
Approximation Hardness of TSP with Bounded Metrics(Revised Version)Lars Engebretsen1;? and Marek Karpinski2;??1 MIT Laboratory for Computer Science200 Technology Square, NE43-367Cambridge, Massachusetts 02139-3594E-mail: enge@mit.edu2 Department of Computer ScienceUniversity of Bonn53117 BonnE-mail: marek@cs.uni-bonn.deAbstract. The general asymmetric TSP with triangle inequality is knownto be approximable only to within an O(log n) factor, and is also known tobe approximable within a constant factor as soon as the metric is bounded.In this paper we study the asymmetric and symmetric TSP problems withbounded metrics and prove approximation lower bounds of 131=130 and174=173, respectively, for these problems, improving over the previous bestlower bounds of 2805=2804 and 3813=3812 by an order of magnitude. Ourbound 174=173 for the symmetric TSP with bounded metric is also the cur-rently best known approximation lower bound for the general metric sym-metric TSP problem.We prove also approximation lower bounds of 321=320 and 743=742 forthe asymmetric and symmetric TSP with distances one and two, improvingover the previous best lower bounds of 2805=2804 and 5381=5380.Key words. Approximation Ratios; Lower Bounds; Metric TSP; BoundedMetric.?Supported by the Marcus Wallenberg foundation.??Supported in part by DFG grant, DIMACS, and IST grant 14036 (RAND-APX).1



1 IntroductionA common special case of the Traveling Salesman Problem (TSP) is themetric TSP, where the distances between the cities satisfy the triangle in-equality. The decision version of this special case was shown to be NP-complete by Karp [11], which means that we have little hope of computingexact solutions in polynomial time. Christo�des [7] has constructed an ele-gant algorithm approximating the metric TSP within 3=2, i.e., an algorithmthat always produces a tour whose weight is at most a factor 3=2 from theweight of the optimal tour. For the case when the distance function maybe asymmetric, the best known algorithm approximates the solution withinO(logn), where n is the number of cities [9], although a constant factorapproximation algorithm has recently been conjectured [6]. As for lowerbounds, Papadimitriou and Yannakakis [14] have shown that there existssome constant, see also [1], such that it is NP-hard to approximate the TSPwhere the distances are constrained to be either one or two|note that sucha distance function always satis�es the triangle inequality|within that con-stant. This lower bound was improved by Engebretsen [8] to 2805=2804� �for the asymmetric and 5381=5380� � for the symmetric, respectively, TSPwith distances one and two. B�ockenhauer et. al [4, 5] considered the sym-metric TSP with distances one, two and three, and were able to prove a lowerbound of 3813=3812� �. (For a discussion of bounded metric TSP, see alsoTrevisan [15].) It appears that the metric TSP lacks the good de�nabilityproperties which were needed (so far) for proving strong nonapproximabilityresults. Therefore, any new insights into explicit lower bounds here seem tobe of a considerable interest.Papadimitriou and Vempala [12] recently announced lower bounds of42=41� � and 129=128� �, respectively, for the asymmetric and symmetricversions, respectively, of the TSP with graph metric, but left the question ofthe approximability for the case with bounded metric open. However, theirproof contained an error in
uencing the explicit constants. A corrected proofwith the new constants of 98=97� � and 234=233� �, respectively, has beencommunicated to us by Papadimitriou and Vempala [13]. Apart from beingan interesting question on its own, it is conceivable that the special caseswith bounded metric are easier to approximate than the cases when the dis-tance between two points can grow with the number of cities in the instance.Indeed, the asymmetric TSP with distances bounded by B can be approxi-mated within B by just picking any tour as the solution and the asymmetricTSP with distances one and two can be approximated within 4=3 [3]. Thesymmetric version of the latter problem can be approximated within 7=6 [14].2



In this paper, we consider the case when the metric contains only integerdistances between one and six and prove a lower bound of 131=130� � forthe asymmetric case and 174=173 � � for the symmetric case. This is animprovement of an order of magnitude compared to the previous best knownbounds of 2805=2804�� and 3813=3812�� for this case, respectively [4, 5, 8].Our bound for the symmetric case is currently the best known bound forthe general metric TSP, improving over the recent bound of Papadimitriouand Vempala [13]. We also prove that it is NP-hard to approximate theasymmetric TSP with distances one and two within 321=320 � �, for anyconstant � > 0. For the symmetric version of the latter problem we show alower bound of 743=742� �. The previously best known bounds for this caseare 2805=2804� � and 5381=5380� �, respectively [8]. Our proofs dependon explicit reductions from certain bounded dependency instances of linearequations satis�ability. The main idea is to construct certain uniform circlesof equation gadgets and, in the second part, certain combined hybrid circleconstructions.De�nition 1.1. The Asymmetric Traveling Salesman Problem (ATSP) isthe following minimization problem: Given a collection of cities and a matrixwhose entries are interpreted as the distance from a city to another, �nd theshortest tour starting and ending in the same city and visiting every cityexactly once.De�nition 1.2. (1,B)-ATSP is the special case of ATSP where the entriesin the distance matrix obey the triangle inequality and the o�-diagonal en-tries in the distance matrix are integers between 1 and B. (1,B)-TSP is thespecial case of (1,B)-ATSP where the distance matrix is symmetric.2 The hardness of (1,B)-ATSPWe reduce, similarly to Papadimitriou and Vempala [12], from H�astad'slower bound for E3-Lin mod 2 [10]. In fact, our gadgets for the (1,B)-ATSPcase are syntactically identical to those of Papadimitriou and Vempala [12]but we use a slightly di�erent accounting method. The construction consistsof a circle of equation gadgets testing odd parity. This is no restriction sincewe can easily transform a test for even parity into a test for odd parity by
ipping a literal. Three of the edges in the equation gadget correspond tothe variables involved in the parity check. These edges are in fact gadgets,so called edge gadgets, themselves. Edge gadgets from di�erent equationgadgets are connected to ensure consistency among the edges representing3



a literal. This requires the number of negative occurrences of a variable tobe equal to the number of positive occurrences. This is no restriction sincewe can duplicate every equation a constant number of times and 
ip literalsto reach this property.De�nition 2.1. E3-Lin mod 2 is the following problem: Given an instanceof n variables and m equations over Z2 with exactly three unknowns in eachequation, �nd an assignment to the variables that satis�es as many equationsas possible.Theorem 2.1 [10]. There exists instances of E3-Lin mod 2 with 2m equa-tions such that, for any constant � > 0, it is NP-hard to decide if at most�m or at least (1� �)m equations are left unsatis�ed by the optimal assign-ment. Each variable in the instance occurs a constant number of times, halfof them negated and half of them unnegated.We describe our instance of (1,B)-ATSP by constructing a weighted directedgraph and then let the (1,B)-ATSP instance have the nodes of this graph ascities. The distance between two cities u and v is the (1,B)-ATSP instanceis then de�ned to be minfB; `(u; v)g, where `(u; v) be the length of theshortest path from u to v in the graph.2.1 The gadgetsThe gadgets are parametrized by the parameters a, b and d; they will bespeci�ed later. The equation gadget for equations of the form x + y + z =0 is shown in Fig. 1. The key property of this gadget is that there is aHamiltonian path through the gadget only if zero or two of the ticked edgesare traversed. To form the circle of equation gadgets, vertex A in one gadgetcoincides with vertex B in another gadget.The ticked edges in Fig. 1 are gadgets themselves. This gadget is shownin Fig. 2. Each of the bridges is shared between two di�erent edge gadgets,one corresponding to a positive occurrence of the literal and one correspond-ing to a negative occurrence. The precise coupling is provided by a perfectmatching in a d-regular bipartite multigraph (V1[V2; E) on 2k vertices withthe following property: For any partition of V1 into subsets S1, U1 and T1and any partition of V2 into subsets S2, U2 and T2 such that there are noedges from T1 to T2 and no edges from U1 to U2,(jS1j+ jS2j)minfa=2; b; (a+ b)=2� 1g �4



minfk; jU1j+ jT2j+ jS1j+ jS2j; jU2j+ jT1j+ jS1j+ jS2jg:The purpose of this construction is to ensure that it is always optimal forthe tour to traverse the graph in such a way that all variables are givenconsistent values. The edge gadget gives an assignment to an occurrence ofa variable by the way it is traversed.De�nition 2.2. We call an edge gadget where all bridges are traversed fromleft to right in Fig. 2 traversed and an edge gadget where all bridges aretraversed from right to left untraversed. All other edge gadgets are calledsemitraversed.2.2 Proof of correctnessIf we assume that the tour behaves nicely, i.e., that the edge gadgets areeither traversed or untraversed, it is straightforward to establish a corre-spondence between the length of the tour and the number of unsatis�edequations.Lemma 2.1. The only way to traverse the equation gadget in Fig. 1 with atour of length 4|if the edge gadgets count as length one for the moment|isto traverse an odd number of edge gadgets. All other locally optimal traver-sals have length 5.Proof. It is easy to see that any tour traversing two ticked edges and leavingthe third one untraversed has length 4. Any tour traversing one ticked edgeand leaving the other two ticked edges untraversed has length at least 5.Strictly speaking, it is impossible to have three traversals since this does notresult in a tour. However, we can regard the case when the tour leaves theedge gadget by jumping directly to the exit node of the equation gadget asa tour with three traversals; such a tour gives a cost of 5.Lemma 2.2. In addition to the length 1 attributed to the edge gadget above,the length of a tour traversing an edge gadget in the intended way is d(a+b).Proof. Each bridge has length a, and every bridge must have one of theincoming edge traversed. Thus, the total cost is d(a+ b).Lemma 2.3. Suppose that there are 2m equations in the E3-Lin mod 2instance. If the tour is shaped in the intended way, i.e., every edge gadget iseither traversed or untraversed, the length of the tour is 3md(a+b)+4m+u,where u is the number of unsatis�ed equations resulting from the assignmentrepresented by the tour. 5



A BFigure 1. The gadget for equations of the form x+ y + z = 0. There is aHamiltonian path from A to B only if zero or two of the ticked edges, whichare actually gadgets themselves (Fig. 2), are traversed. The non-ticked edgeshave weight 1.Figure 2. The edge gadget consists of d bridges. Each of the bridgesare shared between two di�erent edge gadgets and consist of a undirectededges of weight 1 each. The rightmost directed edge above has weight 1, thedirected edges entering a bridge have weight b.Figure 3. A traversed edge gadget represents the value 1.Figure 4. An untraversed edge gadget represents the value 0.6



Proof. The length of the tour on an edge gadgets is d(a+b). There are threeedge gadgets corresponding to every equation and every bridge in the edgegadget is shared between two equation gadgets. Thus, the length of the touron the edge gadgets is 2m � 3d(a+ b)=2 = 3md(a+ b) The length of the touron an equation gadget is 4 if the equation is satis�ed and 5 otherwise. Thus,the total length is 3md(a+ b) + 4m+ u.The main challenge now is to prove that the above correspondence betweenthe length of the optimum tour and the number of unsatis�ed equation holdsalso when we drop the assumption that the tour is shaped in the intendedway. Our proof uses the following technical lemma (we provide a proof inthe appendix):Lemma A.1. For every large enough constant k, there exists an 7-regularbipartite multigraph on 2k vertices such that for every partition of the leftvertices into sets T1, U1 and S1 and every partition of the right vertices intosets T2, U2 and S2 such that there are no edges from T1 to T2, and there areno edges from U1 to U2,2(jS1j+ jS2j) � minfk; jU1j+ jT2j+ jS1j+ jS2j; jU2j+ jT1j+ jS1j+ jS2jgwith equality only if S1 = S2 = U1 = T2 = ; or S1 = S2 = T1 = U2 = ;.Given the above lemma, the following sequence of lemmas give a lower boundon the extra cost, not counting the \normal" cost of d(a+b) per edge gadgetand 4 per equation gadget, that results from a non-standard behavior of thetour. We have already seen that an unsatis�ed equation adds an extra costof 1. Edge gadgets that are either traversed or untraversed do not addany extra cost. Note that traversed edge gadgets never can share the samebridge, neither can untraversed edge gadgets. We now give a lower boundon the additional length of the tour due to semitraversed edge gadgets.Lemma 2.4. Suppose that B � maxfa+ b; 3bg. Then every semitraversededge gadget adds an extra cost of at least minfa=2; b; (a+ b)=2� 1g to thelength of the tour.Proof. A bridge is said to have an unde�ned traversal if the tour does nottraverse it in the intended way, i.e., the restriction of the tour to the bridgedoes not result in a simple path from one end of the bridge to the other.There are two reasons for an edge gadget to be classi�ed as semitraversed.Either there is a bridge that has an unde�ned traversal, or the directionin which the bridges are traversed changes without any bridge having anunde�ned traversal. 7



In the former case there is an extra cost of at least a � 2 + b whichis shared between the two edge gadgets that cross at the bridge with anunde�ned traversal.If the edge gadget has no bridges with an unde�ned traversal, it canstill be semitraversed. The direction in which the bridges are traversed thenchanges between two bridges. There are two cases. Either the tour switchesfrom traversing an edge gadget representing an occurrence of x to traversingan edge gadget representing an occurrence of �x|in this case the extra costis a|or, the tour switches from traversing an edge gadget representing anoccurrence of x to traversing another edge gadget representing an occurrenceof x|in this case the extra cost is 2b. In both of the above cases, the extracost is shared evenly between the two semitraversed edge gadgets involved.Lemma 2.5. For a = 4, b = 2 and d = 7, there exists a coupling of theequation gadgets with the property that it can never be advantageous to haveinconsistently traversed equation gadgets.Proof. Repeat the following argument for every variable x:Let k be the number of occurrences of x (and also the number of occur-rences of �x). Pick a bipartite multigraph on 2k vertices such that for everypartition of the left vertices into sets T1, U1 and S1 and every partition of theright vertices into sets T2, U2 and S2 such that there are no edges from T1to T2, and there are no edges from U1 to U2,2(jS1j+ jS2j) � minfk; jU1j+ jT2j+ jS1j+ jS2j; jU2j+ jT1j+ jS1j+ jS2jgwith equality only if S1 = S2 = U1 = T2 = ; or S1 = S2 = T1 = U2 = ;. Weknow by Lemma A.1 that such a graph exists|since the graph has constantsize, we can try all possible graphs in constant time.Put occurrences of x at one side and occurrences of �x on the other sideof the bipartite graph. Each vertex in the graph can be labeled as T , Uor S, depending on whether it is traversed, untraversed or semitraversed.Let T1 be the set of traversed positive occurrences and T2 be the set oftraversed negative occurrences. De�ne U1, U2, S1, and S2 similarly. We canassume that jU1j+ jT2j � jU2j+ jT1j|otherwise we just change the indexingconvention.We now consider a modi�ed tour where the positive occurrences aretraversed and the negative occurrences are untraversed. This decreases the8



cost of tour by at least 2(jS1j+ jS2j) and increases it by minfk; jS1j+ jS2j+jU1j+ jT2jg. But the bipartite graph has the property that2(jS1j+ jS2j) � minfk; jU1j+ jT2j+ jS1j+ jS2jgwhich implies that the cost of tour decreases by this transformation. Thus,we can assume that x is given a consistent assignment by the tour.Theorem 2.2. For any constant � > 0, it isNP-hard to approximate (1,6)-ATSP within 131=130� �.Proof. Given an instance of E3-Lin mod 2 with 2m equations where everyvariable occurs a constant number of times, we construct the correspondinginstance of (1,6)-ATSP with a = 4, b = 2 and d = 7. This can be donein polynomial time. By the above lemma, we can assume that all edgegadgets are traversed consistently in this instance. The assignment obtainedfrom this traversal satis�es 2m � u equations if the length of the tour is3md(a+b)+4m+u. If we could decide if the length of the optimum tour isat most (3d(a+b)+4+�1)m or at least (3d(a+b)+5��2)m, we could decideif at most �1m or at least (1��2)m of the equations are left unsatis�ed by thecorresponding assignment. But to decide this is NP-hard by Theorem 2.1.Therefore it is NP-hard to approximate (1,6)-ATSP within3d(a+ b) + 5� �23d(a+ b) + 4 + �1 � 131130 � �:3 The hardness of (1,B)-TSPTo adapt the construction from the previous section for the symmetric casewe need to change some of the gadgets. Most changes in the equation gadgetsare minor|the main change being that we test odd instead of even parity forequations with three variables (Fig. 8). There is a more substantial changein the edge gadget; it is changed according to Fig. 9.If we assume that the tour behaves nicely, it is straightforward to provea correspondence between the length of a tour and the number of equationsleft unsatis�ed by the corresponding assignment.Lemma 3.1. The only way to traverse the equation gadget in Fig. 8 with atour of length 5|if the edge gadgets count as length one for the moment|isto traverse an odd number of edge gadgets. All other locally optimal traver-sals have length 6. 9



Figure 5. We can assume that traversals shown in the left �gure abovenever occur since they can be transformed into the traversal shown in theright �gure without increasing the length of the tour. A bridge with such atraversal gives an extra cost of (a + b)=2 � 1. The total length of the partof the tour that traverses the bridge and its two incoming edges in the right�gure above is 2a � 2 � 2b; that gives an extra cost of a � 2 � b which isshared evenly between the two semitraversed edge gadgets.Figure 6. Switching from traversing an edge gadget representing an oc-currence of x to traversing an edge gadget representing an occurrence of �xgives an extra cost of at least a=2. The dashed edges above has length a+ b;that gives an extra cost of a which is then shared evenly among the twosemitraversed edge gadgets.
Figure 7. Switching from traversing an edge gadget representing an oc-currence of x to traversing another edge gadget representing an occurrenceof x gives an extra cost of at least b. The dotted edge above has length 3b;that gives an extra cost of 2b which is then shared evenly among the twosemitraversed edge gadgets. 10



A BFigure 8. The gadget for equations of the form x+ y + z = 1. There is aHamiltonian path from A to B only if one or three of the ticked edges aretraversed.Figure 9. To transform the edge gadget from Fig. 2 into a gadget that canbe used in the symmetric case, all occurrences of the structure to the leftabove are replaced with the structure to the right above.Proof. It is easy to see that any tour traversing either one or three of theticked edges and leaving the third one untraversed has length 5. Any tourtraversing zero or two ticked edges end up on the wrong side of the gadgetand needs an extra cost of at least one to get back to the other side.Lemma 3.2. In addition to the length 1 attributed to the edge gadget above,the length of a tour traversing an edge gadget in the intended way is 56.Proof. The total cost is 7 � (7 + 1) = 56.Lemma 3.3. Suppose that there are 2m equations in the E3-Lin instance.If the tour is shaped in the intended way, i.e., every edge gadget is eithertraversed or untraversed, the length of the tour is 173m+ u, where u is thenumber of unsatis�ed equations resulting from the assignment representedby the tour.Proof. The length of the tour on the edge gadgets is 64. There are threeedge gadgets corresponding to every equation and every bridge in the edgegadget is shared between two equation gadgets. Thus, the length of the touron the edge gadgets is 2m � 3 � 56=2 = 168m. The length of the tour in theequation gadgets is 5 if the equation is satis�ed and 6 otherwise. Thus, thetotal length is 173m+ u. 11



In the same way as in the asymmetric case, it can now be shown that thetour can be assumed to behave in the intended way. This gives the followinglemma (we omit the proof):Lemma 3.4. Suppose that B � 6. Then every semitraversed edge gadgetadds an extra cost of at least 2 to the length of the tour.There exists a coupling of the edge gadgets with the property that therecan never be advantageous to have inconsistently traversed edge gadgets.Given the above lemma, the main theorem follows in exactly the same wayas in the asymmetric case.Theorem 3.1. For any constant � > 0, it isNP-hard to approximate (1,6)-TSP within 174=173� �.Proof. Given an instance of E3-Lin mod 2 with 2m equations where everyvariable occurs a constant number of times, we construct the correspondinginstance of (1,6)-TSP. This can be done in polynomial time. By the abovelemma, we can assume that all edge gadgets are traversed consistently inthis instance. The assignment obtained from this traversal satis�es 2m� uequations if the length of the tour is 173m + u. If we could decide if thelength of the optimum tour is at most (173 + �1)m or at least (174� �2)m,we could decide if at most �1m or at most (1� �2)m of the equations are letunsatis�ed by the corresponding assignment. But to decide this is NP-hardby Theorem 2.1.4 The hardness of (1,2)-ATSPTo prove a lower bound for (1,2)-ATSP we apply the construction used byBerman and Karpinski [2], a reduction from systems of linear equationsmod 2 with exactly three unknowns in each equation to a problem calledHybrid, to prove hardness results for instances of several combinatorial op-timization problems where the number of occurrences of every variable isbounded by some constant.De�nition 4.1. Hybrid is the following maximization problem: Given asystem of linear equations mod 2 containing n variables, m2 equations withexactly two unknowns, and m3 equations exactly with three unknowns, �ndan assignment to the variables that satis�es as many equations as possible.Theorem 4.1 [2]. There exists instances of Hybrid with 42� variables, 60�equations with two variables, and 2� equations with three variables such that:12



1. Each variable occurs exactly three times.2. For any constant � > 0, it is NP-hard to decide if at most �� or atleast (1� �)� equations are left unsatis�ed.Since we adopt the construction of Berman and Karpinski [2], we can partlyrely on their main technical lemmas, which simpli�es our proof of correct-ness.On a high level, the (1,2)-ATSP instance in our reduction consists of a cir-cle formed by equation gadgets representing equations of the form x+y+z =0 and x+y = 1. These gadgets are coupled in a way ensuring that the threeoccurrences of a variable are given consistent values. In fact, the instances ofHybrid produced by the Berman-Karpinski construction have a very specialstructure. Every variable occurs in at least two equations with two un-knowns, and those equations are all equivalences, i.e., equations of the formx + y = 0. Since our gadget for equations with two unknowns tests oddparity, we have to rewrite those equations as x + �y = 1 instead. Similarly,the equations of the form x+ y+ z = 1 must be rewritten with one variablenegated since our gadgets for equations with three unknowns only test evenparity. Turning to the coupling needed to ensure consistency, we have threeoccurrences of every variable. Since we do not have any gadgets testing oddparity for three variables or even parity for two variables, we may have tonegate some of the occurrences. We now argue that there are either one ortwo negated occurrences of every variable. The Hybrid instance produced bythe Berman-Karpinski construction can be viewed as a collection of wheelswhere the nodes correspond to variables and edges to equations. The edgeswithin a wheel all represent equations with two unknowns, while the equa-tions with three unknowns are represented by hyperedges connecting threedi�erent wheels. Figure 10 gives an example of one such wheel. The equa-tions corresponding to the edges forming the perimeter of the wheel can bewritten as x1 + �x2 = 1, x2 + �x3 = 1, . . . , xk�1 + �xk = 1, and xk + �x1 = 1,which implies that there is at least one negated and at least one unnegatedoccurrence of each variable.Corollary 4.1. There are instances of Hybrid with 42� variables, 60� equa-tions of the form x+ �y = 1 mod 2, and 2� equations of the form x+ y+ z =0 mod 2 or x+ y + �z = 0 mod 2 such that:1. Each variable occurs exactly three times.2. There is at least one positive and at least one negative occurrence ofeach variable. 13



Figure 10. The Hybrid instance produced by the Berman-Karpinski con-struction can be viewed as a collection of wheels where the nodes correspondto variables and edges to equations.3. For any constant � > 0, it is NP-hard to decide if at most �� or atleast (1� �)� equations are left unsatis�ed.To prove our hardness result for (1,2)-ATSP, we reduce instances of Hybridof the form described in Corollary 4.1 to instances of (1,2)-ATSP and provethat, given a tour in the (1,2)-ATSP instance, it is possible to construct anassignment to the variables in the original Hybrid instance with the propertythat the number of unsatis�ed equations in the Hybrid instance is relatedto the length of the tour in the (1,2)-ATSP instance.To describe a (1,2)-TSP instance, it is enough to specify the edges ofweight one. We do this by constructing a graph G and then let the (1,2)-TSP instance have the nodes of G as cities. The distance between two citiesu and v is de�ned to be one if (u; v) is an edge in G and two otherwise. Tocompute the weight of a tour, it is enough to study the parts of the tourtraversing edges of G. In the asymmetric case G is a directed graph.De�nition 4.2. We call a node where the tour leaves or enters G an end-point. A node with the property that the tour both enters and leaves G inthat particular node is called a double endpoint and counts as two endpoints.If c is the number of cities and 2e is the total number of endpoints, theweight of the tour is c+ e since every edge of weight two corresponds to twoendpoints.4.1 The gadgetsThe equation gadget for equations of the form x + y + z = 0 is shown inFig. 1|the same gadget as in the (1,B) case. However, the ticked edges14



A BFigure 11. The gadget for equations of the form x + y = 1. There is aHamiltonian path from A to B only if one of the ticked edges is traversed.Figure 12. The gadget ensuring consistency for a variable. If there are twopositive occurrences of the variable, the ticked edges corresponding to thoseoccurrences are represented by the parts enclosed in the dotted curves andthe ticked edge corresponding to the negative occurrence is represented bythe part enclosed in the dashed curve. If there are two negative occurrences,the rôles are reversed.now represent a di�erent structure.The equation gadget for equations of the form x + y = 1 is shown inFig. 11. The key property of this gadget is that there is a Hamiltonian paththrough the gadget only if one of the ticked edges is traversed.The ticked edges in the equation gadgets are syntactic sugar for a con-struction ensuring consistency among the three occurrences of each variable.As we noted above, either one or two of the occurrences of a variable arenegated. The construction in Fig. 12 ensures that the occurrences are givenconsistent values, i.e., that either x = 0 and �x = 1, or x = 1 and �x = 0. Ifthere is one negated occurrence of a variable, the upper part of the gadgetconnects with that occurrence and the lower part connects with the twounnegated occurrences. If there are two negated occurrences, the situationis reversed.4.2 Proof of correctnessWe want to prove that every unsatis�ed equation has an extra cost of oneassociated with it. At �rst, it would seem that this is very easy|the gadgetin Fig. 1 is traversed by a path of length four if the equation is satis�ed anda path of length at least �ve otherwise; the gadget in Fig. 11 is traversedby a path of length one if the equation is satis�ed and a path of lengthat least two otherwise; and the gadget in Fig. 12 ensures consistency and is15



traversed by a tour of length six, not counting the edges that were accountedfor above. Unfortunately, things are more complicated than this. Due tothe consistency gadgets, the tour can leave a ticked edge when it is half-waythrough it, which forces us to be more careful in our analysis.We count the number of endpoints that occur within the gadgets; eachendpoint gives an extra cost of one half. We say that an occurrence of aliteral is traversed if both of its connected edges are traversed, untraversedif none of its connecting edges are traversed, and semitraversed otherwise.To construct an assignment to the literals, we use the convention that aliteral is true if it is either traversed or semitraversed. We need to show thatthere are two endpoints in gadgets that are traversed in such a way thatthe corresponding assignment to the literals makes the equation unsatis�ed.The following lemmas are easy, but tedious, to verify by case analysis:Lemma 4.1. It is locally optimal to traverse both bridges, i.e., both pairsof undirected edges, in the consistency gadget.Proof. By case analysis.Lemma 4.2. Every semitraversed occurrence introduces at least one end-point.Proof. By case analysis on traversed connection edges.Lemma 4.3. It is always possible to change a semitraversed occurrence intoa traversed one without introducing any endpoints in the consistency gadget.Proof. By case analysis on traversed connection edges.Given the above lemmas, the following two lemmas prove the properties weneed regarding the equation gadgets.Lemma 4.4. A \satisfying traversal" of the gadget in Fig. 11 has length 1,all other locally optimal traversals have length at least 2, i.e., contain at leasttwo endpoints within the gadget.Proof. If one of the ticked edges is traversed and the other is untraversed,the gadget is traversed by a tour of length 1. It is suboptimal to have onesemitraversed and one untraversed edge, in this case it is possible to shortenthe tour by transforming the semitraversed edge into a traversed one.Two untraversed edges give a total cost of at least 2. It is impossible tohave either two traversed edges or one traversed and one semitraversed tickededge, since that gives a traversal which is not a tour. Two semitraversededges give an extra cost of 1=2 each, giving a total cost of at least 2.16



Lemma 4.5. A \satisfying traversal" of the gadget in Fig. 1 has length 4,all other locally optimal traversals have length at least 5, i.e., contain at leasttwo endpoints within the gadget.Proof. It is easy to see that any tour traversing two ticked edges and leavingthe third one untraversed has length 4. The case with two semitraversedoccurrences and one untraversed is suboptimal since a shorter tour can beproduced in this way: Make the semitraversed occurrences traversed andthen adjust the tour on the non-ticked edges to get a tour of length 4.Similarly, the case with one traversed and one semitraversed occurrence canbe transformed into two semitraversed occurrences.Any tour traversing one ticked edge and leaving the other two tickededges untraversed has length at least 5. A tour semitraversing one tickededge and leaving the other ticked edges untraversed can be transformed intoa tour with one traversal and two non-traversals. It is impossible to havethree traversals since this does not result in a tour. The case with twotraversals and one semitraversal gives a cost of 5, and so does case with onetraversal and two semitraverals, since each semitraversal has an extra costof 1=2 associated with it.When the above lemmas have been proven, we only need to prove that thegadget we use for consistency actually implements consistency.Lemma 4.6. The gadget in Fig. 12 ensures consistency and is traversed bya tour of length 6, not counting the edges or endpoints that were accountedfor in the above lemmas.Proof. If there are no semitraversed occurrences, the gadget implementsconsistency correctly.Suppose that the upper occurrence in Fig. 12 is semitraversed in such away that the leftmost connecting edge is traversed but the rightmost is not.Then it is possible to have the lower left occurrence untraversed and thelower right occurrence traversed. Since a semitraversed occurrence is alwayspart of an unsatis�ed equation gadget, the following procedure produces atour with equal cost: Make the upper occurrence untraversed and the lowerleft occurrence traversed. This makes the equation gadget that the upperoccurrence is connected to satis�ed and may make the equation gadget thatthe lower left occurrence is connected to unsatis�ed.Suppose that the lower left occurrence in Fig. 12 is semitraversed in sucha way that the leftmost connecting edge is traversed but the rightmost is not.Then it is possible to have the lower right occurrence untraversed and the17



upper occurrence semitraversed. Since a semitraversed occurrence is alwayspart of an unsatis�ed equation gadget, the following procedure produces atour with equal cost: Make the upper occurrence untraversed and the lowerright occurrence traversed. This makes the equation gadget that the upperoccurrence is connected to satis�ed and may make the equation gadget thatthe lower right occurrence is connected to unsatis�ed.With similar arguments it can be shown that the lemma holds for allother possible cases.By combining the above lemmas, we have shown the following connectionbetween the length of an optimum tour and the number of unsatis�ed equa-tions in the corresponding instance of Hybrid.Theorem 4.2. Suppose that we are given an arbitrary instance of Hybridwith n variables, m2 equations of the form x+�y = 1 mod 2, and m3 equationsof the form x+ y + z = 0 mod 2 or x+ y + �z = 0 mod 2 such that:1. Each variable occurs exactly three times.2. There is at least one positive and at least one negative occurrence ofeach variable.Then we can construct an instance of (1,2)-ATSP with the property that atour of length 6n + m2 + 4m3 + u corresponds to an assignment satisfyingall but u of the equations in the Hybrid instance.Corollary 4.2. For any constant � > 0, it is NP-hard to approximate(1,2)-ATSP within 321=320� �.Proof. We connect Theorem 4.2 with Corollary 4.1 and obtain an instanceof (1,2)-ATSP with the property that a tour of length6n+m2 + 4m3 + u = 6 � 42� + 60� + 4 � 2� + u = 320� + ucorresponds to an assignment satisfying all but u of the equations in theHybrid instance. Since, for any constant �0 > 0, it is NP-hard to distinguishthe cases u � �0 and u � 1 � �0, it is NP-hard to approximate (1,2)-ATSPwithin 321=320� � for any constant � > 0.5 The hardness of (1,2)-TSPIt is possible to adapt the above construction for (1,2)-ATSP to prove a lowerbound also for (1,2)-TSP. The equation gadget for equations containing threevariables is changed in the same way as in the (1,B) case, the consistencygadget is change in a similar way. 18



A BFigure 13. The gadget for equations of the form x + y = 1. There is aHamiltonian path from A to B only if one of the ticked edges is traversed.
Figure 14. The gadget ensuring consistency for a variable. If there are twopositive occurrences of the variable, the ticked edges corresponding to thoseoccurrences are represented by the parts enclosed in the dotted curves andthe ticked edge corresponding to the negative occurrence is represented bythe part enclosed in the dashed curve. If there are two negative occurrences,the rôles are reversed.5.1 The gadgetsThe equation gadget for equations of the form x+y = 1 is shown in Fig. 13.The key property of this gadget is that there is a Hamiltonian path throughthe gadget only if one of the ticked edges is traversed.The equation gadget for equations of the form x+ y+ z = 1 is shown inFig. 8|the same gadget as in the (1,B) case.The ticked edges in the equation gadgets are syntactic sugar for a con-struction ensuring consistency among the three occurrences of each variable.As we noted above, either one or two of the occurrences of a variable arenegated. The construction in Fig. 14 ensures that the occurrences are givenconsistent values, i.e., that either x = 0 and �x = 1, or x = 1 and �x = 0. Ifthere is one negated occurrence of a variable, the upper part of the gadgetconnects with that occurrence and the lower part connects with the twounnegated occurrences. If there are two negated occurrences, the situationis reversed. 19



5.2 Proof of correctnessIn the same way as in the asymmetric case, it can be shown that the tourcan be assumed to behave in the intended way. When this result is com-bined with the lower bound on the approximability of Hybrid, we obtain thefollowing theorem:Theorem 5.1. Suppose that we are given an instance of Hybrid with n vari-ables, m2 equations of the form x + �y = 1 mod 2, and m3 equations of theform x+ y + z = 0 mod 2 or x + y + �z = 0 mod 2 such that:1. Each variable occurs exactly three times.2. There is at least one positive and at least one negative occurrence ofeach variable.Then we can construct an instance of (1,2)-TSP with the property that atour of length 16n+m2 + 5m3 + u corresponds to an assignment satisfyingall but u of the equations in the Hybrid instance.Theorem 5.2. For any constant � > 0, it isNP-hard to approximate (1,2)-TSP within 743=742� �.Proof. We connect Theorem 5.1 with Corollary 4.1 and obtain an instanceof (1,2)-TSP with the property that a tour of length16n+m2 + 5m3 + u = 16 � 42nu+ 60� + 5 � 2� + u = 742� + ucorresponds to an assignment satisfying all but u of the equations in theHybrid instance. Since, for any constant �0 > 0, it is NP-hard to distinguishthe cases u � �0 and u � 1 � �0, it is NP-hard to approximate (1,2)-TSPwithin 743=742� � for any constant � > 0.6 ConclusionsIt should be possible to improve the reduction by eliminating the verticesthat connect the equation gadgets for x + y + z = f0; 1g with each other.This reduces the cost of those equation gadgets by one, which improves ourbounds|but only by a miniscule amount. The big bottleneck, especiallyin the (1,2) case, is the consistency gadgets. If, for the asymmetric case,we were able to decrease the cost of them to four instead of six, we wouldimprove the bound to 237=236��; if we could decrease the cost to three, thebound would become 195=194� �. We conjecture that some improvementfor the (1; 2) case is still possible along these lines.20
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A The bipartite graphThis section is devoted to the proof of the following technical lemma:Lemma A.1. For every large enough constant k, there exists an 7-regularbipartite multigraph on 2k vertices such that for every partition of the leftvertices into sets T1, U1 and S1 and every partition of the right vertices intosets T2, U2 and S2 such that there are no edges from T1 to T2, and there areno edges from U1 to U2,2(jS1j+jS2j) � minfk; jU1j+jT2j+jS1j+jS2j; jU2j+jT1j+jS1j+jS2jg (1)with equality only if S1 = S2 = U1 = T2 = ; or S1 = S2 = T1 = U2 = ;.The proof uses the same main idea as the proof of a similar expansion theo-rem communicated to us by Papadimitriou and Vempala [13]. In particular,it uses a lemma that bounds the size of neighbor sets in 7-regular bipartitegraphs.Lemma A.2. For every large enough constant k, there exists a 7-regularbipartite multigraph on 2k vertices such that every subset U of vertices con-tained entirely in V1 or V2 has a set N(U) of neighbors satisfying the fol-lowing constraints:0 < jU j � k=10 =) jN(U)j > 29jU j=10; (2)k=10 � jU j � 3k=10 =) jN(U)j > 13k=100 + 8jU j=5; (3)3k=10 � jU j � 39k=100 =) jN(U)j > 31k=100 + jU j; (4)39k=100 � jU j � 62k=100 =) jN(U)j > k=2 + jU j=2; (5)62k=100 � jU j < k =) jN(U)j> maxf85k=100; k=2+ jU j=2g: (6)Proof. We select a d-regular bipartite graph on 2k vertices by selecting d per-fect matchings independently and uniformly at random. Let AU;N be theevent that the set U has neighbors only inside the set N and let 
 be thesubset of f0; 1; 2; : : : ; kg � f0; 1; 2; : : : ; kg such that if (a; b) 2 
,0 < a � k=10 =) b � 29a=10;k=10 � a � 3k=10 =) b � 13k=100 + 8a=5;3k=10 � a � 39k=100 =) b � 31k=100 + a;39k=100 � a � 62k=100 =) b � k=2 + a=2;62k=100 � a < k =) b � maxf85=100; k=2+ a=2g:Denote the vertex set of the bipartite graph by V1 [ V2. We need to provethat Pr� 2[i=1 [(a;b)2
 [U�VijU j=a [N�V2�ijN j=b AU;N� < 122



and we do this by using the union bound, i.e., we prove that2Xi=1 X(a;b)2
 XU2VijU j=a XN2V2�ijN j=b Pr[AU;N ] < 1:First note that Pr[AU;N ] = 0 when jU j > jN j, therefore it su�ces to consideronly (a; b) such that a � b. Since 
 contains less than k2 pairs andPr[AU;N ] =  djN jdjU j!(djU j)!(dk� djU j)!(dk)! = �djN jdjU j�� dkdjU j�when a � b it is enough to prove that2k2 max(a;b)2
a�b  ka! kb!�dbda��dkda� = max(a;b)2
a�b P (a; b) < 1:We prove this inequality by case analysis. When a can be written as �kwhere 10�5 � � � 1� 10�5 we expand the above expression using Stirling'sformula. The case when a, and therefore also b, is very close to either 0 or kis dealt with separately.Case I: 10�5 � a=k � 1� 10�5. By Stirling's formula k�k! = (���(1� �)�(1��))k poly(k):Now write a = �k and b = �k and apply Stirling's formula to the expressionwe want to bound. This gives us the equalityP (�k; �k) = � (1� �)(d�1)(1��)�(d�1)���(1� �)(1��)(� � �)d(���)�k poly(k)This expression is certainly strictly less than 1 for all (�; �) such that � � �and (�k; �k) 2 
 as soon asQ(�; �) = (1� �)(d�1)(1��)�(d�1)���(1� �)(1��)(� � �)d(���) < 1for all (�; �) such that � � � and (�k; �k) 2 
 and k is large enough. Thevalidity of the latter inequality can then be veri�ed numerically.23



Case II: 0 < a=k � 10�5. For every �xed a in that range and everyb such that a � b � 10a, P (a; b) is increasing with b. Therefore it su�ces toprove that P (a; b) < 1 when b = 3a; that implies (2). Let us �rst note thatP (1; 3) = 2k2 k1! k3!�217 ��7k7 � < 240k6(k� 1)7 ;therefore P (1; 3) < 1 when k > 250. We now show that P (a; 3a)=P (a +1; 3(a + 1)) > 1 when 0 < a=k < 10�5 and k > 105, thereby establishingthat (2) holds in that region. SinceP (a; 3a) = 2k2 ka! k3a!�21a7a ��7k7a�we need to bound quotients of the following forms: ka!� ka+ 1! = a+ 1k � 1 ; k3a!� k3a+ 3! = (3a+ 3)!(k� 3a� 3)!(3a)!(k� 3a)! > �3a+ 1k � 3a�3; 7k7a+ 7!� 7k7a! = (7a)!(k� 7a)!(7a+ 7)!(k� 7a� 7)! > �k � a� 1a+ 1 �7; 21a7a !� 21a+ 217a+ 7 ! = (21a)!(7a+ 7)!(14a+ 14)!(21a+ 21)!(7a)!(14a)! > 1547 :The above bounds imply that when 0 < a � �k, where � = 10�5 andk > 105, P (a; 3a)P (a+ 1; 3(a+ 1)) > a+ 1k � 1�3a+ 1k � 3a�3� a+ 1k � a� 1�7 1547> (k � �k � 1)7k4(�k + 1)3547= (1� � � 1=k)7(� + 1=k)3547> 1� 14 � 10�58 � 10�15 � 547> 99008 � 10�10 � 547> 12 � 1012547> 1: 24



Case III: 1�10�5 � a=k < 1. Note that P (a; b) = P (k�b; k�a) since d(k� a)d(k� b)!� dkd(k � b)! = (dk � da)!(dk � db)!(db� da)! � (dk� db)!(db)!(dk)!= (dk � da)!(db)!(dk)!(db� da)!= (dk � da)!(da)!(dk)! � (db)!(db� da)!(da)!=  dbda!� dkda!:Therefore, (6) in the region a � (1� 10�5)k follows directly from Case II.Proof of Lemma A.1. We use the shorthands jT1j = t1, jU1j = u1, jS1j = s1,jT2j = t2, jU2j = u2, and jS2j = s2. We can assume without loss of generalitythat u1 � u2. This implies that u1 < 7k=20; otherwise t2 + s2 � jN(U1)j >1 � u1 which is equivalent to u2 = k � t2 � s2 < u1, a contradiction. Theproof now proceeds by case analysis on t2 and u1.Case I a: 0 < t2 � 3k=10 and u1 � 3k=10. Then u1+ s1 � jN(T2)j >2t2 and t2+s2 � jN(U1)j � 2u1 by (2) and (3)|we use non-strict inequalityto also cover the case when u1 = 0. Adding these two inequalities gives theinequality s1+s2 > t2+u1 which is equivalent to 2(s1+s2) > u1+t2+s1+s2;therefore (1) holds.Case I b: 0 < t2 � k=10 and u1 � 3k=10. Then t2 + s2 � jN(U1)j >31k=100 + u1 by (4) which is equivalent to s2 > 31k=100 + u1 � t2 > k=2;therefore (1) holds.Case I c: k=10 � t2 � 3k=10 and u1 � 3k=10. Then u1 + s1 �jN(T2)j > 13k=100 + 8t2=5 by (3) and t2 + s2 � jN(U1)j > 31k=100 + u1by (4). Adding these inequalities gives the inequality s1 + s2 > 44k=100 +3t2=5 � k=2; therefore (1) holds.Case II a: 3k=10 � t2 � 39k=100 and u1 � k=10. Then u1 + s1 �jN(T2)j > 31k=100+t2 by (4) which is equivalent to s1 > 31k=100+t2�u1 >k=2, therefore (1) holds. 25



Case II b: 3k=10 � t2 � 39k=100 and u1 � k=10. Then u1 + s1 �jN(T2)j > 31k=100 + t2 by (4) which is equivalent to s1 + s2 > 31k=100 +t2 + s2 � u1, and s2 + t2 � jN(U1)j > 13k=100 + 8u1=5 by (3). Therefores1 + s2 > 31k=100 + t2 + s2 � u1 > 44k=100 + 3u1=5 > k=2 and (1) holds.Case III a: 39k=100 � t2 < k and u1 � 3k=10. Then u1 + s1 �jN(T2)j > k=2 + t2=2 by (5) and (6), which is equivalent to s1 + s2 >k=2 + s2 + t2=2� u1, and t2 + s2 � jN(U1)j > 2u1 by (2) and (3); therefores1 + s2 > k=2 + s2 + t2=2� u1 > k=2 + s2 + t2=2 � (s2 + t2)=2 � k=2 and(1) holds.Case III b: 39k=100 � t2 � 62k=100 and u1 � 3k=10. Then u1 +s1 � jN(T2)j > k=2 + t2=2 by (5), which is equivalent to s1 + s2 > k=2 +s2 + t2=2 � u1, and t2 + s2 � jN(U1)j > 31k=100 + u1 by (4); therefores1 + s2 > k=2 + s2 + t2=2� u1 > 81k=100� t2=2 � k=2 and (1) holds.Case III c: 62k=100 � t2 < k and u1 � 3k=10. Then u1 + s1 �jN(T2)j > 85k=100 by (6), which is equivalent to s1 > 85k=100� u1 � k=2where the last inequality follows since u1 � 7k=20; therefore (1) holds.Case IV: t2 = 0. Since u1 � u2 and t2 = 0, u1 + t2 � u2 + t1, thereforeit su�ces to show that 2(s1 + s2) > minfu1 + s1 + s2; kg. But this alwaysholds if u1 > 0 since then s2 � jN(U1)j > u1. And if u1 = 0, the inequalityholds trivially as soon as either s1 or s2 are non-zero. Therefore, (1) holdswhen t2 = 0.Case V: t2 = k. Since vertices in T1 are not connected to vertices in T2,t2 = k implies that t1 = 0. Moreover, since u1 � u2 = 0, also u1 = 0.Therefore, s1 = k, which implies that (1) holds when t2 = k.
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