to be NP-hard (see[BH96] and [KST97] for faster algorithms). However, MIN-SBR, the problem ofsorting an unsigned permutation, was shown to be NP-hard by Caprara [C97] thusproving the conjecture. Later, this problem was also shown to be MAX-SNP hardby Berman and Karpinski [BK99], while Christie [Ch98] improved the performanceratio for MIN-SBR to 1.5.In this paper, by exploiting a polynomial time algorithm for sorting a signedpermutation by reversals, and by developing a new approximation algorithm for



3maximumcycle decomposition of breakpoint graphs, we design a 1.375-approxima-tion algorithm for sorting by reversals. This improvement over 1.5 ratio of Christieis obtained here by a di�erent method and a substantially more complicated algo-rithm.Kececioglu and Sanko� [KS94], Kececioglu and Gus�eld [KG95], Hannenhalliand Pevzner [HP95] and [HP96], Kececioglu and Ravi [KR95], and Bafna andPevzner [BP95b] provide other computational studies of genome rearrangementsand Pevzner and Waterman [PW95] gave a survey of combinatorial problems mo-tivated by genome rearrangements.Bafna and Pevzner [BP93] revealed important links between the breakpointgraph of a permutation and the reversal distance. In particular, they showed astrong correspondence between the maximum cycle decomposition of the break-point graph of the permutation and its reversal distance. Moreover, for all knownbiological instances, it was observed that the maximumcycle decomposition is su�-cient to estimate the reversal distance exactly. Although, in general, the maximumcycle decomposition does not su�ce to compute the reversal distance precisely, itdoes su�ce to compute the reversal distance approximately with a guaranteedperformance.This paper is organized as follows. In Section 2 we reduce the approximatingof MIN-SBR to GEDSAC, a problem of �nding a su�ciently large disjoint set ofalternating cycles in the breakpoint graph of a given permutation. In Section 3 wereduce GEDSAC to GEIS, a problem of �nding a su�ciently large independent setin a special variety of graphs. Finally, Section 4 describes an algorithm for GEIS.2 From MIN-SBR to Alternating CyclesSolving MIN-SBR problem directly does not seem feasible, because as yet it isnot known how to evaluate individual reversals, and sequences of reversals formexponentially large searching space. Fortunately, Hannenhalli and Pevzner founda reduction of this problem to the one of �nding an optimal decomposition of acertain graph with two edge colors. Without going into details yet, we will havetwo goals: �nding a maximally large family of edge-disjoint cycles, while in thesame time minimizing the number of so-called hurdles that this family of cyclesde�nes.At �rst the new task does not appear to be any easier to solve. However, aswe shall see, because we only want to approximate the optimal solution, we willbe able to simplify the task dramatically. To begin with, we will be searching forcycles that consists of at most 6 segments. Moreover, we will be able to eliminatethe explicit counting of the hurdles altogether.



4We start from precise de�nitions and then proceed with an amortized analysisthat will reveal the relative importance of various cycles and hurdles from thepoint of view of approximation. Importantly, we will show that we can neglectthe existence of certain classes of objects, and eliminate another class of objectsby applying certain kinds of greedy choices. We will conclude this Section withan algorithm for approximating MIN-SBR that uses as a subroutine the algorithmfor certain simpler problem which is provided in the remaining sections.2.1 De�nitions and graph-theoretic backgroundBafna and Pevzner [BP93], Hannenhalli and Pevzner [HP95, HP96] have describedhow to reduce the MIN-SBR to a purely graph-theoretic problem, Maximum De-composition into Alternating Cycles, or MDAC in short. In this section, we willparaphrase the results in [HP96], where they describe an exact algorithm for MIN-SBR problem that is polynomial in certain cases that are important in estimatingevolutionary distances.We use [i; j] to denote the set of integers fi; i+ 1; : : : ; jg. A permutation � isa 1-1 mapping of [1; n] onto itself, and �i is the value or � for an argument i. Weextend � to one extra argument by setting �0 = 0. To avoid modulo notation, wewill assume �i = �i+n+1 for every integer i.A breakpoint graph of �, G�, has a node set [0; n] and two sets of edges:breaks = ff�i; �i+1g : i 2 [0; n]g;chords = ffi; i+ 1g : i 2 [0; n]g.If a chord happens to be a break, we count it as a separate object, and say thatthis is a short chord. For that reason, our edge sets can be actually multisets. Analternating cycle, AC for short, is a connected set of edges C with the followingproperty: if a node belongs to i breaks of C, than it also belongs to i chords of C.A decomposition into alternating cycles, DAC for short, is a partition of the edgesof G� into ACs.A DAC C of G� can be represented by the following consecutive relation: edgese and e0 are consecutive edges on a cycle; here cycle is identi�ed with its traversal.In turn, this relation uniquely determines a spin of �, a signed permutation �0 suchthat �0i = ��i (see [BP93, HP96]); a sequence of reversals that sorts �0 obviouslysorts � as well, and any sequence of reversals that sorts � sorts one of its spins.Because we can �nd an optimum reversal sequence for a spin of � in polynomialtime [HP95], the seatch for an optimal reversal sequence for � is equivalent to thesearch for an optimal spin of �, and, in turn, the search for an optimal DAC ofG�.



5A given cycle decomposition C de�nes a set of hurdles (de�ned later). Thefollowing theorem of Hannenhalli and Pevzner [HP96] is crucial:Theorem 1 Given a cycle decomposition of the breakpoint graph of �, there existsa polynomial time algorithm that �nds a sequence of n � c + h + f reversals thatsorts permutation �, where c is the number of cycles in the decomposition, h is thenumber of hurdles and f 2 [0; 1]. Moreover, the minimum length sequence can becomputed in that fashion.The above theorem is actually a joint corollary of Lemma 3.1 and Theorem2.1 of [HP96]. Because we are interested in an approximation algorithm, we willignore the small term f . Our goal in this section is to show how to handle theminimization of h so we will later maximize c in a separate problem. To de�nehurdles, we need some more de�nitions.We will use the following geometric representation of G�: the nodes �0; : : : ; �nare placed counter-clockwise on a circleC, each break f�i; �i+1g is aC-arc segment,and a chord fi; i+ 1g is the line segment that joins points i and i+ 1. Note thatin this representations numbers are viewed as node names, moreover, if �i+1 =�i � 1, then the break f�i; �i+1g and the short chord f�i; �i+1g are indeed twodi�erent objects. To avoid confusion, we will apply the word chord exclusively tothe representations of the chords of G�, while a chordal segment is any line segmentthat connects two (representations of) nodes of G�.If two chords e0 and e1 intersect in the interior of C, they form an interleavingpair.A chord component is a connected component of the graph < chords, inter-leaving pairs >. We will assume that there is more than one chord component;otherwise we will have a trivial case for the algorithm of this section.We de�ne the area of a chord component C, denoted by A(C), as follows: foreach chord e 2 C (viewed as a line segment) we remove the endpoints, then wetake the union of these chords, and �nally we take the smallest convex set thatcontains that union.Observation 1 A(C) is a convex polygon and its set of nodes is the the set ofendpoints of the chords of C. Moreover, the chords of C subdivide A(C) intoconvex polygons that either have the entire boundary covered by the chords of C,or the entire boundary with the exception of a single segment.This observation leads to the next one:Observation 2 A(C) cannot intersect a chord e if e 62 C.



6To see that, consider a chord e that shares a point, say x, with A(C); if x does notlie on one of the chords of C, it must belong to the interior of one of the convexsubdivisions of A(C) that is surrounded on all sides, except one, by segments ofchords from C. Since e extends from x in two directions up to the circle C; in atleast one of these two directions e intersects one of these surrounding segments,and hence e 2 C.A crescent Cr(i; j) is an area bounded by counter-clockwise arc from i to j andthe chordal segment fi; jg. If the counterclockwise listing of the nodes of A(C)is i0; i1; : : : ; ik = i0, then interior(C) � A(C) is a disjoint union Cr(i0; i1); : : : ;-Cr(ik�1; ik); we call them the neighbor crescents of C.The relative positions of di�erent chord components are described in the nextobservation.Observation 3 A(C 0) is a subset of one of the neighbor-crescents of C for eachchord component C 0 6= C.To see that, note that a chord e 62 C must be contained in one of the neighbor-crescents of C, as it is disjoint with A(C). By de�nition, chords contained indi�erent neighbor-crescents cannot interleave (intersect in the interior of C), sothe entire chord component of e most be contained in a single neighbor-crescent.Lemma 1 If Cr(i; j) is a neighbor-crescent of a chord component C, and thereexists a chord contained in that crescent, then the chords contained in Cr(i; j),together with the breaks on the C-arc extending from i to j, form an AC.Moreover, fi; jg is a chord only if it is a short chord, in which case the AC ofCr(i; j) consists of exactly one chord and exactly one break.Proof. We need to show that every node on the C-arc from i to j belongs to thesame number of breaks of this arc and the chords contained in Cr(i; j). This isobvious for nodes di�erent than i and j: they belong to breaks of this arc, and totwo chords that are at least partially contained in Cr(i; j), and we have observedthat if a chord is partially contained in a neighbor-crescent, then it is completerlycontained.The endpoints of the arc, i and j, each belong to exactly one break of the arc, sowe need to show that they are contained in exactly one chord contained in Cr(i; j).This follows from the fact that all the chords form a single simple cycle, exactly likethe breaks. Because there exists chords both inside Cr(i; j) and outside, the cordscontained inside form a collection of (node disjoint) simple paths. Our previousarguments show that i and j are the only possible endpoints of these paths, andtherefore there exists exactly one such path, from i to j.



7In particular, if fi; jg is a chord, it forms a one-edge path of chords from i to j.Since there exists only one such path, there are no other chords contained in thecrescent Cr(i; j), and this fi; jg is a short chord that forms a cycle together withthe break (arc) fi; jg.
❑The last lemma characterizes neighbor-crescents of C that contain some chords.We say that other neighbor-crescents are empty. Obviously, if Cr(i; j) is an emptyneigbor crescent, the C-arc from i to j forms a single break, we say that that breakis associated with C. We de�ne edge component of C as the set consisting of thechords of C and the breaks associated with C.Lemma 2 Edge components of chord components form a DAC decomposition.Proof. By the de�nition, edge components are pairwise disjoint and togetherthey contain all the edges. Thus it su�ces to show that each edge component isan AC.To see that, observe that we can form the edge component of C by startingwith the set of all edges | chords and breaks | and then removing, one by one,the ACs of non-empty neighbor cycles. From the de�nition, if we remove AC froman AC, what remains is an AC as well.
❑Given a �xed DAC D of the edge set of G� into cycles, we de�ne a cyclecomponent as a connected component of the graph where the nodes are the edges(chords and breaks) and a pair of edges is connected if either 1) they are in thesame edge component, or 2) they belong to the same cycle from D.Observation 4 The union of chords of a cycle components, including their end-points, forms a connected set.Proof. By the de�nitions of edge components and chord components the unionof chords that belong to one edge component is connected even without includ-ing their endpoints. Now consider two consecutive edges on a cycle, say a breakf�i�1; �ig 2 C1 and a chord f�i; �i + 1g 2 C2, where C1 and C2 are edge compo-nents. Then chord f�i; �i � 1g belongs to C1, so after including the point �i theunion of the chords of C1 and C2 is connected.
❑This observation allows us to apply Observations 1, 2, 3, and Lemma 1 to chordset of a cycle component in the same way as to a chord component. In particular,



8for a chord component C we can de�ne A(C) = A(C \ chords) and the neighbor-crescents. If C;C1; C2 are cycle components and A(C1) and A(C2) are containedin two di�erent neighbor-crescents of C, then we say that C separates C1 and C2.A cycle is oriented if it contains a chord fi; i+ 1g and in each of the crescentsCr(i; i+1), Cr(i+1; i) it contains a break incident to fi; i+1g. A cycle componentis oriented if it contains an oriented cycle, or if it consists of two edges only. Notethat a cycle of two edges is always a separate singleton cycle component|this isthe case when its chord is short.A hurdle is an unoriented cycle component that does not separate two otherunoriented cycle components.2.2 Breaking cycle components into edge componentsOur cost is the number of breaks minus the number of ACs plus the number ofhurdles. To minimize the cost, we need to maximize the number of ACs in ourDAC, while simultaneously minimizing the number of hurdles. We would like toseparate those two tasks as much as we can.In our quest for a small number of reversals, we will �rst maximize the numberof cycles found in each edge component. We will show soon that by restrictingourselves to ACs contained in a single edge component, we are not decreasing thenumber of ACs in a decomposition, and sometimes we can even increase that num-ber. However, this restriction may increase the number of hurdles. The amortizedanalysis introduced in the next subsection shows how to take care of these extrahurdles. In at account the increase in the number of cycles that may result fromour restriction.Let us consider now an optimum DAC C and a neighbor-crescent Cr(i; j) of achord component X. By Lemma 1 we can partition all edges into two ACs A andB, where A is the set of edges contained in Cr(i; j). We will modify C so thatevery cycle C 2 C will satisfy C � A or C � B.By de�nition, i and j are the only nodes that belong simultaneously to edgesof A and B. Consider C 2 C such that C \A 6= ∅ and C \B 6= ∅. Because C isconnected, without loss of generality we may assume that both C \A and C \Bcontain at least one edge that contains i.We will distinguish now between several cases.Odd case. Suppose that i belongs to exactly one edge of C\A. Because everynode in Cr(i; j) other than i and j must belong to an even number of edges of C,this means that j also belongs to exactly one edge of C\A. Note that i belongs totwo other edges that in turn belong to another cycle of D 2 C, and D has exactlythe same properties: i.e. for C 2 fC;Dg, A 2 fA;Bg and i 2 fi; jg there existsexactly one edge of A \C that is incident to i. We consider two subcases.



9Odd Group case. For some k > 2 there exists a cycle of nodes i = i0; i1 =j; : : : ; ik = i0 and a sequence of chord componentsX0; : : : ;Xk1 such that Cr(il; il+1)is a neighbor-crescent of Xl. Let Yl be an AC formed from the edge component ofXl and other edge components that are not contained in Cr(il; il+1). By applyingabove argument inductively, one can see that for C 2 fC;Dg, A 2 fY0; : : : ; Ykgand i 2 fi0; : : : ; ikg there exists exactly one edge of A \C that is incident to i.Thus we can replace cycles C and D with k cycles of the form (C [ D) \ Yl.We associate k� 2, the resulting increase in the number of cycles with the convexpolygon bounded by the polyline (i0; i1; : : : ik = i0).Odd Pair case. Same as the Odd Group case, but for k = 2, so we have noassured increase in the number of cycles.Even case. When the premise of the Odd Case does not hold, then bothC \ A and C \ B is an AC (or a union of ACs, because such an edge set maybe disconnected). Therefore we can replace C with these intersections and themodi�ed DAC surely has more cycles. We can associate 1 with node i as the lowerbound on the increase in the number of cycles.2.3 Amortized analysisThroughout the paper, we will use potential analysis to assure that we obtain thepromised approximation ratio. For every unit of the cost of the optimum solutionwe can place 11/8 of the potential units, and for every unit of the cost of oursolution, we place �1 of the potential units. We deliver a desired solution if thesum of the placed potential units is non-negative. At many stages of the analysis,we add and subtract the potential units in various parts of our structure; such amove is valid if we assure that the sum of additions does not exceed the sum ofsubtractions.Each break contributes 1 both to the cost of the optimum solution and the costof the solution obtained by our algorithm. Thus we can place 11/8 � 1 = 3/8 oneach break.Each AC of the optimum solution contributes �1 to the optimal cost, so wecan place �11/8 on this cycle. However, when the ACs of the optimum solutionspan more than one edge component, we break them as described in the previoussubsection.After the break-up, the maximal number of cycles misrepresents the true num-ber in the optimum, to account for that we place the corrective amounts of units.Initially, we place them as follows: in Odd Group case with k chord componentswe place 11/8(k� 2) on the polygon that separates these components, in Odd Paircase that increases the number of cycles we place 11/8 on the chord separating thetwo components, and in Even Case we place 11/8 on a separating node. Once the



10break-up is complete, edge components incident to objects with corrective unitsshare those units evenly. The least possible share occurs for Odd Group case withk = 3 and it equals to 11/24.Because of the break-up, we lost the account of the hurdles in the optimumsolution, so we do not take them into account, this can only decrease the totalbalance of the potential. At each edge component that we estimate to be a hurdlewe place �1 unit. The estimation method does have to be correct, the only re-quirement is that we will have at least as many estimated hurdles as we have theactual ones. In particular, we will estimate every edge component with at least 5breaks to be a hurdle.2.3.1 Small edge componentsWe �rst analyze the case when C contains only a few edges, in which case ouralgorithm can �nd a maximum DAC of this edge component. As a result, onevery cycle from the modi�ed optimum solution we may place 1. We will establishthe situations when such a maximum DAC of C is not good enough to assureour approximation ratio, i.e. when the resulting balance of the potential in C isnegative when we estimate that C is a hurdle.An AC with i breaks will be called an i-cycle. On each cycle of C we have put�11/8 and 1 for the balance of � 3/8; because each break has a balance of 3/8,the balance of an i-cycle C is 3/8(i� 1) = 3/8w(C).The overall balance of C equals the sum of its cycle balances 3/8w(C). Fromthis sum we subtract 1 when we estimate C to be a hurdle.Observe that a 1-cycle forms an edge component by itself (let us call it a em 1-component), and this component cannot be a hurdle, because this cycle is oriented.Thus the balance of such a component is 0. Later we may assume that C containsno 1-cycles.Consider that C consists of k cycles C1; � � � ; Ck. When we estimate C to be ahurdle, its balance is 3/8w(C) � 1; so it is negative only if w(C) � 2. Clearly, itsu�ces to consider the following cases:(a) k = 1; w(C1) = 1, balance equals � 5/8;(b) k = 1; w(C1) = 2, balance equals � 1/4;(c) k = 2; w(C1) = w(c2) = 1, balance equals � 1/4.Case (a): C consists of a single 2-cycle C. Then the two chords of C mustinterleave (they form an edge component), it is easy to see that in this case eachof two chords of C has one break of C contained in each of its two sides. Weconclude that C (and C) is oriented, so it cannot be a hurdle, and we do not have



11to subtract 1.Case (c): C consists of two 2-cycles. If one of the 2-cycles is oriented, the entireC is oriented and we do not estimate it to be a hurdle.Fig. 2.3.11 shows that is these two cycles have two nodes in common, there existsan alternative decomposition which changes C into two oriented cycle componentstherefore we can assume that the two 2-cycles of C share at most one node.(i) unoriented (i) oriented (ii) unoriented (ii) orientedFigure 1: Examples of an unoriented cycle component of weight 2 andof oriented cycle components formed from the same edge sets.One can show that in this case we can give C a part of positive potential createdwhen we broke cycle components of the optimum solution into edge components.Suppose that C is also cycle component in the optimum solution | then this is anunoriented component of the optimum solution, so we do not attribute creatinga hurdle in our DAC to C. Otherwise, consider the last component breaking stepinvolving C, if this was not an Odd Pair case, C has received at least 11/24 correctiveunits and its total potential balance is 11/24 � 1/4 > 0. Now consider Odd PairCase. C was intersected by two ACs from the optimum solution, say C and D,and we replaced them by another two cycles, one being E = (C [ D) \ C. Abrief inspection shows that in this case we have E = C, and thus we can furtherdecompose D into two cycles, which provides a corrective term of 11/8 and thusthe total balance of C is positive.We can formulate our rule for estimating hurdles: (i) if w(C) > 2, we estimateC to be a hurdle (and we count them as unoriented). Apart from that, we estimatehurdles according to the de�nition.If estimated hurdle falls in case (b) or (c) and we can show that either it isalso an cycle component of the optimum solution, or it receives corrective units ofpotential when we account for the increased number of cycles, then the balance ofC is positive. We have just shown that case (c) is always in this situation.Case (c): if the balance of C is negative, it is a hurdles and it does not receiveany corrective units.1In our �gures, we place the nodes on a straight line, so that the breaks become short straightsegments and the chords become arcs.



12(a) (b) (c)Figure 2: Unoriented cycle components of weight 2. In case (b), if oneof the outer sides of the component contains only one 1-component,then we can turn these two components into one oriented componentof weight 2Component C has three neigbor crescents and at most one neighbor containsan estimated unoriented component.We total the balance of C and its neigbor crescents that contain oriented com-ponents only. If even one of these components, say D, has w(D) > 0, then thesum of balances is at least 3/8� 1/4 > 0. IN this case we say that C is rich. Thuswe can assume that the "oriented" neighbor-crescents contain only 1-components.If an oriented neighbor-crescent contains exactly one such component, we changethe solution as shown in Fig. 2.3.1bc. If this change turns another component, sayD, into a hurdle, than clearly D is rich.We are left with the case when each oriented neighbor-crescent contains mul-tiple 1-components. In this case there exists an optimum solution where no cycleoverlaps both C and one of this 1-components (this fact follows from the discus-sion of the Odd Group case and Even Case). If all three neighbor-crescents areoriented, we actually get an optimal solution. Thus were can additionally assumethat C has one unoriented neighbor-crescent Cr(i; j) which forms Odd Pair casewith C, hence the chordal segment fi; jg separates the area of C from the area ofanother edge component, say D. We say that C is a child of D.If w(D) = 1, then D has but one child, and we add the balances of C and D.If w(D) = 2, then D has at most 4 sides, thus at most 3 children, the balance ofD is 3/4 and each child has balance � 1/4, so again, we add the balance of D tothe balances of its children. Thus it remains to consider the case when w(D) > 2and thus D is unconditionally estimated to be a hurdle.Within that parent component D we must have a plausible single cycle E thatwas created in D during the breaking step of Cr(i; j).We introduce the following terminology for such a situation: cycle E is a ab-sorber and the cycle/component C is a little hurdle. We say that absorber E absorbslittle hurdle C.



132.3.2 Catalogue of cycles with negative potentialWe transfer the negative potential of the little hurdles to the respective absorbers.Now the entire potential is contained in the cycles contained in the chord com-ponents that are estimated to be hurdles. Our task is to �nd enough ACs andto absorb enough little hurdles to create the nonnegative balance of the potential.Obviously, we can ignore the cycles of the optimum solution that have non-negativepotential. Therefore we need to establish which ACs have negative potential.Consider an i-cycle from the optimum solution. If it is not an absorber, thenits potential is 3/8(i�1)�1, so for i = 2; 3; 4; 5 this potential is � 5/8, � 2/8, 1/8and 4/8 respectively. Thus only 2-cycles and 3-cycles have negative potential.Now consider a (i; j)-absorber which we de�ne to be an (i+j)-cycle that absorbsj little hurdles. Its balance is 3/8(i+ j � 1)� 1/4 j � 1 = 3/8(i� 1) + 1/8 j � 1.Note that this covers the case of ordinary i-cycles that will be considered as (0; i)-absorbers.Since (i; j)-absorber of the optimum solution has potential balance 3/8(i �1) + 1/8 j � 1, the absorbers with negative potential are (1,j)-absorbers for j � 7,(2,j)-absorbers for j � 4 and (3,1)-absorbers. As we will show, only (2,1)- and(3,1)-absorbers actually exist.Consider absorber C of j little hurdles H1; : : : ;Hj there exists a DAC of C [H1 [ : : :Hj into j + 1 ACs, each of them intersecting both C and one or more ofthe little hurdles. We say that this is a decomposition into good ACs.Consider a good AC D that intersects a little hurdleH. One can see that D\Hmust be a path of three edges, which we will call a long segment. The edges of Cshall be called short segments.The variety of possible absorbers is restricted by the following two lemmas.Lemma 3 A good cycle must contains both kinds of short segments, i.e. at leastone break and at least one chord.Proof. Consider a little hurdle that is contain in the crescent Cr(k; l) of theabsorber. One cans see that at every node inside Cr(k; l) there are two incidentchords that are contained in Cr(k; l), and that at k and l there is exactly one; thuschords form a simple path from k to l. The same holds for the breaks. Thus along segments that go from k to l can be replaced by a path within the crescentthat contains only chords (or only breaks).Suppose now that there exists a good cycle where each short segment is a chord.Then the long segments can be replaced by the path that consists of chords only,which yields a cycle of chords. Because not all nodes lie on this cycle, this is acontradiction. The same holds if all short segments are breaks.
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❑Observation 5 A good AC with k long segments contains at least k + 2 shortsegments.Indeed, the number of segments has to be even, and the long segments cannot beconsecutive, as they are never incident to each other. Thus were there only k shortsegments, every stretch of short segments would have but one edge, thus all theseedges would be of the same kind.From that we immediately deduceObservation 6 An absorber of j hurdles contains at least 2j + 1 breaks.Indeed, such an absorber C together with its little hurdles can be decomposedinto j + 1 good cycles that together have 2j long segments, thus according to theprevious observation these good cycles must contain at least 4j+2 short segments,and since half of these short segments are breaks, 2j + 1 breaks.Now we can showObservation 7 (1; j)-absorbers exist only for j = 0 and (2; j)-absorbers exist onlyfor j � 1.Indeed, for j � 1 a (1; j)-absorber would have j + 1 < 2j + 1 breaks, and forj � 2 a (2; j)-absorber would have j + 2 < 2j + 1 breaks, a contradiction.It is worthwile to note that besides the fact that the variety of possible ab-sorbers is quite restricted, the shapes of (2,1)-absorbers and (3,1)-absorbers arequite restricted as well, as we can see in Fig. 2.3.2.a b cf e d a b c df e a b cf e d(a) (b) (c)Figure 3: Conceivable (2,1) absorbers, the hexagons indicate the posi-tion of the little hurdle, edge colors indicate chords and breaks. Only(a) can exist, (b) and (c) cannot be decomposed into 2 good cycles.



152.3.3 When DAC of a large edge component is good enoughDAC found by our algorithm is good enough if it assures that the balance ofthe component in question is nonnegative. In a large component, we will requirethat the sum of balances of ACs of the optimum solutions and ACs found by ouralgorithm is at least 1, so we can create a hurdle and still have a nonnegativepotential.We de�ne function � such that if C is an AC from the optimum solution,then ��(C) is the potential that C contributes to the overall balance of its edgecomponent. We can view a regular i-cycle as a (i; 0)-absorber, in the previoussubsection we calculated that�(C) = 1� 3/8 i+ 1/8 j for an (i; j)-absorber C:In turn, when our algorithm �nds an (i; j)-absorber C for its solution, thisdecreases the resulting cost by 1 + j: 1 for the AC in the decomposition and j forthe decrease in the estimate on the number of hurdles in its solution. Thus we cande�ne 
(C) = 1 + j:Consequently, if I is a DAC of the edge component under discussion that isfound by our algorithm, and I� is an optimal DAC of that component, the conditionby su�ciently good I is 
(I) � �(I�) + 1. Let ni;j be the number of (i; j) absorbers in the optimum DAC. We can rewritethe above condition as follows:
(I) � 1 + 5/8 n2;0 + 2/8 n3;0 + 4/8 n2;1 + 1/8 n3;1:Finding DAC I for a given edge component with the above property is GoodDecomposition of a Component problem, or GDoaC for short.2.3.4 When a non-overlapping collection of ACs is good enoughWe will solve GDoaC problem usining somewhat simpler GEDSAC problem:given: an edge component C;�nd: a good edge disjoint set of ACs, where a set I is good if it satis�esg(I) � 5/8n2;0 + 2/8n3;0 + 4/8n2;1 + 1/8 n3;1:A solution I of GEDSAC may provide a solution of GDoaC: if I does not coverall the edges of the considered edge component C, then the remaining edges form



16an extra AC, and thus we are getting a DAC that solves GDoaC. So it remainsto consider when I covers all the edges of C, so it is a DAC, and yet fails to be agood decomposition. Assuming that the component contains m breaks, we have
(I) � 1/3m (this inequality is tight if all ACs in I are 3-cycles). On the otherhand, �(I�) � 5/16m (this inequality is tight if all ACs in I� are 2-cycles). Thus
(I) � ( 1/3� 5/16)m+ �(I�) = 1/48m+ �(I�):We conclude that if an edge component has at least 48 breaks, then a solutionof GEDSAC immediately yields of solution of GDoaC, and as we have alreadyestablished, for 2 < m < 48 breaks it su�ces to solve GDoaC problem exactly.2.4 AlgorithmWe can summarize this section in the form of an algorithm for MIN-SBR problem.1. Input permutation �.2. Form graph G�.3. Decompose G� into edge components, establish which consti-tute small hurdles.4. For each large edge component(i) Establish (2,1)- and (3,1)-absorbers.(ii) If the component has fewer than 48 breaks, solve exactlyGDoaC problem, else(iii) Solve GEDSAC problem and add the cycle formed fromedges not covered by the solution.5. Combine DACs of edge component into a single DAC of G�,re-partition the absorbers and their little hurdles to decreasethe number of hurdles.6. Use this DAC to de�ne a spin �0 of � and apply the algorithmof Hannenhalli and Pevzner [HP95] to �0.



173 Simplifying the input of GEDSACLet Vi;j be the set of (i; j)-absorbers, V2 = V2;0[V2;1, V3 = V3;0[V3;1, V = V2[V3and let E be the set of edge overlapping pairs of cycles from V. Then a solutionof GEDSAC is an independent set in G =< V; E >. Thus GEDSAC is a kind ofmaximum independent set problem.In general, we can easily approximate an maximum independent set in twosituations: there is a bound on the number of neighbors that a node may have, orthere is a bound on the number of independent neighbors. In this section we willdescribe an algorithm that simpli�es G so that later independent set techniqueswill be easier to apply.In the remainder of the paper, we will use the following set-theoretic notation.We use N(a) to denote the set of neighbors of node a, N(a;B) to denote N(a)\B,and N(A;B) to denote [a2AN(a;B). We also use G[U ] to denote a subgraph ofG that is induced by the node set U .Given a subset U of V we we de�ne �(U) to be the maximum value of �(I)where I � U is an independent set. If I� is an independent set and �(I�) = �(G),we say that I� is an �-MIS (a Maximum weighted Independent Set when � is theweight function).A graph < V;E; � > is a abstract breakpoint graph if � : E ! fb; gg is an edgecoloring function (we choose our colors to be black and gray) and the followingtwo conditions are satis�ed:1. < V;��1(c) > is a collection of simple paths for c = g; b;2. every node has the same number of neighbors in < V;��1(b) > and in <V;��1(g) >.Moreover, we have a set H of disjoint pairs of nodes from V that have degree 2,these pairs are the abstract little hurdles.It is easy to see that an edge component, as introduced in the previous section,forms an abstract breakpoint graph if we refer to the breaks as the black edgesand to the chords as the gray edges. Note that now we do not have the case whenthe same node pair is a gray edge and a black edge (it is unnecessary, because itsuch edge/pair of edges forms a separate edge component).We de�ne alternating cycles, i-cycles and DAC for abstract breakpoint graphsin the same manner as before. We distinguish a set Vi;1 of (i+1)-cycles as abstract(i,1)-absorbers, these cycles must contain a pair of nodes that belong to an abstractlittle hurdle, and are separated by a path of 3 edges. We use Vi;1 to denote the setof (abstract) (i; 1)-absorbers.



18We de�ne the overlap graph < G; E > as before, however, we change the func-tions 
 and � by multiplying them with 8, so they will have integer values. Interms of the new terminology, the task of GEDSAC is to �nd an independent setI such that 
(I) � �(V).3.1 Simpli�cations of V2The goal of this section is to reduce GEDSAC to the case when G2 = G[V2] is agraph of degree 4.We will simplify the overlap graph by selections and eliminations.A selection is to to pick a small independent set I0 and de�ne V 0 = V � I0 �N(I0;V); afterwards we will �nd an independent set I in G[V 0] and return I0 [ I.A selection is valid if 
(I0) � �(V)� �(V 0).An elimination removes a set S from V and is valid if �(V � S) = �(V).When we prove validity of a selection or an elimination, we may apply thefollowing game. The opponent chooses I�, an independent set in G. We modifyI� so that �(I�) does not decrease, and then we show J � such that I��J � is anindependent set in the reduced G. Our score is 
(I0) (or 0 in elimination case).The opponent's score is �(J �).3.1.1 Simplifying V2:1Consider a cycle u 2 V2;1, we may assume that u is (a; b; c; d; e; f 	) from Fig.2.3.2a. The simplest selection rule isSingle selection rule: if �(N(u;V)) � 
(u), make the selection offug.In our case, 
(u) = 16.We prove the followingLemma 4 After applying Single selection rule, each u 2 V2;1 has at most 4 neigh-bors in V2.Proof. Cycle u has two node that have degree 2 that form an abstract littlehurdle, namely b and e. Suppose that another node on this cycle has degree 2, sayc. Then an overlap of u with another AC is one of the paths (a; b; c; d), (d; e; f) and(a; f), or a union of these paths. Clearly, in this case �(N(u;V)j � 5jN(u;V)j �15 < 16 = 
(u). Thus in V after applying Single selection rule, then only b and ehave degree 2.



19More precisely, we may assume that u has 4 non-overlapping neighbors in V,and that these neighbors have the following overlaps with u: (a; b; c), (c; d), (d; e; f)and (a; f), let us call these neighbors va;c, vc;d, vd;f and va;f .Now suppose that there exist a gray edge (a; d). This edge must belong to vc;dand to va;c, a contradiction because these two ACs were assumed not to overlap.Non-existence of other diagonal edges follows from symmetric arguments.Consequently no AC from V2 can overlap u on two of the paths (a; b; c), (c; d),(d; e; f) and (a; f). A 2-cycle would have to have a 4th edge forming a diagonal,and diagonals do not exist. A 3-cycle from V2;1 would contain either b or e as itsthird degree 2 node, and this is not possible either.At this point, we can conceive one possibility for u to have more than 4 neigh-bors in V2: two of them have the same overlap with u. Suppose that (a; b; c) isthis overlap. Then none of the two neighbors can be a (2,1)-absorber, because bwould be its third node of degree 2. Thus we got that 2-cycles, (a; b; c; g	) and(a; b; c; h	)). Because a is incident to two gray edges only, g = h, so this is oneand the same cycle.Suppose that (a; f) is this overlap. If one of the neighbors is a (2,1)-absorber,it must have the form (a; b0; c0; d0; e0; f 	) where b0 and d0 are dgree 2 nodes, inthis case both neighbors must share the path (c0; b; a; f; e0; d0) and thus they areidentical. If both neighbors are 2-cycles, the argument is similar.
❑3.1.2 Double tanglesSimpli�cation of V2;0 requires the use of several rules. In this subsection we willshow the validity of the �rst one.Double tangle selection rule: If G contains an induced subgraphas shown in Fig. 3.1.2, make selection of I0 = f(a; b; a; b	); (b; c; b; c	); (c; d; c; d	)g. a b c d a b c da b c d a b c dFigure 4: A double tangle, note two possible representations.



20Before we prove the validity of Single selection rule, we will prove a lemma thatmakes this proof simpler and which is also used later.Lemma 5 Assume that (i) I� � V is an independent set that maximizes �(I), (ii)a 2-cycle u contains no nodes of degree 2 and (iii) u is contained in a union of twoelements of I�. Then there exists an independent set I 0 � V that also maximizes�(I) such that u 2 I 0.Proof. Assume that u � v0 [ v1 (here we view the cycles as edge sets). Wecan modify I� by replacing v0 and v1 with u and u1 = (v0 [ v1)� u. Because thevalue of � is a linear combination of the numbers of cycles, breaks and absorbedlittle hurdles, we have �(fv0; v1g) = �(fu; u1g) unless the number of absorbed littlehurdles changes in the process. Obviously, we worry only in this number decreases,which means that fv0; v1g contains more absorbers than fu1g.Consider the case when v0 2 V3;1 and v1 2 V2;0 and to show that u1 2 V3;1.Clearly, u1 is a 4-cycle, and we need to show only that u1 absorbs the little hurdleof v0. Let h be the abstract little hurdle absorbed by v0; none of the nodes of hbelongs to u because u has no nodes of degree 2, thus both of them are in v0�u. Asa result, one of the paths that connects h inside u1 is contained in v0 and thereforeit has a correct length. We conclude that u1 absorbs h.The case when v0 2 V2;1 and v1 2 V3;0 is similar (we need to observe thatu \ v0 is a single edge). When v0 2 V2;1 and v1 2 V3;1 then �(u) = �(fv0; v1g)so I 0 = I� � fv0; v1gcupfug. The case v0; v1 2 V2;1 is not possible because anintersection of u with an element of V2;1 can have one edge only.
❑When we apply Lemma 5, we say that cycle u is forced.Lemma 6 Double tangle selection rule is valid.Proof. Let v0 = (a; b; a; b	), v1 = (b; c; b; c	), v2 = (c; d; c; d	) and I0 = v0 [v1[v2. Let J � be the set of those cycles in I� that overlap I0, i.e. J � = N(I0;I�).It su�ces to show that �(J �) � 24 = 
(I0).First we show that jJ �j � 5. Note that jI0j = 12. An intersection of an AC uwith I0 is either u itself, or a path between two contact nodes a; a; d; d. One cansee that such an intersection has at least 2 edges, and the that there are only 4paths of 2 edges. Thus 4(jJ �j � 4) � 12 � 4 � 2, implying jJ �j � 5.Since jJ �j � 5, the only possibility for �(J�) > 24 is when jJ �j = 5 andJ � � V2;0.One can see that a 2-cycle that contain edge (b; c) must be contained in I0: theonly conceivable 2-cycle not contained in I0 is (a; b; c; d	), but it would imply that



21(a; d) is a black edge and thus we have a black cycle, a contradiction. Thus theintersection of u 2 N(I0;V2;0) with I0 that contains (b; c) must have 4 edges. If weanother intersection of 4 edges, 2jJ �j+ 4 � 12 and jJ �j � 4.Because we can apply the same argument to all edges of v1, this cycle must becontained in I0.We are left with 8 edges of I0 that belong to exactly 4 intersections, thus (a; b; a)and (a; b; a) are among these intersections. By Lemma 5, this implies that we canforce v0, and, by symmetry, we can do the same with v2. Thus we can reduced theproblem to the case when J � = I0.
❑3.1.3 TanglesOur subsequent two rules deal with smaller induced subgraphs called tangles. Inthis subsection we will formulate these rules and show their validity. We assumethat the elimination rule can be applied only when selection rules cannot be.Tangle selection rule: If G contains an induced subgraph as shownin Fig. 3.1.3, and node a has degree 2, then make selection of I0 =f(a; b; a; b	); (b; c; b; c	)g.Tangle elimination rule: If G contains an induced subgraph asshown in Fig. 3.1.3, then remove the cycles (a; b; a; b	) and (b; c; b; c	)gfrom V. a b c a b c a b c a b ca b c c b a a b c c b aFigure 5: A tangle, note four possible representations.Let I0 be the edge set of the tangle. As before, J � is the set of the ACs fromI� that overlap I0. We start from the observation that any intersection of an ACwith I0 forms consists of one or of the following two alternating paths: (a; b; c),(a; b; a), (a; b; c), (a; b; a), (a; b; c), (a; b; a), (c; b; c), (c; b; c).Let u0 and u1 be the cycles selected by the Tangle selection rule. If a is a nodeof degree 2, than any AC that contains a must contain two of the above paths,



22one that starts with (a; b) and another that starts with a; b. Thus jJ �j � 3 and
(fu0; u1g) = 16 > 15 � �(J �), which shows that the Tangle selection rule isvalid.It is easy to see that if two di�erent tangles are not edge disjoint, then togetherthey form a double tangle, thus this is never the case when we apply Tangleelimination rule, so it cannot happen that di�erent applications of this rule removedi�erent cycles from the same tangle. It remains to show that we can modify I�without decreasing �(I�) in such a way that neither u0 nor u1 belongs to I�.Let v0 = (a; b; c; b	) and v1 = (a; b; c; a	)) be the 2-cycles contained in I0 thatare still in V after the application of the Tangle elimination rule. Suppose �rstthat I� contains both u0 and u1, then we can force v0 and v1. Finally to considerthe case when I� contains exactly one of the removed cycles, say u0. Then u1 iscontained in the union of two cycles of I� and because we did not apply Tangleselection rule, none of the nodes of u1 has degree 2. Consequently, we can forceu1, and later we can again force v0 and v1.3.1.4 Possible sets of neighbors of a 2-cycle in G[V2]Now we will inspect possible sets of neighbors inside G[CV2]. in G[V2;0]. A neighborcan share one edge, and then we will call it a straight neighbor at this edge, ortwo adjacent edges, and then we will call it a corner neighbor at this corner (thenode where the common edges meet). Fig. 3.1.4a shows the straight neighbor of a2-cycle u = (a; b; c; d	) at edge (a; b) and the corner neighbor at c. We start withObservation 8 A 2-cycle can have at most one straight neighbor at each edge andat most one corner neighbor at each corner.a db c ab dc ab dc ab dc cb(a) (b) (c) (d)Figure 6: Various neighbor sets of 2-cycle (a; b; c; d	).As it su�ces to discuss eight possible neighbors, we can denote the cornerneighbors with va; vb; vc; vd and the straight neighbors vab; vbc; vc;d; vad. We will



23show that not all combinations of these neighbors are possible. First we add thefollowing selection rule.Double selection rule: if w[x is connected, w and x do not overlapand �(N(fw; xg;V)) � 
(fw; xg), make the selection of fw; xg.The next two observations restrict the possible neighbors if one of the neighborsis an absorber.Observation 9 If va is a (2,1)-absorber, then vb, vc, vd, vab and vad do not exist.Proof. From the only possible form of a (2,1)-absorber (see Fig. 2.3.2), one cansee that a must be one of the nodes of the abstract little hurdle, so it has degree2. The existence of vab, vad, as well as the corner neighbors vb, vd would requirea to have some other neighbor besides b and d. It remains to discuss vc. We willa db ce fg h g hi ja db ce f(a) (b)Figure 7: Various corner neighbors of (a; b; c; d	), nodes of degree 2have the little circles missing.show that if vc exists, we can apply the Double selection rule to va and vc. Fig.3.1.4 illustrates two possible situations. An AC containing a black edge incidentto b must also overlap a gray edge incident to that node, and an AC containing ablack edge incident to d must also contain a gray edge adjacent to that node.Let I0 = fva; vcg and J � = N(I0;I�). In case (a) this means that an ACoverlapping I0 must contain one of the following 4 segments: (e; g; f), b; a; d),(b; h) and (d; h), hence �(J �) � 5jJ �j � 20 < 24 = 
(I0). In case (b) thismeans that an AC overlapping I0 must contain one of the following 4 segments:(e; g; f); (b; a; d); (b; i), (d; j) and (i; h; j), hence �(J �) � 5jJ �j � 25 < 32 = 
(I0).
❑Observation 10 If vab is a (2,1)-absorber then there are no corner neighbors vaand vb.



24This observation follows from the fact that va or vb would share three edges withthe absorber vab, which would imply a diagonal edge of the absorber, and thatmeans that vab is eliminated by the Single selection rule.In the next three observations it will be su�cient to consider exclusively neigh-bors of u that belong to V2;0, as the cases involving V2;1 are already discussed.To make Observation 11, suppose that u has corner neighbors at to cornersforming a diagonal pair, e.g., va and vc as in Fig. 3.1.4b. One can see that the theedges of va and vc form a tangle. Because we have performed Tangle elimination,and we assume that u is still a node of G[V2;0], we can conclude that va and vcwere both eliminated and they are not neighbors of u anymore. ThusObservation 11 If a 2-cycle has a corner neighbor at some corner, it does nothave one at the diagonal corner.Observation 12 is similar. Suppose that u has straight neighbors at two con-secutive edges, and a corner neighbor adjacent to the same pair of edges. Onecan see (comp. Fig. 3.1.4c) that in this case the edges of these neighbors form atangle. As a result, if G contains the corner neighbor, it does contains neither ofthe straight neighbors, and vice versa. ThusObservation 12 If a 2-cycle has a neighbor at some corner, it does not have astraight neighbor at one of the two edges adjacent to this corner.Now suppose that u has corner neighbors at b and c, (a;b;c;b	) and (b; c; d; c	)respectively (see Fig. 3.1.4d). Then, if we add a straight neighbor at fb; cg we willclose black cycle (b; a; d; c	) which is not possible in a breakpoint graph. ThusObservation 13 If a 2-cycle has corner neighbors at two adjacent corners, it doesnot have a straight neighbor at the edge that joins these corners.While it is still possible for a 2-cycle u to have �ve neighbors in G[V2;0], we canrestrict this situation to one case only. First, it is necessary that u has at leastone corner neighbor, because there can be only four straight ones (Observation 8).However, if there is a corner neighbor, there are at most three straight neighbors(Observation 12), so it is necessary that u has at least two corner neighbors. How-ever, a corner neighbor excludes another corner neighbor at the diagonal corner(Observation 11), so the only way to have at least two corner neighbors is to haveexactly two, at adjacent corners, say va and vb. Because there is no vab (Obser-vation 13), the other straight neighbors, vbc; vc;d and vad must exist. Fig. 3.1.4ashows this situation.Note that vcd can be a (2,1)-absorber, but va; vb; vbc and vad cannot, becauseeach of them has a corner neighbor.



25e a b j e a b j mk d c i n k d c i lg h g h(a) (b)Figure 8: 2-cycle (a; b; c; d	) with �ve neighbors. Solid lines indicatepossible commitments.3.1.5 Eliminating 2-cycles with �ve neighborsTo eliminate a 2-cycle with �ve neighbors, we asume that it is u = (a; b; c; d	)and that N(u;V2) = fva; vb; vad; vbc; vcdg. We will formulate three selection rulesin terms of this notation. The �rst one is the following:Fig. 3.1.4 absorber selection rule: if vcd 2 V2;1, select I0 =fva; vbc; vcdg. selection of fw; x; yg.To argue the validity of this rule, we can assume that vcd = (c; d; g0; g; h; h0 	)where fg0; h0g is the abstract little hurdle of (2,1)-absorber vcd. Consider a non-overlapping set J � N(I0;V). Observe that every element of J must containeither (g; h) or an edge of the path (b; k; d; c; i; j). For example, if an AC contains(b; j), then it either contains (b; k) | and we are done, or (b; c). In the later casethis AC must contain one of the edges of (d; c; i). We conclude that jJ j � 6. ThusFig. 3.1.4 absorber selection is valid: 
(I0) = 32 > 6 � 5 � �(J ).If vcd 2 V2;0, we have 
(I0) = 24. We could also apply Fig. 3.1.4 absorberselection rule, and start the argument in the same way, but 24 < 30 and theargument may fail. Nevertheless, we will establish that there is only one casewhen such a rule would fail, and the will lead to the formulation of two valid rules.In other words, we want to �nd out when for every non-overlapping set I� suchthat �(I�) is maximal we have �(J �) � 25 for J � = N(I0;V).Suppose that there exists a black edge (j; h). Then we cannot have a blackedge (e; g) as it would close a black cycle. We will assume that the black edge(e; g) does not exists, otherwise we would swap node names a$ b, e$ j, etc.In our case analysis we use a notion of a portal, a node incident both to edgesfrom I0 and to other edges, and of a crossing, a pair of edges that are incident tothe same portal, with di�erent colors, one in I0 and one not. A crossing is used ifit is contained in a cycle from I�.



26Case 1: jJ �j = 6.Case 1.1: all 6 cycles of J � overlap I0 but none is contained in I0.In this case at least 6 cycles contain two crossings each for the total of 12crossings; because each portal is in the middle of exactly two crossing and thereare 6 portals|nodes a; k; g; h; i and j|every crossing must be used. Consider edge(a; i), it is contained in crossings (a; i; c) and (b; a; i), thus a cycle from J � containspath (b; a; i; c) and we can force cycle vb = (b; a; i; c 	). Now consider crossing(e; a; d); if the cycle of J � that contains (e; a; d) contains (e; a; d; k), another cycle ofJ � contains path (g; d; c; h), which means that we can force cycle vcd = (g; d; c; h	)) and thus exit Case 1. On the other hand, if the cycle containing (e; a; d) contains(e; a; d; c), we can force u = (a; b; c; d	) and exit Case 1.1 in this way.Case 1.2: exactly 5 cycles from J � overlap I0 but are not contained in I0. Thenthey leave only one portal to be used by the cycle that is contained in I0 (thesixth element of J �), and because we must use b; c; d and one other node, cycleu = (a; b; c; d 	) is the only possibility. Since we eliminated crossings centeredat portal a, the remaining 10 crossings must be used. The cycle of J � containingcrossing (a; i; c) must contain path (e; a; i; c; h) and it cannot be a 2-cycle (otherwisee = h and we have a gray cycle). The cycle of J � that contains crossing (e; k; d)must contain path (e; k; d; g) and it cannot be a 2-cycle either, because fe; gg isnot a black edge. Because we have found two 3-cycles in J �, �(J �) � 24.Case 2: jJ �j = 5. Then �(J �) � 25 only if J � � V2;0.Case 2.1: u 2 J �. Then the cycle containing (g; d) also contains path (g; d; k),and because (g; e) is not a black edge, it cannot contain (g; d; k; e) and be a 2-cycle;thus it continues as (g; d; k; b; j). If this is a 2-cycle, we have g = j, and hence graycycle (j; i; a; d	), a contradiction.Case 2.2: u 62 J �. Because a 2-cycle containing (c; d) belongs to J �, we musthave vcd 2 J �. J � also contains a 2-cycle with edge (a; b). If this is va, then edgesof vbc must belong to three cycles, impossible. Thus vb 2 J �, and fa; dg mustbe contained in vad. The remaining two 2-cycles must contain paths (f; b; j) and(i; j), let us call them w and x, and their existence implies the con�guration fromFig. 3.1.4b.Our conclusion is that the following rule is valid:Fig. 3.1.4a selection rule: if con�guration from Fig. 3.1.4a is not apart of a con�guration from Fig. 3.1.4b, select I0 = fva; vbc; vcdg.To complete the elimination of 2-cycles with 5 neighbors in V2 it remains to showthe validity of our �nal ruleFig. 3.1.4b selection rule: if there exists a con�guration from Fig.3.1.4b, select I1 = fvad; vb; vcd; w; xg.



27We have 
(I1) = 40, so to show that �(J �) � 
(I1) it su�ces to prove thatjJ �j � 8. Let I1 be the edge set of I1. We have two cases.Case i: at least six cycles of J � are not contained in I1. Because I1 has six portals,as in case 1.1, there must be exactly six such cycles, and the remaining cycles canuse only edges between the inner nodes, a; b; j and k; d; c; i. There are at most twoof them, because they must overlap path (a; b; j).Case ii: exactly m � 5 cycles of J � are not contained in I1. Then the cycles ofJ � that are contained in I1 together have at most 20 �m edges, hence there areat most b(20 �m)=4c of them. Therefore jJ �j � m+ 5 � dm=4e � 8.We can summarize this section with the following theorem.Theorem 2 Given V2;0;V2;1;V3;0 and V3;1 de�ning an instance of GEDSAC prob-lem, we can in linear time �nd an equivalent instance for which G[V2] is a graphof degree 4.3.1.6 Simpli�cation of G[V3;0]Suppose that a 3-cycle w contains three edges of some 2-cycle u. Then given anon-ovelapping set I� such that w 2 I�, we can insert u and remove w, pluspossibly another AC, say x, that overlaps the fourth edge of u. If x does not existsor x 62 V2;0, then �(I�) increases. Because we do not have to consider cycles thatdo not belong to some I� with maximal �(I�), the following rule is valid:3-cycle elimination rule: if w 2 V3;0, u 2 V2;0, w and u share threeedges and N(u;V2) � N(w;V2), then remove w from V.3.2 GEIS | Good enough independent set problemOur goal is to form a more abstract problem in which we do not know that aselected set of objects consists of cycles and that the dependency edges are cycleoverlaps. The input to this problem will be a graph G with the following basicproperties:1. set of nodes V has four parts, V2;0; V2;1; V3;0; V3;1 (where Vi = Vi;0 [ Vi;1);2. G[V2] is a graph of degree 4;3. if S is an independent set, u 2 Vi and S � N(u; V ) then jSj � 2i;4. if u 2 Vi;j , then 
(u) = 8(j + 1) and �(u) = 8 � 3(i� 1) � j.



28The goal is to �nd an independent set I such that for every other independent setI� we have 
(I) � �(I�).Unfortunately, we did not succeed in that goal, and we need to require that anabstract overlap graph satis�es all the basic properties and two additional propertiesthat are more complex. In this section we will formulate this property and then wewill show that the overlap graphs resulting from the applications of the selectionand elimination rules of the previous section indeed satisfy this property,We start from the following de�nition:De�nition 1 Assume that I � V is an independent set.� mix(I; I�) = ffu;wg 2 E : u 2 I \ V2;0 and w 2 I� \ V3;0g;� A pair (u; u) is dangerous for I if for some I� with maximal �(I�), and,under this restriction, with minimal mix(I; I�) we have1. u 2 I \ V2;0, u 2 I� \ V2;0; 3. jN(u; V2)j = 4; and2. N(u; I) = fug; 4. jN(u; I� \ V3;0)j = 3;The motivation to consider the danerous pairs is the following: the amortizedanalysis of our algorithm for GEIS breaks down when there exist a dangerous pairfor the analyzed solution.We say that a pair (u; u) is 
ipped if we change I into I 0 = I � fug [ fug.We can always 
ip a dangerous pair, because condition 2 says that u is the onlyneighbor of u in I. We say that a 
ip is safe if (u; u) is not dangerous for I 0.Note that a 
ip can be safe even if (u; u) is not dangerous for I. We need to showthat (a) we have a condition that a dangerous pair must satisfy, and (b) if (u; u)satis�es this condition for I then (u; u) does not satisfy this condition for I 0. Inother words, our 
ips will destroy all dangerous pairs, without decreasing 
(I).Our condition will consist of two three parts..We say that (u; u) is awkward for I if u 2 I \ V2, u 2 V2 � I and (u; u)satis�es properties 2 and 3 of a dangerous pair. Clearly, a dangerous pair must beawkward, so if (u; u) is not awkward for I 0, the 
ip of (u; u) is safe. This happensif jN(u; V2)j < 4.If (u; u) is awkward and jN(u; V2)j = 4, then we say that A is a trouble for(u; u) if A � N(u; V ), A is independent, A\ V2 = fug and jA\ V3;0j = 3. Set A isa plausible N(u; V ) \ I�) from the de�nition of a dangerous pair.However, it may happen that it is impossible that A = N(u; V ) \ I�) for anindependent set with maximal �(I�) and minimal mix((I; I�). Thus we say thatan independent set B is a solution for trouble A if B [ N(B;V ) � A [ N(A;V )and either �(B) > �(A) or �(B) � �(A) and mix(I;B)< mix(I;A).



29c b cd a d c b cd a de(a) (b)u u u uFigure 9: Corner neighbors in a dangerous pair.If A = N(u; V ) \ I� than I� �A [B is also an independent set with maximal�(I�), but mix(I; I�� A [ B) < mix(I; I�) and thus A does not corroborate thefact that (u; u) is dangerous. We can conclude thatObservation 14 Pair (u; u) is dangerous for I only if it is awkward for I and ithas a trouble with no solution.If a pair satis�es the above condition, we say that it is troublesome for I. Nowwe can phrase the �fth desired property of the inputs to GEIS problem:5. If I is an independent set and (u; u) is troublesome for I, then (u; u) is nottroublesome for I � fug [ fug.We can postulate that the GEIS input satis�es property 5 because we can provethe following theorem.Lemma 7 After applications of the rules of selection and elimination the overlapgraph of an abstract breakpoint graph satis�es properties 1-5.Proof. Conditions 1-4 are obvious, so we will be proving only condition 5.Consider a troublesome pair (u; u).If jN(u;V2)j < 4, then (u; u) is not awkward, and as such, not troublesome.Therefore we may assume that u has 4 neighbors in V2. We will also assume thatu = (a; b; c; d	), u = (a; b; c; d	). The trouble for (u; u) is an independent set of4 neighbors of u, thus each of these neighbors overlaps u on exactly one edge. Wemay assume that A = fu;wad; wbc; wcdg, where each w is a 3-cycle that overlaps uon the indicated edge.The form of the neighbors of u in V2 is also restricted, as we show below.Lemma 8 If (u; u) is troublesome for I, then u has no neighbors in V2;1 and nocorner neighbors in V2;0.



30d a d d a d d a dc b c c b c c b ce f e e f eghij h g h(a) (b) (c)Figure 10: Neighbors of a troublesome pair (u; u).Proof. Supose �rst that u has a neighbor in V2;1, say v. If v and u share twoedges, say (b; c; d), then node c has degree 2 and that precludes the existence ofwbc and wcd. If v and u share one edge, say (b; c), then wbc and v share at least 5edges, not possible.Now suppose that u has a corner neighbor at d, for some e this 2-cycle equalsv = (a; d; c; e	) (see Fig. 3.2a). Then wad contains path (d; a; e) and wcd contains(d; c; e). This means that B = fu;wbc; vg uses only the cycle edges of A, while�(B) = 12 > 11 = �(11); thus B is a solution to trouble A, a contradiction.Finally suppose that u has a corner neighbor at b. One can see that this 2-cycle must contain the path (c; b; a; d) so it equals v = (c; b; a; d	) (see Fig. 3.2b).Then wbc must contain the path (b; c; d) while u contains (b; a; d). In this caseB = fv;w = u [ wbc � v;wad; wcdg is a solution to trouble A: it uses the same setof cycle edges, �(B) = �(A) and mix(B; I) = mix(A; I)� ffwbc; ugg.
❑Because each neighbor that u has in V2 shares exactly one edge with u, we canuse uad; ubc; ucd to denote these neighbors (while uab = u).If (u; u) is also troublesome, we would be able to de�ne, by analogy, the neigh-bors of u denoted uad; ubc; ucd; wad; wbc and wcd. Fig. 3.2a without the dashed edgesshows u and u together with their neighbors in V2;0.Consider 3-cycle wbc, it clearly shares three edges with ubc = (b; c; e; f 	) andbecause it is not a subject of 3-cycle elimination rule, there must exist a cyclev 2 V2 that does not overlap wbc but uses cycle edge (e; f).Suppose that v 2 V2;1, as in Fig. 3.2b where v = (e; f; g; h; i; j	), where fg; jgis a little hurdle. Because wbc is not a subject of 3-cycle elimination rule, theremust exist 2-cycle (e; f; g; h	), thus (e; h) is a black edge. Cycle wbc must contain



31path (e; c; b; f; e). If it contains also (e; j) then it contains path (e; c; b; f; e; j; i) butthat means that e = j, a contradiction, because edge (e; f) becomes a diagonal ofv, and that makes v a subject of Single selection rule. Thus has to use edge (e; c),so its 6th edge is gray edge (c; e).Consider wbc: it contain path (e; c; b; f; e), if it also contain (e; h) then its 6thedge is (e; h), a diagonal of v, a contradiction. Thus wbc is closed with two edgepath (e; c; e), so (c; e) is a gray edge. Contradiction: we have obtained a gray cycle(c; b; c; e; f; e	).It remains to consider the case when the cycles that assure that neither wbc norwbc is subject of 3-cycle elimination are both 2-cycles, as in Fig. 3.2c. We againconsider the possibilities for wbc and wbc; the former must use a gray edge frome to h or c, and the latter must use a gray edge from e to h or c. To avoid agray cycle, we must have a pair of gray edges as in Fig. 3.2c or a symmetric one.Therefore we can assume two gray edges (h; e) and (e; c), and thus a new 2-cyclex = (e; c; e; h	). This cycle shares 3 edges with wbc. Because wbc is not a subjectof 3-cycle elimination, there must exist a -cycle y that uses (e; c), the single edgeof x � wbc and non-overlapping with wbc. One can see that y must contain grayedge (c; d).We have a contradiction, because wcd must contain path (h; e; c; d; c; d), whichimplies that (d; h) is a gray edge and that (d; h; e; f; e; c; b; c; d; a	) is a gray cycle.
❑The �nal property is a bit simpler. Let A � V2 be an independent set. Wede�ne set K to be an A-butter
y with center u 2 A if there exist L � N(u; V ) suchthat L [A�fug is independent, jHj � 3, K = H \ V3;0 and jKj � 2. A-butter
yK touches A-butter
y K 0 a times if there are a edges between elements of K andK 0. A set of butter
ies independent of no two elements touch each other.6. If K is an A-butter
y, and K is an independent set of butter
ies, K may touchelements of K at most 5jKj times.Lemma 9 The overlap graph of an overlap graph of an abstract breakpoint graphsatis�es property 6.Proof. Each element of an A-butterly K with center u is a cycle of 6 edges, ofwhich 1 or 2 belong to u { otherwise K would not be a subset of an independent setfrom N(u; V ) with at least 3 elements. Moreover, at most one butter
y elementshares 2 edges with u.One can see that K has at most 15 edges that do not belong to u. If K touchesanother A-butterly K 0, then they share one of these edges. This claim is obvious



32if u is not a center of K 0. Otherwise both K and K 0 contain at least 4 out of 8edges that are incident to u but do not belong to u. The proof can be completedwith a simple case analysis.
❑We can conclude this section with the following theorem.Theorem 3 After applications of the rules of selection and elimination the overlapgraph of an abstract breakpoint graph satis�es properties 1-6.4 Small improvements and complements4.1 The methodIn this section we will describe 5 algorithms for various versions of Independent Setproblem. The �rst 4 form a sequence, as each invokes the previous as a subroutine,and the last algorithm in that sequence, called Main, �nds a solution to GEISproblem, or, to be a bit more precise, almost a solution, as the condition that GEISsolution must satisfy may be still unful�lled. However, this "almost solution" willhave properties that allow The �fth algorithm, which we call Postprocessing, toimprove it so that GEIS condition is assured.The reason for splitting our algorithm into Main and Postprocessing is thatall �ve algorithms have a similar nature: apply a single set of rules as long aspossible to improve the tentative solution, and then perform the analysis underthe assumption that none of the rules apply. Main and Postprocessing use di�erentsets of rules, and even have di�erent sets of objects among which the search forthe solution is conducted.We introduce new graph notation. If X is a set of nodes, X(i) is the set ofthose elements of X that have exactly i neighbors (or, degree equal i), X(� i) =Sij=0X(j). Each of the �rst three problems will have a �xed weight function�, �(X) is the maximum value of �(I) for an independent subset of X, I� is anindependent set such that jI�j = �(V ) and the goal is to �nd an independent set Jsuch jJ j � �(V ).The common outline of our algorithms is the following. Initially, we use a num-ber preprocessing rules that replace the given graph with a smaller one; once notpreprocessing rule can be applied, we form an empty candidate set J . Afterwards,we perform, as long as possible, two kinds of operations that increase the size of thecandidate: small improvements and complement improvements. More formally,1. A preprocessing rule r has condition  , instance translation �r and solutiontranslation �r. If the condition  r(p) holds for some parameter p, we replace



33G with G0 = �r(p;G) and later look for a solution in G0. Once we select sucha solution J , we return an independent set of G equal to �r(p; J).2. If we are given a list of preprocessing rules, we always apply the �rst possiblerule. This way the condition of a rule tacitly assumes that the conditions ofthe previous rules do not hold.3. A possible small improvement is an independent set X of size at most k,where k is a constant. Applying X means that J is replaced with J �N(X;J)[X. X is an improvement if applying X increases the size of J . Wemay also specify an objective function h; in such a case X is an improvementif applying X increases h(J).4. To attempt a complement improvement, we are �nding an independent setJ 0 in the graph G[V � J ] using the complement algorithm A. If jJ 0j > jJ j,we apply this improvement by replacing J with J 0. Before we attempt acomplement improvement, we make sure that no small improvements apply.Thus if we attempt a complement improvement and it cannot be applied,the algorithm terminates.4.2 Algorithm 1The �rst algorithm will be used in the graphs where V = V (� 3). We de�ne�(u) = 1/2 if u 2 V (3), otherwise �(u) = 1.This algorithm was studied already by Halld�orsson and Yoshikara [HY99] whoproved 9/7 approximation ratio. Unfortunately, it is not clear how to adapt theiranalysis for our purpose.We use four preprocessing reductions, simplicial, branchy, 2-greedy, and greedy.The condition  s(u) of the simplicial reduction is that the set N(u; V ) is aclique; �s(u;G) = G[V �N(u; V )� fug] and �s(u; J) = J [ fug.The condition  b(u; v; w; x) of the branchy reduction holds if fv;wg � V (2)and (u; v; w; x) is a path. We form �b(u; v; w; x;G) by adding the edge fu; xg toG[V � fv;wg]; in turn, �b(u; v; w; x; J) equals J [ fug if J [ fug is independentand J [ fvg otherwise.The condition of 2-greedy reduction,  g2(u), holds if u 2 V (2), and the con-dition of the greedy reduction,  g(u), holds if u 2 V . The instance and solutiontranslations of these reductions are the same as for the simplicial reduction.The validity of the �rst three rules is easy to see. When we can apply thegreedy rule, we have V = V (3), thus a maximum independent set has size at mostjV j=2 and �(G) � jV j=4. Because each preprocessing step decreases jV j by at most4, we must obtain an independent set of size at least jV j=4.



344.3 Algorithm 2The second algorithm will be used in the graphs where V = V (3) [ V (4). Wede�ne �(u) = 2/3 if u 2 V (3) and �(u) = 1/3 if u 2 V (4).We have no preprocessing in this algorithm. We use small improvements withsize bound 2 and objective function �.As a complement algorithm we use Algorithm 1. We can do it because whenthere are no small improvements, every node in V � J has a neighbor in J , as aresult in G[V � J ] a node has at most 3 neighbors.Consider now independent sets J computed by Algorithm 2 and J�. We de�neC = J \ J�, A = J � J� and B = J� � J . Moreover, we de�ne B1 as the set ofthese nodes of B that have exactly one neighbor in J and B2 = B �B1.On each node of J we put potential 6, and on each node u of J� we put potential�6�(u) (�4 if u 2 J�(3) and �2 if u 2 J�(4)). It su�ces to prove that the totalpotential is not negative.Because we cannot apply small improvements anymore, each node in V � Jhas a neighbor in J , and thus at most three neighbors in V � J . Moreover, ifu 2 B2, then u has at least two neighbors in J , and thus at most two neighborsin V � J . A node in B1(3) also has at most two neighbors in V � J . Thuswe can guarantee that the complement algorithm can �nd a set of size at leastjB2 [ B1(3)j + jB1(4)j=2 � jJ j, where the inequality is implied by the fact thatwe cannot apply the complement algorithm anymore. Thus we do not increase thetotal potential when we increase it by 1 for each node in B1(4), by 2 for each nodein B2 [ B1(3) and decrease by 2 for each node in J .Later, for brevity, we will say that we increase [the potential of] a node ordecrease [the potential of] a node.Next, for every edge fu; vg such that u 2 A and v 2 B we decrease u by 1, anddecrease v by 1. The table below shows the potentials at the beginning, and aftereach of the two changes.A(3) A(4) B1(3) B1(4) B2(3) B2(4) C(3) C(4)6 6 �4 �2 �4 �2 6� 4 6 � 24 4 �2 �1 �2 0 0 21 0 �1 0 0 2 0 2Note that the only nodes with negative values are in B1(3), and this value is�1. To �nish the argument, we de�ne n : B1(3)! A such that N(u; J) = fn(u)g.Because we do not have small improvements with objective function �, �(n(u)) ��(u), thus n(u) 2 A(3) and n(u) has potential 1. Moreover, because we do nothave improvements of size 2, the function n is 1-1. We can conclude that the totalpotential is non-negative.



354.4 Algorithm 3Like Algorithm 1, Algorithm 3 will be used in the graphs where V = V (� 3). Wede�ne �(u) = 2/3 if u 2 V (3), otherwise �(u) = 1.The preprocessing uses four reductions: simplicial, branchy, almost-greedy andmake-V (4). When we can apply neither the simplicial reduction, nor the branchyone, V = V (2) [ V (3) and V (2) is an independent set. To describe the remainingtwo reductions, de�ne E0 to be the set of edges incident to V (2), and consider aconnected component of (V;E0), say C. Observe that jC(3)j � jC(2)j+ 1.The almost greedy reduction has condition  ag(C) that holds if jC(2)j > 1;�ag(C;G) = G[V �C] and �ag(C; J) = J [ C(2).The make-V (4) has condition  m4(C) holds if C(2) 6= ∅. Because the otherreduction do not apply, jC(2)j = 1, C(3) = 2 and C(3) is independent. We form�m4(C;G) from G[V �C] by adding a new node n, and edges that connect n withnodes in N(C; V � C). We de�ne �m4(C; J) to be J � fng [ C(3) if n 2 J andJ [ C(2) otherwise. Note that usually the new node will belong to V (4), and thismotivates the name of this reduction.Once no preprocessing reduction is applicable, we apply Algorithm 2. Thevalidity of the above reductions is easy to show and we leave it to the reader.4.5 Algorithm MainIn this section we describe the main part of our algorithm that solves GEIS prob-lem. Our input is an abstract interleaving graph G, i.e. a graph with node setV partitioned into four parts V2;0; V2;1; V3;0 and V3;1 with properties 1-6 describedin 3.2. We will analyze Main in a similar manner as Algorithm 2, i.e. we will beeliminating negative potential from the graph until it remains only in few casesof nature that is easy to determined. The elimination of this remaining negativepotential is the problem solved by Postprocessing.We introduce the following notation: if X is a node set, Xi;j = X \ Vi;j andXi = Xi;0 [Xi;1. Algorithm Main has no pre-processing and is described in Fig.11. Assume that algorithm Main terminated and that J� is an independent setthat maximizes �(J�) and minimizes mix(J; J�). We place potential 
(u) on eachu 2 J and ��(u) on each u 2 J�. Our task is to have non-negative sum of values.We will be increasing and decreasing the values of the nodes until we will be leftwith small negative sum �d, where d is our de�cit. The structure of this de�citwill allow us to increase 
(J) by at least d=8 using a postprocessing algorithm.We de�ne A;B and C in terms of J and J� as in the analysis of Algorithm 2.We will also use the following notation:



36Small improvements:1. of size at most 8 that increase jJ2j;2. of size at most 9 that do not change jJ2j but increase jJ3j;3. of size 1 that change neither jJ2j nor jJ3j but increase 
(J);4. safe 
ips (as described in 3.2).Complement algorithm: run Algorithm 3 inG[V2�J ], take the resultif it increases J2. Figure 11: Algorithm Main.B12 = fu 2 B2 : jN(u;A2)j = 1g and A12 = N(B12; A2);B1;42 = fu 2 B12 : jN(u;B2)j = 4g and B1;32 = B12 �B1;42 ;if N(u;A2) = fvg for u 2 B12 , then n(u) = v;B22 = B2 �B12 and A22 = A2 �A12;B2;i2 = fu 2 B22 : jN(u;A�A12;0)j = ig;if N(u;A22) = fvg for u 2 B22;1, then n(u) = v;B13 = fu 2 B3 : jN(u;A)j = 1g and B23 = B3 �B1.a(u) = jN(u;A3)j; b(u) = jN(u;B)j;We observe �rst that in G[V2 � J ] Algorithm 3 can �nd an independent set J 0of size at least jB22 [B1;32 j+ 2/3jB1;42 j. Because jJ 0j � jJ2j, we do not increase thetotal potential when we increase each node in B22 [ B12;3 by 3, increase each nodein B12;4 by 2, and decrease each node in A2[C2 by 3. The table below shows lowerestimates of the potential of nodes before and after in this redistribution.v 2 : : : B1;42;0 B1;42;1 B1;32 [ B22 C2 A2;0 A2;1before �5 �4 �5 �5 + 8 8 16after �3 �2 �2 �5 + 5 5 13Observe that we can remove from consideration C2, because the total potentialof C2 is non-negative. Moreover, u 2 A2;1 has 13, at most 4 neighbors in B, andeach such neighbors has at least �3; thus we can remove from consideration A2;1and N(A2;1; B). Later, A2 will denote A2;0.



37In our second redistribution we inspect every edge fu; vg such that u 2 A andv 2 B; we decrease u by 1, and increase v by the same amount.Elements of B22 [B23 start the second redistribution with potential �2 and gainat least 2, so the potential becomes nonnegative. Elements of B3;1 start the secondredistribution with �1 and gain at least 1, so they also get nonegative potential.The table below provides remaining lower estimates of potential values.B13;0 B1;32 [B1;42;1 B1;42;0 A2 A3;0 A3;1�2 �2 �3 5 8 16�1 �1 + a(u) �2 + a(u) 5 � b(u) 2 10Before we rearrange the potential again, we need two lemmas.Lemma 10 Function n is an injection from B12 [B22;1 to A2.Proof. Assume that u 6= v and n(u) = n(v) = x. If u; v 2 B12 , thenN(fu; vg; J) =fxg, so we could apply fu; vg to increase J , impossible after the termination of thealgorithm. If u 2 B12 and v 2 B22;1, then n(u) 2 A12 and n(v) 2 A22, so n(u) 6= n(v).If u; v 2 B22;1, then for z = u; v we de�ne A(z) = N(z;A12), and because n is abijection between B12 and A12, we can also de�ne B(z) = n�1(A(z)). We can ap-ply fu; vg [B(u)[B(v) to increase jJ2j, because jN(fu; vg [B(u) [B(v); J2)j =jfxg [ n(B(u)[ n(B(v))j < jfu; vg [ n(B(u) [ n(B(v))j, and again, this is impos-sible.
❑Lemma 11 B2;02 = ∅.Proof. Suppose u 2 B2;02 . We can de�ne A(u) and B(u) as in the proof of Lemma10. We can apply fug [B(u) to increase J2, because jfug [B(u)j = 1 + jB(u)j =1 + jA(u)j = 1 + jN(fug [B(u); J2)j.
❑Our goal is to eliminate the negative potential except for the following situation:u 2 B13;0 has potential �1 and its sole neighbor in A2 has potential 1. We de�nesets A� = A12 and Bi� = N(A�; Bi2) for i = 1; 2. Our third redistribution is a seriesof rules.Rule 1: u 2 B1� and the potential of u is nonnegative; remove u from B1� andn(u) from A�.Rule 2: u 2 B2�, jN(u;A�A�)j � 2 and v 2 N(u;A�); undo the second operationfor fv; ug, i.e. add 1 to v and subtract 1 from u, then remove u from B2�.



38Rule 3: u 2 B2� and jN(u;A�A�)j < 2 (by Lemma 11 N(u;A�A�) = fn(u)g)and N(n(u); B13;0) = ∅; subtract 1 from the potential of n(u) and add 1 to thepotential of u, then perform the actions of Rule 2.Rule 4: u 2 B2�; de�ne A2(u) = N(u;A�) [ fn(u)g, B2(u) = n�1(A2(u)) andB3(u) = N(A(u); B13), change the potential of all nodes in these three sets to 0,remove A2(u) from A� and Bi(u) from Bi� for i = 2; 3..While the validy if the �rst three rules is obvious, for Rule 4 we need a proof.Lemma 12 Rule 4 is valid.Proof. We need to show that the sum of the potential of A2(u) [B2(u) [ B3(u)is nonnegative. De�ne A3(u) = N(B2(u); A3), let a = jA3(u)j, b = jB3(u)j andc = jA2(u)j. By Lemma 10, jB2(u)j = c. Clearly, c � 4 and, because we haveapplied Rules 1 and 2, a < c. Suppose that b > a, then we can �nd a subsetB0 � B3(u) such that jB0j = a+ 1 and the set B2(u) [ B0 forms an improvementthat does not change jJ2j, increases jJ3j and has size 8 at most, a contradictionbecause Main has terminated.Note that after the �rst operation that redistributed the potential, the po-tential of B2(u) has at least �3c + 1, in the second operation this potential in-creased by 2c� 1 + a, the potential of A2(u) after the second operation is at leastc and the potential of B3(u) is at least �b � �a. Therefore the potentials ofA2(u) [B2(u) [B3(u) is nonnegative.
❑Observe that once we cannot apply rules 1-4 anymore, B2� = ∅. Below, forv 2 A� let B3(u) be the set of neighbors of v in B3 that took a unit of the potentialfrom v, and have not returned it in while we have applied one of the rules.Rule 5: v 2 A�, jB3(v)j � 2, We can use the de�nitions, actions and reasoningas for Rule 4, except that A2(v) = fvg.Rule 6: v 2 A�, u 2 B3(v) \ B3;1 and N(u;A � A�) 6= ∅; undo the secondoperation for fv; ug, i.e. add 1 to v and subtract 1 from u, then remove u fromB3�.Rule 7: v 2 u;A�, u 2 B3(v)\B3;1 and N(u;A�A�) = ∅; We can use identicalde�nitions, actions and reasoning as for Rule 4.Lemma 13 Once we cannot apply any of the Rules 1-7, A� = ∅.Proof. The only con�guration with negative potential that is neither eliminatedby Rules 1-7 nor allowed be the claim is v 2 A�, jB3(v)j = 3 and the potential ofu = n�1(v) is �2. This implies that (v; u) is a dangerous pair for J , and thus ouralgorithm would perform a safe 
ip. Importantly, this safe 
ip decreases neither



39jJ2j nor jJ3j, because u has exactly one neighbor in A. By the property 5 of ab-stract overlap graphs safe 
ips can liquidate the existence of dangerous pairs.
❑4.6 Postprocessing algorithmWe can add the following two rules to the third potential redistribution:Rule 8: u 2 B13 has negative potential, N(u;A) = fvg and v 2 A3; take one unitof the potential from v and give it to u.An application of Rule 8 results in u having potential 0. This rule is valid if thepotential of v does not drop below 0. This is not possible, because after the secondpotential redistribution v has potential 2, and if would subtract from this potentialtwice, then v would have two neighbors in B13, say u0 and u1, and fu0; u1g wouldform an improvement.Rule 9: v 2 A22 has potential 1 and at most one u 2 N(v;B3) has potential �1;move 1 unit of potential from v to u.Now the only nodes with negative potential form a set B0 � B3 each u 2 B 0has a neighbor v with potential at least 1, let A0 be the set of these neighbors.Because of Rule 10, a node v 2 A0 has at least two neighbors in B 0, as a result, wecan partition B0 into a set of A0-butter
ies.We �st show that the following rule is valid:Butter
y selection rule. If u 2 J2, K is a butter
y with center u,jKj � 3 and N(K;J) = fug, then change J into J � fug [K.One can see that the Butter
y selection rule is valid. If jKj = 4; we gain 24potential units, and our butter
y K touches the \correct" butter
ies at most 20times, thus we can add 1 potential unit to each u 2 N(K;B0). If jKj = 3, we gain16 units and we need to add 1 potential unit to at most 15 elements of \correct"butter
ies.After applying Butter
y selection rule, we are left with 2-element J2-butter
iesonly. Each such butter
y, together with its center, has potential �1, and selectinga 2-element butter
y yields 8 potential units. By Property 6, a butter
y cantouch at most 10 other butter
ies. However, we need to �nd an independent setof butter
ies of size at most 1/8 times the optimum. We do it as follows.Form a graph of all J2-butter
ies, where fb; cg is an edge if butter
yb touches butter
y c.Apply improvements of size 2 to obtain set B of butter
ies.



40We can give �2 potential to each butter
y from the optimum solution and 11units to each butterly found by this algorithm. Then we redistribute the potentialaccording to each edge between the optimal solution B� and our solution B, so thepotential of our butter
ies remains at least 1, and the only butter
ies from B� thathave negative potential have only one neighbor in B, so their potential is �1. Itis easy to see that if a butter
y from B touches two butter
ies from B, and thatwould create an improvement of size 2. Thus the overall potential is nonnegativewhich means that jBj � jB�j=5:5.We �nish Postprocessing by applying all butter
ies from set B. to the solutionthat resulted from Main and then Butter
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