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1 Introduction

A common special case of the Traveling Salesman Problem (TSP) is the
metric TSP, where the distances between the cities satisfy the triangle in-
equality. The decision version of this special case was shown to be NP-
complete by Karp [11], which means that we have little hope of computing
exact solutions in polynomial time. Christofides [7] has constructed an ele-
gant algorithm approximating the metric TSP within 3/2, i.e., an algorithm
that always produces a tour whose weight is at most a factor 3/2 from the
weight of the optimal tour. For the case when the distance function may
be asymmetric, the best known algorithm approximates the solution within
O(logn), where n is the number of cities [9], although a constant factor
approximation algorithm has recently been conjectured [6]. As for lower
bounds, Papadimitriou and Yannakakis [14] have shown that there exists
some constant, see also [1], such that it is NP-hard to approximate the TSP
where the distances are constrained to be either one or two—note that such
a distance function always satisfies the triangle inequality—within that con-
stant. This lower bound was improved by Engebretsen [8] to 2805/2804 — ¢
for the asymmetric and 5381/5380 — ¢ for the symmetric, respectively, TSP
with distances one and two. Bockenhauer et. al [4, 5] considered the sym-
metric TSP with distances one, two and three, and were able to prove a lower
bound of 3813/3812 — ¢. (For a discussion of bounded metric TSP, see also
Trevisan [15].) It appears that the metric TSP lacks the good definability
properties which were needed (so far) for proving strong nonapproximability
results. Therefore, any new insights into explicit lower bounds here seem to
be of a considerable interest.

Papadimitriou and Vempala [12] recently announced lower bounds of
42/41 — € and 129/128 — ¢, respectively, for the asymmetric and symmetric
versions, respectively, of the TSP with graph metric, but left the question of
the approximability for the case with bounded metric open. However, their
proof contained an error influencing the explicit constants. A corrected proof
with the new constants of 98/97 — € and 234/233 — ¢, respectively, has been
communicated to us by Papadimitriou and Vempala [13]. Apart from being
an interesting question on its own, it is conceivable that the special cases
with bounded metric are easier to approximate than the cases when the dis-
tance between two points can grow with the number of cities in the instance.
Indeed, the asymmetric TSP with distances bounded by B can be approxi-
mated within B by just picking any tour as the solution and the asymmetric
TSP with distances one and two can be approximated within 4/3 [3]. The
symmetric version of the latter problem can be approximated within 7/6 [14].



In this paper, we consider the case when the metric contains only integer
distances between one and six and prove a lower bound of 131/130 — ¢ for
the asymmetric case and 174/173 — € for the symmetric case. This is an
improvement of an order of magnitude compared to the previous best known
bounds of 2805/2804 — € and 3813/3812 — ¢ for this case, respectively [4, 5, 8].
Our bound for the symmetric case is currently the best known bound for
the general metric TSP, improving over the recent bound of Papadimitriou
and Vempala [13]. We also prove that it is NP-hard to approximate the
asymmetric TSP with distances one and two within 321/320 — ¢, for any
constant € > 0. For the symmetric version of the latter problem we show a
lower bound of 743/742 — e. The previously best known bounds for this case
are 2805/2804 — € and 5381/5380 — ¢, respectively [8]. Our proofs depend
on explicit reductions from certain bounded dependency instances of linear
equations satisfiability. The main idea is to construct certain uniform circles
of equation gadgets and, in the second part, certain combined hybrid circle
constructions.

Definition 1.1. The Asymmetric Traveling Salesman Problem (ATSP) is
the following minimization problem: Given a collection of cities and a matrix
whose entries are interpreted as the distance from a city to another, find the
shortest tour starting and ending in the same city and visiting every city
exactly once.

Definition 1.2. (1,B)-ATSP is the special case of ATSP where the entries
in the distance matriz obey the triangle inequality and the off-diagonal en-
tries in the distance matriz are integers between 1 and B. (1,B)-TSP is the
special case of (1,B)-ATSP where the distance matriz is symmetric.

2 The hardness of (1,B)-ATSP

We reduce, similarly to Papadimitriou and Vempala [12], from Hastad’s
lower bound for E3-Lin mod 2 [10]. In fact, our gadgets for the (1,B)-ATSP
case are syntactically identical to those of Papadimitriou and Vempala [12]
but we use a slightly different accounting method. The construction consists
of a circle of equation gadgets testing odd parity. This is no restriction since
we can easily transform a test for even parity into a test for odd parity by
flipping a literal. Three of the edges in the equation gadget correspond to
the variables involved in the parity check. These edges are in fact gadgets,
so called edge gadgets, themselves. Edge gadgets from different equation
gadgets are connected to ensure consistency among the edges representing



a literal. This requires the number of negative occurrences of a variable to
be equal to the number of positive occurrences. This is no restriction since
we can duplicate every equation a constant number of times and flip literals
to reach this property.

Definition 2.1. E3-Lin mod 2 is the following problem: Given an instance
of n variables and m equations over Zo with exactly three unknowns in each
equation, find an assignment to the variables that satisfies as many equations
as possible.

Theorem 2.1 [10]. There exists instances of F3-Lin mod 2 with 2m equa-
tions such that, for any constant ¢ > 0, it is NP-hard to decide if at most
em or at least (1 — €)m equations are left unsatisfied by the optimal assign-
ment. Fach variable in the instance occurs a constant number of times, half
of them negated and half of them unnegated.

We describe our instance of (1,B)-ATSP by constructing a weighted directed
graph and then let the (1,B)-ATSP instance have the nodes of this graph as
cities. The distance between two cities u and v is the (1,B)-ATSP instance
is then defined to be min{B,{(u,v)}, where {(u,v) be the length of the
shortest path from » to v in the graph.

2.1 The gadgets

The gadgets are parametrized by the parameters a, b and d; they will be
specified later. The equation gadget for equations of the form x +y + z =
0 is shown in Fig. 1. The key property of this gadget is that there is a
Hamiltonian path through the gadget only if zero or two of the ticked edges
are traversed. To form the circle of equation gadgets, vertex A in one gadget
coincides with vertex B in another gadget.

The ticked edges in Fig. 1 are gadgets themselves. This gadget is shown
in Fig. 2. Each of the bridges is shared between two different edge gadgets,
one corresponding to a positive occurrence of the literal and one correspond-
ing to a negative occurrence. The precise coupling is provided by a perfect
matching in a d-regular bipartite multigraph (V3 UVa, E) on 2k vertices with
the following property: For any partition of V; into subsets S1, Uy and T}
and any partition of V5 into subsets S9, Us and T5 such that there are no
edges from T to Ty and no edges from U; to Us,

(151 + [S2]) min{a/2,b, (a+0)/2 = 1} >



min{k, |Ui| + [T2| + |Si]| + [S2|, [Ua| + [T + |S1]| + 52/}

The purpose of this construction is to ensure that it is always optimal for
the tour to traverse the graph in such a way that all variables are given
consistent values. The edge gadget gives an assignment to an occurrence of
a variable by the way it is traversed.

Definition 2.2. We call an edge gadget where all bridges are traversed from
left to right in Fig. 2 traversed and an edge gadget where all bridges are
traversed from right to left untraversed. All other edge gadgets are called
semitraversed.

2.2 Proof of correctness

If we assume that the tour behaves nicely, i.e., that the edge gadgets are
either traversed or untraversed, it is straightforward to establish a corre-
spondence between the length of the tour and the number of unsatisfied
equations.

Lemma 2.1. The only way to traverse the equation gadget in Fig. 1 with a
tour of length 4—if the edge gadgets count as length one for the moment—is
to traverse an odd number of edge gadgets. All other locally optimal traver-
sals have length 5.

Proof. 1t is easy to see that any tour traversing two ticked edges and leaving
the third one untraversed has length 4. Any tour traversing one ticked edge
and leaving the other two ticked edges untraversed has length at least 5.
Strictly speaking, it is impossible to have three traversals since this does not
result in a tour. However, we can regard the case when the tour leaves the
edge gadget by jumping directly to the exit node of the equation gadget as
a tour with three traversals; such a tour gives a cost of 5. n

Lemma 2.2. In addition to the length 1 attributed to the edge gadget above,
the length of a tour traversing an edge gadget in the intended way is d(a+b).

Proof. Each bridge has length a, and every bridge must have one of the
incoming edge traversed. Thus, the total cost is d(a + b). .

Lemma 2.3. Suppose that there are 2m equations in the E3-Lin mod 2
instance. If the tour is shaped in the intended way, i.e., every edge gadget is
either traversed or untraversed, the length of the tour is 3md(a+b)+4m—+u,
where u is the number of unsatisfied equations resulting from the assignment
represented by the tour.



Figure 1. The gadget for equations of the form = + y + z = 0. There is a
Hamiltonian path from A to B only if zero or two of the ticked edges, which
are actually gadgets themselves (Fig. 2), are traversed. The non-ticked edges
have weight 1.

Figure 2. The edge gadget consists of d bridges. Each of the bridges
are shared between two different edge gadgets and consist of a undirected
edges of weight 1 each. The rightmost directed edge above has weight 1, the
directed edges entering a bridge have weight b.

Figure 3. A traversed edge gadget represents the value 1.

Figure 4. An untraversed edge gadget represents the value 0.



Proof. The length of the tour on an edge gadgets is d(a+b). There are three
edge gadgets corresponding to every equation and every bridge in the edge
gadget is shared between two equation gadgets. Thus, the length of the tour
on the edge gadgets is 2m - 3d(a+b)/2 = 3md(a+ b) The length of the tour
on an equation gadget is 4 if the equation is satisfied and 5 otherwise. Thus,
the total length is 3md(a + b) + 4m + u. "

The main challenge now is to prove that the above correspondence between
the length of the optimum tour and the number of unsatisfied equation holds
also when we drop the assumption that the tour is shaped in the intended
way. Our proof uses the following technical lemma (we provide a proof in
the appendix):

Lemma A.1. For every large enough constant k, there exists an 7-regular
bipartite multigraph on 2k vertices such that for every partition of the left
vertices into sets Ty, Uy and Sy and every partition of the right vertices into
sets Ty, Uy and Sy such that there are no edges from Ty to Ty, and there are
no edges from Uy to U,

251+ 152]) > min{k, [Ur] + T2+ [S1] 4 [S2|, [Us| + |T1| + [S1] + |S2[}
with equality only if S1 =Sy =U; =Ty =0 or S; =Sy =T, =U, =0.

Given the above lemma, the following sequence of lemmas give a lower bound
on the extra cost, not counting the “normal” cost of d(a+b) per edge gadget
and 4 per equation gadget, that results from a non-standard behavior of the
tour. We have already seen that an unsatisfied equation adds an extra cost
of 1. Edge gadgets that are either traversed or untraversed do not add
any extra cost. Note that traversed edge gadgets never can share the same
bridge, neither can untraversed edge gadgets. We now give a lower bound
on the additional length of the tour due to semitraversed edge gadgets.

Lemma 2.4. Suppose that B > max{a+ b,3b}. Then every semitraversed
edge gadget adds an extra cost of at least min{a/2,b,(a+ b)/2 — 1} to the
length of the tour.

Proof. A bridge is said to have an undefined traversal if the tour does not
traverse it in the intended way, i.e., the restriction of the tour to the bridge
does not result in a simple path from one end of the bridge to the other.
There are two reasons for an edge gadget to be classified as semitraversed.
Either there is a bridge that has an undefined traversal, or the direction
in which the bridges are traversed changes without any bridge having an
undefined traversal.



In the former case there is an extra cost of at least a — 2 + b which
is shared between the two edge gadgets that cross at the bridge with an
undefined traversal.

If the edge gadget has no bridges with an undefined traversal, it can
still be semitraversed. The direction in which the bridges are traversed then
changes between two bridges. There are two cases. Either the tour switches
from traversing an edge gadget representing an occurrence of z to traversing
an edge gadget representing an occurrence of z—in this case the extra cost
is a—or, the tour switches from traversing an edge gadget representing an
occurrence of x to traversing another edge gadget representing an occurrence
of x—in this case the extra cost is 2b. In both of the above cases, the extra
cost is shared evenly between the two semitraversed edge gadgets involved.

Lemma 2.5. Fora =4, b = 2 and d = 7, there exists a coupling of the
equation gadgets with the property that it can never be advantageous to have
inconsistently traversed equation gadgets.

Proof. Repeat the following argument for every variable z:

Let k be the number of occurrences of # (and also the number of occur-
rences of z). Pick a bipartite multigraph on 2k vertices such that for every
partition of the left vertices into sets 17, Uy and 57 and every partition of the
right vertices into sets T, Uy and S such that there are no edges from 7}
to T3, and there are no edges from Uy to Us,

251+ 152]) > min{k, [Ur] + T2+ [S1] 4 [S2|, [Us| + |T1| + [S1] + |S2[}
with equality only if 1 =S, =U; =Ty =0or S, =S, =T, =U, =0. We

know by Lemma A.1 that such a graph exists—since the graph has constant
size, we can try all possible graphs in constant time.

Put occurrences of z at one side and occurrences of z on the other side
of the bipartite graph. Each vertex in the graph can be labeled as T, U
or S, depending on whether it is traversed, untraversed or semitraversed.
Let T; be the set of traversed positive occurrences and T3 be the set of
traversed negative occurrences. Define Uy, U;, 51, and S, similarly. We can
assume that |Uy| + |T2| < |Us| +|T1|—otherwise we just change the indexing
convention.

We now consider a modified tour where the positive occurrences are
traversed and the negative occurrences are untraversed. This decreases the



cost of tour by at least 2(].S1| 4 |S2|) and increases it by min{k, |S1|+ [S2| +
|Uy| + |T2|}. But the bipartite graph has the property that

2(]51| 4 [S2l) > min{k, |Uy| 4 [To| + |S1] + [S2|}

which implies that the cost of tour decreases by this transformation. Thus,
we can assume that z is given a consistent assignment by the tour. .

Theorem 2.2. For any constant € > 0, it is NP-hard to approzimate (1,6)-
ATSP within 131/130 — .

Proof. Given an instance of E3-Lin mod 2 with 2m equations where every
variable occurs a constant number of times, we construct the corresponding
instance of (1,6)-ATSP with @ = 4, b = 2 and d = 7. This can be done
in polynomial time. By the above lemma, we can assume that all edge
gadgets are traversed consistently in this instance. The assignment obtained
from this traversal satisfies 2m — u equations if the length of the tour is
3md(a+b)+4m+u. If we could decide if the length of the optimum tour is
at most (3d(a+b)+4+4¢1)m or at least (3d(a+b)+5—€z)m, we could decide
if at most €;m or at least (1—e3)m of the equations are left unsatisfied by the
corresponding assignment. But to decide this is NP-hard by Theorem 2.1.
Therefore it is NP-hard to approximate (1,6)-ATSP within

3d(a+b)+5— e N E_é
3dla+b)+4+¢ — 130

3 The hardness of (1,B)-TSP

To adapt the construction from the previous section for the symmetric case
we need to change some of the gadgets. Most changes in the equation gadgets
are minor—the main change being that we test odd instead of even parity for
equations with three variables (Fig. 8). There is a more substantial change
in the edge gadget; it is changed according to Fig. 9.

If we assume that the tour behaves nicely, it is straightforward to prove
a correspondence between the length of a tour and the number of equations
left unsatisfied by the corresponding assignment.

Lemma 3.1. The only way to traverse the equation gadget in Fig. 8 with a
tour of length 5—if the edge gadgets count as length one for the moment—is
to traverse an odd number of edge gadgets. All other locally optimal traver-
sals have length 6.
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Figure 5. We can assume that traversals shown in the left figure above
never occur since they can be transformed into the traversal shown in the
right figure without increasing the length of the tour. A bridge with such a
traversal gives an extra cost of (a +b)/2 — 1. The total length of the part
of the tour that traverses the bridge and its two incoming edges in the right
figure above is 2a — 2 — 2b; that gives an extra cost of a — 2 — b which is
shared evenly between the two semitraversed edge gadgets.

Figure 6. Switching from traversing an edge gadget representing an oc-
currence of  to traversing an edge gadget representing an occurrence of &
gives an extra cost of at least a/2. The dashed edges above has length a + b;
that gives an extra cost of a which is then shared evenly among the two
semitraversed edge gadgets.

Figure 7. Switching from traversing an edge gadget representing an oc-
currence of x to traversing another edge gadget representing an occurrence
of x gives an extra cost of at least b. The dotted edge above has length 3b;
that gives an extra cost of 2b which is then shared evenly among the two
semitraversed edge gadgets.
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Figure 8. The gadget for equations of the form = + y + z = 1. There is a
Hamiltonian path from A to B only if one or three of the ticked edges are

=S

Figure 9. To transform the edge gadget from Fig. 2 into a gadget that can

traversed.

be used in the symmetric case, all occurrences of the structure to the left
above are replaced with the structure to the right above.

Proof. 1t is easy to see that any tour traversing either one or three of the
ticked edges and leaving the third one untraversed has length 5. Any tour
traversing zero or two ticked edges end up on the wrong side of the gadget
and needs an extra cost of at least one to get back to the other side. .

Lemma 3.2. In addition to the length 1 attributed to the edge gadget above,
the length of a tour traversing an edge gadget in the intended way is 56.

Proof. The total cost is 7- (74 1) = 56. ]

Lemma 3.3. Suppose that there are 2m equations in the F3-Lin instance.
If the tour is shaped in the intended way, i.e., every edge gadget is either
traversed or untraversed, the length of the tour is 173m + w, where u is the
number of unsatisfied equations resulting from the assignment represented
by the tour.

Proof. The length of the tour on the edge gadgets is 64. There are three
edge gadgets corresponding to every equation and every bridge in the edge
gadget is shared between two equation gadgets. Thus, the length of the tour
on the edge gadgets is 2m - 3-56/2 = 168m. The length of the tour in the
equation gadgets is 5 if the equation is satisfied and 6 otherwise. Thus, the
total length is 173m 4+ . n
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In the same way as in the asymmetric case, it can now be shown that the
tour can be assumed to behave in the intended way. This gives the following
lemma (we omit the proof):

Lemma 3.4. Suppose that B > 6. Then every semitraversed edge gadget
adds an extra cost of at least 2 to the length of the tour.

There exists a coupling of the edge gadgets with the property that there
can never be advantageous to have inconsistently traversed edge gadgets.

Given the above lemma, the main theorem follows in exactly the same way
as in the asymmetric case.

Theorem 3.1. For any constant € > 0, it is NP-hard to approzimate (1,6)-
TSP within 174/173 — €.

Proof. Given an instance of E3-Lin mod 2 with 2m equations where every
variable occurs a constant number of times, we construct the corresponding
instance of (1,6)-TSP. This can be done in polynomial time. By the above
lemma, we can assume that all edge gadgets are traversed consistently in
this instance. The assignment obtained from this traversal satisfies 2m — u
equations if the length of the tour is 173m + w. If we could decide if the
length of the optimum tour is at most (173 + €;)m or at least (174 — ¢3)m,
we could decide if at most e;m or at most (1 — €z)m of the equations are let
unsatisfied by the corresponding assignment. But to decide this is NP-hard
by Theorem 2.1. "

4 The hardness of (1,2)-ATSP

To prove a lower bound for (1,2)-ATSP we apply the construction used by
Berman and Karpinski [2], a reduction from systems of linear equations
mod 2 with exactly three unknowns in each equation to a problem called
Hybrid, to prove hardness results for instances of several combinatorial op-
timization problems where the number of occurrences of every variable is
bounded by some constant.

Definition 4.1. Hybrid is the following mazimization problem: Given a
system of linear equations mod 2 containing n variables, mq equations with
exactly two unknowns, and ms equations exactly with three unknowns, find
an assignment to the variables that satisfies as many equations as possible.

Theorem 4.1 [2]. There exists instances of Hybrid with 42v variables, 60v
equations with two variables, and 2v equations with three variables such that:

12



1. Fach variable occurs exactly three times.

2. For any constant € > 0, it is NP-hard to decide if at most ev or at
least (1 — €)v equations are left unsatisfied.

Since we adopt the construction of Berman and Karpinski [2], we can partly
rely on their main technical lemmas, which simplifies our proof of correct-
ness.

On a high level, the (1,2)-ATSP instance in our reduction consists of a cir-
cle formed by equation gadgets representing equations of the form x+y+2z =
0 and £ 4+y = 1. These gadgets are coupled in a way ensuring that the three
occurrences of a variable are given consistent values. In fact, the instances of
Hybrid produced by the Berman-Karpinski construction have a very special
structure. Every variable occurs in at least two equations with two un-
knowns, and those equations are all equivalences, i.e., equations of the form
x4+ y = 0. Since our gadget for equations with two unknowns tests odd
parity, we have to rewrite those equations as z + y = 1 instead. Similarly,
the equations of the form z + y + 2z = 1 must be rewritten with one variable
negated since our gadgets for equations with three unknowns only test even
parity. Turning to the coupling needed to ensure consistency, we have three
occurrences of every variable. Since we do not have any gadgets testing odd
parity for three variables or even parity for two variables, we may have to
negate some of the occurrences. We now argue that there are either one or
two negated occurrences of every variable. The Hybrid instance produced by
the Berman-Karpinski construction can be viewed as a collection of wheels
where the nodes correspond to variables and edges to equations. The edges
within a wheel all represent equations with two unknowns, while the equa-
tions with three unknowns are represented by hyperedges connecting three
different wheels. Figure 10 gives an example of one such wheel. The equa-
tions corresponding to the edges forming the perimeter of the wheel can be
written as o1 + ¥ =1, 20+ 23 =1, ..., 21 + 7 =1, and . + 7, = 1,
which implies that there is at least one negated and at least one unnegated
occurrence of each variable.

Corollary 4.1. There are instances of Hybrid with 42v variables, 60v equa-
tions of the form x+ 1y = 1 mod 2, and 2v equations of the form x+y+ 2z =
0 mod 2 or z +y+ z=0mod 2 such that:

1. Fach variable occurs exactly three times.

2. There is at least one positive and at least one negative occurrence of
each variable.

13



Figure 10. The Hybrid instance produced by the Berman-Karpinski con-
struction can be viewed as a collection of wheels where the nodes correspond
to variables and edges to equations.

3. For any constant € > 0, it is NP-hard to decide if at most ev or at
least (1 — €)v equations are left unsatisfied.

To prove our hardness result for (1,2)-ATSP, we reduce instances of Hybrid
of the form described in Corollary 4.1 to instances of (1,2)-ATSP and prove
that, given a tour in the (1,2)-ATSP instance, it is possible to construct an
assignment to the variables in the original Hybrid instance with the property
that the number of unsatisfied equations in the Hybrid instance is related
to the length of the tour in the (1,2)-ATSP instance.

To describe a (1,2)-TSP instance, it is enough to specify the edges of
weight one. We do this by constructing a graph G and then let the (1,2)-
TSP instance have the nodes of G as cities. The distance between two cities
w and v is defined to be one if (u,v) is an edge in G and two otherwise. To
compute the weight of a tour, it is enough to study the parts of the tour
traversing edges of G. In the asymmetric case (G is a directed graph.

Definition 4.2. We call a node where the tour leaves or enters G an end-
point. A node with the property that the tour both enters and leaves G in
that particular node is called a double endpoint and counts as two endpoints.

If ¢ is the number of cities and 2e is the total number of endpoints, the
weight of the tour is ¢+ e since every edge of weight two corresponds to two
endpoints.

4.1 The gadgets

The equation gadget for equations of the form & 4+ y 4+ z = 0 is shown in
Fig. 1—the same gadget as in the (1,B) case. However, the ticked edges

14
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Figure 11. The gadget for equations of the form & + y = 1. There is a
Hamiltonian path from A to B only if one of the ticked edges is traversed.

Figure 12. The gadget ensuring consistency for a variable. If there are two
positive occurrences of the variable, the ticked edges corresponding to those
occurrences are represented by the parts enclosed in the dotted curves and
the ticked edge corresponding to the negative occurrence is represented by
the part enclosed in the dashed curve. If there are two negative occurrences,
the roles are reversed.

now represent a different structure.

The equation gadget for equations of the form =z + y = 1 is shown in
Fig. 11. The key property of this gadget is that there is a Hamiltonian path
through the gadget only if one of the ticked edges is traversed.

The ticked edges in the equation gadgets are syntactic sugar for a con-
struction ensuring consistency among the three occurrences of each variable.
As we noted above, either one or two of the occurrences of a variable are
negated. The construction in Fig. 12 ensures that the occurrences are given
consistent values, i.e., that either x =0 and 2z =1, or z =1 and z = 0. If
there is one negated occurrence of a variable, the upper part of the gadget
connects with that occurrence and the lower part connects with the two
unnegated occurrences. If there are two negated occurrences, the situation
is reversed.

4.2 Proof of correctness

We want to prove that every unsatisfied equation has an extra cost of one
associated with it. At first, it would seem that this is very easy—the gadget
in Fig. 1 is traversed by a path of length four if the equation is satisfied and
a path of length at least five otherwise; the gadget in Fig. 11 is traversed
by a path of length one if the equation is satisfied and a path of length
at least two otherwise; and the gadget in Fig. 12 ensures consistency and is

15



traversed by a tour of length six, not counting the edges that were accounted
for above. Unfortunately, things are more complicated than this. Due to
the consistency gadgets, the tour can leave a ticked edge when it is half-way
through it, which forces us to be more careful in our analysis.

We count the number of endpoints that occur within the gadgets; each
endpoint gives an extra cost of one half. We say that an occurrence of a
literal is traversed if both of its connected edges are traversed, untraversed
if none of its connecting edges are traversed, and semitraversed otherwise.
To construct an assignment to the literals, we use the convention that a
literal is true if it is either traversed or semitraversed. We need to show that
there are two endpoints in gadgets that are traversed in such a way that
the corresponding assignment to the literals makes the equation unsatisfied.
The following lemmas are easy, but tedious, to verify by case analysis:

Lemma 4.1. [t is locally optimal to traverse both bridges, i.e., both pairs
of undirected edges, in the consistency gadget.

Proof. By case analysis. "

Lemma 4.2. Fvery semitraversed occurrence introduces at least one end-
point.

Proof. By case analysis on traversed connection edges. "

Lemma 4.3. It is always possible to change a semitraversed occurrence into
a traversed one without introducing any endpoints in the consistency gadget.

Proof. By case analysis on traversed connection edges. "

Given the above lemmas, the following two lemmas prove the properties we
need regarding the equation gadgets.

Lemma 4.4. A “satisfying traversal” of the gadget in Fig. 11 has length 1,
all other locally optimal traversals have length at least 2, i.e., contain at least
two endpoints within the gadget.

Proof. If one of the ticked edges is traversed and the other is untraversed,
the gadget is traversed by a tour of length 1. It is suboptimal to have one
semitraversed and one untraversed edge, in this case it is possible to shorten
the tour by transforming the semitraversed edge into a traversed one.

Two untraversed edges give a total cost of at least 2. It is impossible to
have either two traversed edges or one traversed and one semitraversed ticked
edge, since that gives a traversal which is not a tour. Two semitraversed
edges give an extra cost of 1/2 each, giving a total cost of at least 2. .
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Lemma 4.5. A “satisfying traversal” of the gadget in Fig. 1 has length 4,
all other locally optimal traversals have length at least 5, i.e., contain at least
two endpoints within the gadget.

Proof. 1t is easy to see that any tour traversing two ticked edges and leaving
the third one untraversed has length 4. The case with two semitraversed
occurrences and one untraversed is suboptimal since a shorter tour can be
produced in this way: Make the semitraversed occurrences traversed and
then adjust the tour on the non-ticked edges to get a tour of length 4.
Similarly, the case with one traversed and one semitraversed occurrence can
be transformed into two semitraversed occurrences.

Any tour traversing one ticked edge and leaving the other two ticked
edges untraversed has length at least 5. A tour semitraversing one ticked
edge and leaving the other ticked edges untraversed can be transformed into
a tour with one traversal and two non-traversals. It is impossible to have
three traversals since this does not result in a tour. The case with two
traversals and one semitraversal gives a cost of 5, and so does case with one
traversal and two semitraverals, since each semitraversal has an extra cost
of 1/2 associated with it. .

When the above lemmas have been proven, we only need to prove that the
gadget we use for consistency actually implements consistency.

Lemma 4.6. The gadgetl in Fig. 12 ensures consistency and is traversed by
a tour of length 6, not counting the edges or endpoints that were accounted
for in the above lemmas.

Proof. If there are no semitraversed occurrences, the gadget implements
congsistency correctly.

Suppose that the upper occurrence in Fig. 12 is semitraversed in such a
way that the leftmost connecting edge is traversed but the rightmost is not.
Then it is possible to have the lower left occurrence untraversed and the
lower right occurrence traversed. Since a semitraversed occurrence is always
part of an unsatisfied equation gadget, the following procedure produces a
tour with equal cost: Make the upper occurrence untraversed and the lower
left occurrence traversed. This makes the equation gadget that the upper
occurrence is connected to satisfied and may make the equation gadget that
the lower left occurrence is connected to unsatisfied.

Suppose that the lower left occurrence in Fig. 12 is semitraversed in such
a way that the leftmost connecting edge is traversed but the rightmost is not.
Then it is possible to have the lower right occurrence untraversed and the
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upper occurrence semitraversed. Since a semitraversed occurrence is always
part of an unsatisfied equation gadget, the following procedure produces a
tour with equal cost: Make the upper occurrence untraversed and the lower
right occurrence traversed. This makes the equation gadget that the upper
occurrence is connected to satisfied and may make the equation gadget that
the lower right occurrence is connected to unsatisfied.

With similar arguments it can be shown that the lemma holds for all
other possible cases. "

By combining the above lemmas, we have shown the following connection
between the length of an optimum tour and the number of unsatisfied equa-
tions in the corresponding instance of Hybrid.

Theorem 4.2. Suppose that we are given an arbitrary instance of Hybrid
with n variables, ms equations of the form x4y = 1 mod 2, and m3 equations
of the formx+y+ 2=0mod 2 or x +y + z = 0 mod 2 such that:

1. Fach variable occurs exactly three times.

2. There is at least one positive and at least one negative occurrence of
each variable.

Then we can construct an instance of (1,2)-ATSP with the property that a
tour of length 6n 4+ my + 4ms + u corresponds to an assignment satisfying
all but u of the equations in the Hybrid instance.

Corollary 4.2. For any constant ¢ > 0, it is NP-hard to approximate

(1,2)-ATSP within 321/320 — €.

Proof. We connect Theorem 4.2 with Corollary 4.1 and obtain an instance

of (1,2)-ATSP with the property that a tour of length
on+mo+4dms+u=6-42v+60v+4-2v+u =320+ u

corresponds to an assignment satisfying all but u of the equations in the
Hybrid instance. Since, for any constant ¢ > 0, it is NP-hard to distinguish
the cases u < ¢ and w > 1 — ¢, it is NP-hard to approximate (1,2)-ATSP
within 321/320 — € for any constant € > 0. n

5 The hardness of (1,2)-TSP

It is possible to adapt the above construction for (1,2)-ATSP to prove a lower
bound also for (1,2)-TSP. The equation gadget for equations containing three
variables is changed in the same way as in the (1,B) case, the consistency
gadget is change in a similar way.

18



e

Figure 13. The gadget for equations of the form & + y = 1. There is a
Hamiltonian path from A to B only if one of the ticked edges is traversed.

Figure 14. The gadget ensuring consistency for a variable. If there are two
positive occurrences of the variable, the ticked edges corresponding to those
occurrences are represented by the parts enclosed in the dotted curves and
the ticked edge corresponding to the negative occurrence is represented by
the part enclosed in the dashed curve. If there are two negative occurrences,
the roles are reversed.

5.1 The gadgets

The equation gadget for equations of the form 2 4y = 1 is shown in Fig. 13.
The key property of this gadget is that there is a Hamiltonian path through
the gadget only if one of the ticked edges is traversed.

The equation gadget for equations of the form x4+ y+ z = 1 is shown in
Fig. 8 —the same gadget as in the (1,B) case.

The ticked edges in the equation gadgets are syntactic sugar for a con-
struction ensuring consistency among the three occurrences of each variable.
As we noted above, either one or two of the occurrences of a variable are
negated. The construction in Fig. 14 ensures that the occurrences are given
consistent values, i.e., that either x =0 and 2z =1, or z =1 and z = 0. If
there is one negated occurrence of a variable, the upper part of the gadget
connects with that occurrence and the lower part connects with the two
unnegated occurrences. If there are two negated occurrences, the situation
is reversed.
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5.2 Proof of correctness

In the same way as in the asymmetric case, it can be shown that the tour
can be assumed to behave in the intended way. When this result is com-
bined with the lower bound on the approximability of Hybrid, we obtain the
following theorem:

Theorem 5.1. Suppose that we are given an instance of Hybrid with n vari-
ables, mo equations of the form z + y = 1 mod 2, and ms equations of the
formzx+y+2z=0mod 2 or z +y+ z =0 mod 2 such that:

1. Fach variable occurs exactly three times.

2. There is at least one positive and at least one negative occurrence of
each variable.

Then we can construct an instance of (1,2)-TSP with the property that a
tour of length 16n + mq + bms + u corresponds to an assignment satisfying
all but u of the equations in the Hybrid instance.

Theorem 5.2. For any constant € > 0, it is NP-hard to approzimate (1,2)-
TSP within 743/742 — €.

Proof. We connect Theorem 5.1 with Corollary 4.1 and obtain an instance
of (1,2)-TSP with the property that a tour of length

16n4+mo +dms+u=16-42nu+60v+5-2v+u = 742v + u

corresponds to an assignment satisfying all but u of the equations in the
Hybrid instance. Since, for any constant ¢’ > 0, it is NP-hard to distinguish
the cases u < ¢ and w > 1 — ¢, it is NP-hard to approximate (1,2)-TSP
within 743/742 — € for any constant € > 0. n

6 Conclusions

It should be possible to improve the reduction by eliminating the vertices
that connect the equation gadgets for « + y + z = {0, 1} with each other.
This reduces the cost of those equation gadgets by one, which improves our
bounds—but only by a miniscule amount. The big bottleneck, especially
in the (1,2) case, is the consistency gadgets. If, for the asymmetric case,
we were able to decrease the cost of them to four instead of six, we would
improve the bound to 237/236 — ¢; if we could decrease the cost to three, the
bound would become 195/194 — . We conjecture that some improvement
for the (1,2) case is still possible along these lines.
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A The bipartite graph

This section is devoted to the proof of the following technical lemma:

Lemma A.1. For every large enough constant k, there exists an 7-regular
bipartite multigraph on 2k vertices such that for every partition of the left
vertices into sets Ty, Uy and Sy and every partition of the right vertices into
sets Ty, Uy and Sy such that there are no edges from Ty to Ty, and there are
no edges from Uy to U,

2(]S1+152[) > mindk, [Uy[+|To|+[S1[+ |52l [Ua|+[T1[+[S1[+[S2]} (1)
with equality only if S1 =Sy =U; =Ty =0 or S; =Sy =T, =U, =0.
The proof uses the same main idea as the proof of a similar expansion theo-
rem communicated to us by Papadimitriou and Vempala [13]. In particular,
it uses a lemma that bounds the size of neighbor sets in 7-regular bipartite
graphs.
Lemma A.2. For every large enough constant k, there exists a 7-regular
bipartite multigraph on 2k vertices such that every subset U of vertices con-
tained entirely in Vi or Vy has a set N(U) of neighbors satisfying the fol-
lowing constraints:

0<|U|<k/10 = |N(U)| > 29|U|/10, (2

k/10 < |U| < 3k/10 = |N(U)| > 13k/100+ 8|U|/5, (3

3k/10 < |U| < 39k/100 = |N(U)| > 31k/100+ |U], (4

39k/100 < |U| € 62k/100 = |N(U)| > k/2+|U|/2, (5

62k/100 < |U| < k = |N(U)| > max{85k/100,k/2+ |U|/2}. (6

e e S S e

Proof. We select a d-regular bipartite graph on 2k vertices by selecting d per-
fect matchings independently and uniformly at random. Let Ay n be the
event that the set U has neighbors only inside the set N and let {2 be the
subset of {0,1,2,...,k} x {0,1,2,...,k} such that if (a,b) € £2,

0<a<k/10 = b< 29a/10,

k/10 < a < 3k/10 = b < 13k/100 + 8a/5,

3%/10 < a < 39k/100 = b < 31k/100 + a,

30k /100 < a < 62k/100 = b < k/2+ a/2,
62k/100 < a < k = b < max{85/100,k/2+ a/2}.

Denote the vertex set of the bipartite graph by Vi U V;. We need to prove

that
2
pr[ U U AU,N] <1

1(a,b)€2 UCV; NCVa_;
Ul=a |N|=b

K3
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and we do this by using the union bound, i.e., we prove that

22: Z Z Z Pr[Ap ] < L.

i=1 (a,b)eR UeV; NeVo_;
Ul=a |N|=b

First note that Pr[Ay n] = 0 when [U| > |N|, therefore it suffices to consider
only (a,b) such that a < b. Since {2 contains less than k? pairs and

o (AN @Ok - o G
Pent = () 4 = (iE)

when a < b it is enough to prove that

db
2k* max (k) (k) %Z) = max P(a,b) < 1.
(a,bl%!) al\b (da) (a,bl%!)

We prove this inequality by case analysis. When a can be written as ak
where 107° < @ < 1 —107° we expand the above expression using Stirling’s
formula. The case when «a, and therefore also b, is very close to either 0 or k
is dealt with separately.

Case I: 107° < a/k <1 — 1075, By Stirling’s formula

(Oljk) = (a™(1 — a)~=)" poly (k).

Now write ¢ = ak and b = Bk and apply Stirling’s formula to the expression
we want to bound. This gives us the equality

B (1 _ a)(d—l)(l—oz)ﬁ(d—l)ﬁ )k
This expression is certainly strictly less than 1 for all («, §) such that o < 3
and (ak, Bk) € £2 as soon as
1 — @)d-D-a)z(d-1)p
Qo ) = a( ) -3 o 1(F—a
(1 — )13 — @)d(F~2)
for all (a, 8) such that a < and (ak, k) € £2 and k is large enough. The

validity of the latter inequality can then be verified numerically.

<1
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Case II: 0 < a/k < 1072, TFor every fixed @ in that range and every
b such that a < b < 10a, P(a,b) is increasing with b. Therefore it suffices to
prove that P(a,b) < 1 when b = 3a; that implies (2). Let us first note that

SR\ (E\ (B 24048
o -ae(l) (1)

GANCER
therefore P(1,3) < 1 when k& > 250. We now show that P(a,3a)/P(a+
1,3(a+ 1)) > 1 when 0 < a/k < 107° and k > 10°, thereby establishing
that (2) holds in that region. Since

()
we need to bound quotients of the following forms:

k k at+1

(a)/(a—l—l) T ko1

k k (3a+ 3)1(k — 3a — 3)! 3a41\°

(3@)/(3a—l— 3) (3a)!(k — 3a)! (k - 3a) ’
Tk kY (Ta)l(k - Ta)! k—a—1\"

(7a+7)/(7a)  (Ta+ )k —=Ta—T7)! > ( a+1 ) ’

(zm) / (zm + 21) _ (210)(Ta+ T)!(14a+ 14)! 1

Ta Ta+7 (2lat 20)!(Ta)!(14a)! = 547"

The above bounds imply that when 0 < a < &k, where § = 10~° and
k> 105,

P(a,3a) >a—|—1<3a—|—1)3< a+1 )7L
Pla+1,3(a+1)) " k—1\k—-3a/ \k—a—-1/ 547
(k =30k —1)7
k*(8k 4 1)3547
(=6 1/k)7
(64 1/k)3547
1—14-107°
> -
8- 1015 . 547
9900
8- 10710 . 547
12 -10'2
547
> 1.
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Case II1: 1 —107% < a/k < 1. Note that P(a,b) = P(k—b,k—a) since

d(k — a) dk\ _ (dk—da)!  (dk— db)!(db)!
d(k — b) / d(k — b) dk — db)!(db — da)! (dk)!

-

_(dk — da)(db)!

= (dk)!(db — da)!

_ (dk —da)!(da)!  (db)!
k) (db— da)!(da)!

_[db / dk
-~ \da da)’
Therefore, (6) in the region a > (1 — 107°)k follows directly from Case II.

Proof of Lemma A.1. We use the shorthands |T1| = 1, |U1| = u1, |S1] = s1,
|T3| = ta, |[Uz| = ug, and |S3| = s;. We can assume without loss of generality
that u; < wg. This implies that u; < 7k/20; otherwise t3 4+ s2 > [N (Uy)| >
1 — uy which is equivalent to us = k — t9 — s9 < uy, a contradiction. The
proof now proceeds by case analysis on t5 and u;.

Case Ia: 0 < t2 < 3k/10 and uy < 3k/10. Then uy+s; > |N(T3)| >
2ty and ty+s, > |N(Uy)| > 2uy by (2) and (3)—we use non-strict inequality
to also cover the case when uy = 0. Adding these two inequalities gives the
inequality s;+s2 > t34wuy which is equivalent to 2(s1+s3) > us+t2+51+52;
therefore (1) holds.

Case Ib: 0 < t; < k/10 and uy > 3k/10. Then t3 + s > |N(Uy)| >
31k/100 4+ uy by (4) which is equivalent to s > 31k/100 + uy — t2 > k/2;
therefore (1) holds.

Case Ic: k/10 < ts < 3k/10 and uy; > 3k/10. Then uy + 54 >
|N(Tz)| > 13k/100 + 8t3/5 by (3) and tg + s > |[N(Uy)| > 31k/100 + uy
by (4). Adding these inequalities gives the inequality s; + sz > 44k/100 +
3ty/5 > k/2; therefore (1) holds.

Case ITa: 3k/10 < t; < 39k/100 and u; < k/10. Then uy + s; >

|N(T3)| > 31k/100+4t5 by (4) which is equivalent to sy > 31k/1004+t3—uq >
k/2, therefore (1) holds.

25



Case IIb: 3k/10 < t; < 39k/100 and u; > k/10. Then uy + sy >
|N(T3)| > 31k/100 4 t; by (4) which is equivalent to sq 4+ sy > 31k/100 4
ta + s2 —uy, and sy 4ty > |N(Uy)| > 13k/100 + 8uy /5 by (3). Therefore
s1+ s2 > 31k/100 + t3 + s2 — uy > 44k/100 + 3uy /5 > k/2 and (1) holds.

Case IITa: 39k/100 < t; < k and u; < 3k/10. Then uy + s; >
|N(T3)| > k/2 4 ty/2 by (5) and (6), which is equivalent to s; + s3 >
k/2+4 sq+1ta/2 — uy, and tg 4+ s2 > |N(Uy)| > 2uy by (2) and (3); therefore
s14+s2 > k/24 s2+12/2—up > k/24 s +t2/2 — (s2+1t2)/2 > k/2 and
(1) holds.

Case IIlb: 39k/100 < t; < 62k/100 and u; > 3k/10. Then uy +
s1 > [N(T3)] > k/2+ t2/2 by (5), which is equivalent to s; + s2 > k/2 +
Sg +t3/2 — uq, and tz + so > |[N(Uy)| > 31k/100 4+ uy by (4); therefore
s1+ 52> k/2+ s3+12/2 —uy > 81k/100 — t3/2 > k/2 and (1) holds.

Case IIIc: 62k/100 < t2 < k and w; > 3k/10. Then uy + s; >
|N(T3)| > 85k/100 by (6), which is equivalent to s; > 85k/100 — uy > k/2
where the last inequality follows since uy < 7k/20; therefore (1) holds.

Case IV: t; = 0. Since uy; < ug and t5 = 0, uy + to < ug + 1, therefore
it suffices to show that 2(s; + s2) > min{uy + s1 + sz, k}. But this always
holds if uy > 0 since then s; > |N(Uy)| > uy. And if uy = 0, the inequality
holds trivially as soon as either sy or sy are non-zero. Therefore, (1) holds
when 15 = 0.

Case V: ty = k. Since vertices in 7T are not connected to vertices in T3,

ty = k implies that t; = 0. Moreover, since u; < ug = 0, also uy = 0.
Therefore, s; = k, which implies that (1) holds when ¢; = k. .
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