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O V E R V I E WThe Workshop was 
on
erned with the newest development in the design and analysis of randomizedand approximation algorithms. The main fo
us of the workshop was on two spe
i�
 topi
s: ap-proximation algorithms for optimization problems, and approximation algorithms for measurementproblems, and the various intera
tions between them. Here, new important paradigms have beendis
overed re
ently 
onne
ting probabilisti
 proof veri�
ation theory to the theory of approximate
omputation. Also, some new broadly appli
able te
hniques have emerged re
ently for designingeÆ
ient approximation algorithms for a number of 
omputationally hard optimization and measure-ment problems. This workshop has addressed the above topi
s and also fundamental insights intothe new paradigms and design te
hniques. The workshop was organized jointly with the RAND-APX meeting on approximation algorithms and intra
tability and was partially supported by theIST grant 14036 (RAND-APX).The 47 parti
ipants of the workshop 
ame from ten 
ountries, thirteen of them 
ame from NorthAmeri
a. The 33 le
tures delivered at this workshop 
overed a wide body of resear
h in the aboveareas. The Program of the meeting and Abstra
ts of all talks are listed in the subsequent se
tionsof this report.The meeting was hold in a very informal and stimulating atmosphere. Thanks to everybody who
ontributed to the su

ess of this meeting and made it a very enjoyable event! Martin DyerMark JerrumMarek Karpinski
A
knowlegement. We thank Annette Beyer, Christine Marikar, and Angelika Mueller for their
ontinuous support and help in organizing this workshop.1



MotivationMost 
omputational task that arise in realisti
 s
enarios are intra
table, at least if one insists onexa
t solutions delivered with 
ertainty within a stri
t deadline. Nevertheless, pra
ti
al ne
essitydi
tates that a

eptable solutions of some kind must be found in a reasonable time. Two importantmeans for surmounting the intra
tability barrier are randomized 
omputation, where the answeris optimal with high probability but not with 
ertainty, or approximate 
omputation, where theanswer is guaranteed to be within, say, small per
entage of optimality. More often than not, thesetwo notions go hand-in-hand.The seminar will be 
on
erned with these phenomena. It will address the newest development in thedesign and analysis of randomized approximation algorithms, and the new fundamental insights into
omputational approximate feasibility, optimality, and the intra
tability of various 
omputationalproblems. The main fo
us of the workshop is to be on two spe
i�
 topi
s and the various intera
tionsbetween them. The spe
i�
 topi
s are the following:� Approximation algorithms for optimization problems.Randomization and de-randomizing te
hniques play a major role here, both in positive (upperbounds) and negative (lower bounds) results. It features for example in the "rounding" step ofapproximation algorithms based on linear or semide�nite programming relaxations; it is alsoat the heart of the theory of probabilisti
ally 
he
kable proofs (PCPs) that is the basis for there
ent non-approximability results. A number of very signi�
ant new results were obtainedhere re
ently.� Approximation algorithms for measurement problems.The word "measurement" here is used to distinguish a 
lass of problems-determining the
ardinality of 
ombinatorially or 
omputationally de�ned sets, volume, expe
tation of randomvariables on 
on�gurations of 
omplex systems, et
. - whi
h are very di�erent in 
avor of theoptimization problems. This theme is less developed than the previous one, but signi�
antprogress is 
urrently being made, both in design of eÆ
ient approximation algorithms, andin proving the �rst approximation lower bounds based on the PCP-te
hniques mentionedbefore. It is aimed here at investigating further fundamental and intrinsi
 
onne
tions betweenthe eÆ
ien
y of approximating optimization problems and the eÆ
ien
y of approximatingmeasurement problems.The main goal of the seminar was to bring together resear
hers working in the area of approximationalgorithms and approximation 
omplexity of 
omputational problems, and fo
us on the newestdevelopments (in
luding pra
ti
al implementations) within, and also in between the above mainthemes. 2



PROGRAM:Monday June 4th, 200109:00 - 09:10 OpeningChair: Marek Karpinski9:10 - 9:55 Sanjeev Khanna (PennUniv.)Algorithms for Minimizing Weighted Flow Time9:55 - 10:25 Alan Frieze (CMU)Edge Disjoint Paths in Expander Diagraphs10:25 - 11:00 Co�ee breakChair: Martin Dyer11:00 - 11:30 Gregory Sorkin (IBM)Optimal Myopti
 Algorithms for Random 3SAT11:30 - 12:00 Graham Brightwell (London)Conne
tivity among H-
olorings12:15 Lun
h breakChair: Mark Jerrum15:00 - 15:30 Claire Kenyon (Paris-Sud)Coales
ing Parti
les on a Tree15:30 - 16:00 Mi
hael Langberg (Weizmann Institute)The RPR2 Rounding Te
hnique for Semide�nite Programs16:00 - 16:30 Co�ee breakChair: Alan Frieze16:30 - 17:00 Malwina Lu
zak (Oxford)Routing Random Calls on Graphs17:00 - 17:30 Dana Randall (Georgia Te
h)De
omposition Swapping + Mean Field Models18:00 Dinner
3



Tuesday, June 5th, 2001Chair: Ravi Kannan09:00 - 09:30 Marek Karpinski (Bonn)Approximability of Dense Nearest Codeword Problem09:30 - 10:00 Mark Jerrum (Edinburgh)A Polynomial-Time Approximation Algorithms for thePermanent of a Matrix with Non-Negative Entries, Part I10:00 - 10:30 Eri
 Vigoda (Edinburgh)A Polynomial-Time Approximation Algorithms for thePermanent of a Matrix with Non-Negative Entries, Part II10:30 - 11:00 Co�ee breakChair: Sanjeev Khanna11:00 - 11:30 Piotr Berman (Bonn)Approximation Hardness of Bounded Degree MIN-CSP and MIN-BISECTION11:30 - 12:00 Alex D. S
ott (London)Judi
ious Partitions of Graphs and Hypergraphs12:15 Lun
h breakChair: Sanjeev Arora15:00 - 15:30 W. Fernandez de la Vega (Paris-Sud)Sampling k-Uniform Hypergraphs and Design of PTASsfor Dense Instan
es of Min-CSP15:30 - 16:00 Jennifer Chayes (Mi
rosoft)The Phase Transition in the Random Partition Problem16:00 - 16:30 Co�ee breakChair: Alexander Barvinok16:30 - 17:00 Angelika Steger (M�un
hen)A New Performan
e Measure for Sto
hasti
 S
heduling17:00 - 17:30 Christian Borgs (Mi
rosoft)Slow Mixing for H-Colorings of the Hyper
ubi
 Latti
e18:00 Dinner
4



Wednesday June 6th, 2001Chair: Jennifer Chayes09:00 - 09:30 Eli Upfal (Brown)Can Entropy Predi
t On-Line Performan
e?09:30 - 10:00 M. Karonski (Poznan)Distributed Graph Coloring Algorithms10:00 - 10:30 Miklos Santha (Paris-Sud)Quantum Algorithms for Some Instan
es of the Hidden Subgroup Problem10:30 - 11:00 Co�ee breakChair: W. Fernandez de la Vega11:00 - 11:30 Klaus Jansen (Kiel)Polynomial-time Approximation S
hemes for Preemptive Resour
eConstrained S
heduling and Fra
tional Graph Coloring11:30 - 12:00 Catherine Greenhill (Melbourne)Conne
tedness of Bounded Degree Star Pro
esses13:30 - 17:30 Ex
ursionEvening Session (Wednesday, June 6th, 2001)Chair: Alexander BarvinokMarek Karpinski (Bonn)On Some MAX-3SAT ProblemClaire Kenyon (Paris-Sud)Planar Eu
lidean Optimization ProblemsGerhard Woeginger (Twente)The CNN ProblemMathias Hauptmann (Bonn)Steiner Tree ProblemsPiotr Berman (Bonn)On Existen
e of EÆ
ient Ampli�ersAlexander Barvinok (Mi
higan)A Conje
tured InequaltiySanjeev Arora (Prin
eton)Bound on Number of Steiner Points in OptimumMin-Weight Steiner Triangulation 5



Thursday June 7th, 2001Chair: Claire Kenyon09:00 - 09:30 Sanjeev Arora (Prin
eton)On On-Line Algorithms for Bandwidth Utilization09:30 - 10:00 Alexander Barvinok (Mi
higan)Metri
 Geometry of Counting10:00 - 11:00 Co�ee breakChair: Mi
hael Paterson11:00 - 11:45 Ravi Kannan (Yale)What Can You Do in One or Two Passes11:45 - 12:15 Colin Cooper (London)Random Graphs Whi
h Model the Internet12:15 Lun
h breakChair: Eli Upfal15:00 - 15:30 David B. Wilson (Mi
rosoft)Perfe
t Simulation for Quen
hal Disordered Systems15:30 - 16:00 Petra Berenbrink (Warwi
k)The Natural Work Stealing Algorithm is Stable16:00 - 16:30 Co�ee breakChair: Gerhard Woeginger16:30 - 17:00 Artur Czumaj (NJIT)On Certain Property Testing Algorithms17:00 - 17:30 Thomas Jansen (Dortmund)On the Analysis of Evolutionary Algorithms18:00 Dinner
6



Friday June 8th, 2001Chair: Graham R.Brightwell09:00 - 09:30 Jung-Bae Son (Edinburgh)Average Condu
tan
e and Log-Sobolev Constant of Balan
ed Matroids09:30 - 10:00 Piotr Krysta (MPI Saarbr�u
ken)Approximating Minimum Size 2-Conne
tivity ProblemsUsing Lo
al Sear
h10:00 - 10:30 Lars Engebretsen (MIT)Approximation Hardness of Traveling Salesman Problemwith Bounded Metri
End of Workshop10:30 - 11:00 Co�ee12:15 Lun
h 2
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ABSTRACTSOnline algorithm for a bandwidth utilization problemSanjeev AroraDept. of Computer S
ien
ePrin
eton UniversityKarp, Papadimitriou, and Shenker re
ently introdu
ed the following model that 
aptures the task ofa sender trying to send messages over a 
ongested network. At time t the total available bandwidthis bt, whi
h is unknown to the sender ex
ept it knows that bandwidths at su

essive time periodssatisfy a weak 
ontinuity relation: bt 2 [bt�1=�; �bt�1℄, where � is some 
onstant. The sender ele
tsto send xt bits. If xt � bt then all get delivered, and if xt > bt then none get delivered. The goal isto maximize U = Pt xt. Note that this quantity is upperbounded by B = Pt bt. We 
all U=B theperforman
e ratio.Karp et al. showed that for every deterministi
 online algorithm there is a sequen
e of bandwidthsfbtg su
h the performan
e ratio is at most 1=�, and that there is a simple algorithm that a
hievesthis ratio. They 
ould not do a similar analysis for randomized algorithms.We show a randomized online algorithm that a
hieves a performan
e ratio O(1= log �) and provethat no other algorithm 
an do better.Our algorithm is a variant of a 
lassi
 strategy 
alled multipli
ative in
rease multipli
ative de
rease.We dis
uss impli
ations of this fa
t, in
luding morals for designers of network proto
ols.Joint work with William Brinkman.Metri
 Geometry of CountingAlexander BarvinokDept. of Mathemati
sUniversity of Mi
higanWe des
ribe general methods to obtain fast (polynomial time) estimates of the 
ardinality of a
ombinatorially de�ned set via solving some randomly generated optimization problems on the set.Examples in
lude enumeration of perfe
t mat
hings in graps, bases in matroids, forests, spanningsubgraphs, et
. Geometri
ally, we estimate the 
ardinality of a subset of the Boolean 
ube via theaverage distan
e from a point in the 
ube to the subset.Joint work with A. Samorodnitsky. 8



The natural Workstealing Algorithm is stablePetra BerenbrinkDept. of Computer S
ien
eUniversity of Warwi
kIn this paper we analyse a very simple dynami
 work-stealing algorithm. In the work-generationmodel, there are n generators whi
h are arbitrarily distributed among a set of n pro
essors. Thedistribution of generators is arbitrary | generators may even move at the beginning of ea
h timestep. During ea
h time-step, ea
h generator may generate a unit-time task whi
h it inserts into thequeue of its host pro
essor. It generates su
h a task independently with probability �. After thenew tasks are generated, ea
h pro
essor removes one task from its queue and servi
es it. Clearly,the work-generation model allows the load to grow more and more imbalan
ed, so, even when � < 1,the system load is unbounded. The natural work-stealing algorithm that we analyse is widely usedin pra
ti
al appli
ations and works as follows. During ea
h time step, ea
h empty pro
essor (withno work to do) sends a request to a randomly sele
ted other pro
essor. Any non-empty pro
essorhaving re
eived at least one su
h request in turn de
ides (again randomly) in favour of one of therequests. The number of tasks whi
h are transferred from the non-empty pro
essor to the emptyone is determined by the so-
alled work-stealing fun
tion f . In parti
ular, if a pro
essor that a

eptsa request has ` tasks stored in its queue, then f(`) tasks are transferred to the 
urrently empty one.A popular work-stealing fun
tion is f(`) = b`=2
, whi
h transfers (roughly) half of the tasks. Weanalyse the long-term behaviour of the system as a fun
tion of � and f . We show that the systemis stable for any 
onstant generation rate � < 1 and for a wide 
lass of fun
tions f . Most intuitivelysensible fun
tions are in
luded in this 
lass (for example, every fun
tion f(`) whi
h is !(1) as afun
tion of ` is in
luded). We give a quantitative des
ription of the fun
tions f whi
h lead to stablesystems. Furthermore, we give upper bounds on the average system load (as a fun
tion of f and n).Our proof te
hniques 
ombine Lyapunov fun
tion arguments with domination arguments, whi
hare needed to 
ope with dependen
y.
9



Approximation Hardness of Bounded Degree MIN-CSPand MIN-BISECTIONPiotr BermanDept. of Computer S
ien
eUniversity of BonnWe 
onsider bounded o

urren
e (degree) instan
es of a minimum 
onstraint satisfa
tion problemMIN-LIN2 and a MIN-BISECTION problem for graphs. MIN-LIN2 is an optimization problemfor a given system of linear equations mod 2 to 
onstru
t a solution that satis�es the minimumnumber of them. E3-OCC-MIN-E3-LIN2 is the bounded o

urren
e (degree) problem restri
tedas follows: ea
h equation has exa
tly 3 variables and ea
h variable o

urs in exa
tly 3 equations.Clearly, MIN-LIN2 is equivalent to another well known problem, the Nearest Codeword problem,and E3-OCC-MIN-E3-LIN2 to its bounded o

urren
e version. MIN-BISECTION is a problem of�nding a minimum bise
tion of a graph, while 3-MIN-BISECTION is the MIN-BISECTION prob-lem restri
ted to 3-regular graphs only. We show that, somewhat surprisingly, these two restri
tedproblems are exa
tly as hard to approximate as their general versions. In parti
ular, an approxima-tion ratio lower bound for E3-OCC-MIN-E3-LIN2 (bounded 3-o

urren
e 3-ary Nearest Codewordproblem) is equal to MIN-LIN2 (Nearest Codeword problem) lower bound n
(1)= log logn. Moreover,an existen
e of a 
onstant fa
tor approximation ratio (or a PTAS) for 3-MIN-BISECTION entailsexisten
e of a 
onstant approximation ratio (or a PTAS) for the general MIN-BISECTION.Joint work with Marek Karpinski.
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Slow Mixing for H-Colorings of the Hyper
ubi
 Latti
eChristian BorgsMi
rosoft Resear
hRedmondAn H 
oloring of a simple graph G is map from G to H that maps ea
h edge in G into an edge inH. It is known that the problem of de
iding whether su
h an H-
oloring exists is NP-
omplete if Hhas no loops and is not bipartite (Hell and Ne�set�ril, 1990), and polynomial otherwise. The 
ountingproblem, i.e. the problem of 
ounting the number of H-
olorings of a graph G, is ℄P-
omplete ifH is neither the 
ompletely looped 
omplete graph, K loopn , nor the 
omplete bipartite graph, Kn;m,and polynomial otherwise (Dyer and Greenhill, 2000). Motivated by this result, we 
all H trivial ifH = K loopn or H = Kn;m.In this work, we study random H-
olorings of re
tangular subsets of the hyper
ubi
 latti
e Zd, withweight �i 2 (0;1) for the 
olor i. We 
onsider quasi-lo
al Markov 
hains on a periodi
 box ofeven side length L, that is, Markov 
hains that do not 
hange more than a fra
tion � < 1 of thesites in the box in any single move. For any �nite, 
onne
ted, non-trivial H, we show that thereare weights f�ig su
h that all quasi-lo
al reversible ergodi
 Markov 
hains have slow mixing in thesense that the mixing time is exponential in Ld�1=(logL)2. Under the same 
onditions, we provephase 
oexisten
e in the sense that there are at least two extremal Gibbs states. We also provethat, for a large sub
lass of graphs H, one 
an 
hoose weights f�ig su
h the 
orresponding Gibbsmeasure has exponentially fast spatial mixing.Joint work with Jennifer T. Chayes, Martin Dyer, and Prasad Tetali.Conne
tivity among H-
olourings of graphsGraham BrightwellDept. of Mathemati
sLondon S
hool of E
onomie
sAn H-
olouring of a graph G is a homomorphism from G to H; and hom(G;H) denotes the set ofall H-
olourings of G. Two H-
olourings are deemed to be adja
ent if they di�er on only one vertexof G; we are interested in when hom(G;H) is 
onne
ted: this is an obvious ne
essary 
ondition forsingle-site Glauber dynami
s to be rapidly mixing for hom(G;H).Jerrum had observed that, in the spe
ial 
ase where H is the 
omplete graph Kn, hom(G;H) is
onne
ted for all graphs G of maximum degree at most n� 2, but not for all graphs of maximumdegree n� 1. Generally we say that H is d-mobile if hom(G;H) is 
onne
ted for all G of maximumdegree at most d� 2: so Kd is d-mobile but not (d+1)-mobile. We 
onje
ture that no d-
olourablegraph is (d+ 1)-mobile. We prove this in the 
ase d = 3, and also prove the weaker result that nod-
olourable graph is (2d� 1)-mobile. Our proof for d = 3 uses the notion of the 
ir
ular 
hromati
number of H; for larger d we use a generalisation of this 
on
ept to higher dimensions.Joint work with Peter Winkler. 11



The Phase Transition in the Random Partition ProblemJennifer ChayesMi
rosoft Resear
hRedmondThe integer partition problem is a 
anoni
al NP-
omplete problem of 
ombinatorial optimization.We show that the random version of this problem has a phase transition and establish the behaviorof the model near the transition. In parti
ular, we show that the phase transition is dis
ontinuousor "�rst-order," in 
ontrast to the phase transitions established in other 
ombinatorial models su
has the random graph and the 2-satis�ability problem. We also dis
uss re
ent suggestions that theorder of the phase transition may be related to the hardness of the problem.Joint work with C. Borgs and B. Pittel.Random Garphs whi
h model the internetColin CooperDept. of Mathemati
al & Computing S
ien
esUniversity of LondonGoldsmiths CollegeWe 
onsider the degree sequen
e of a general model of web graphs. For a wide range of theparameters of the model, the degree sequen
e obeys a power law whose parameter is a fun
tion ofthese parameters.On Certain Property Testing AlgorithmsArtur CzumajDept. of Computer and Information S
ien
eNew Jersey Institute of Te
hnologyWe introdu
e a new framework for analyzing property testing algorithms. Informally, our framework
an be applied to de
ision problems that 
an be des
ribed as a pair of \bases" and \
onstraints,"and the instan
e is a

epted if there is a basis whi
h is not \violated" by any 
onstraint. We show,again informally, that if for a given problem it is possible to de�ne the bases to be of small size,then the problem possesses a 
onstant-time testing algorithm. We present our approa
h in a rathergeneri
 framework that has simple formulation and 
an be applied to a large variety of problems.We apply our framework to obtain property testing algorithms for the most representative andmost widely studied problems of graph 
oloring, 
lustering, some algebrai
 problems, some problemsrelated to linear and mathemati
al programming, and for some 
overing problems.Our approa
h, besides its generality and simpli
ity, leads in many 
ases to either new or improvedresults.Joint work with Christian Sohler. 12



Approximation Hardness of TSP with Bounded Metri
sLars EngebretsenLaboratory for Computer S
ien
eMITThe general asymmetri
 TSP with triangle inequality is known to be approximable only to withinan O(log n) fa
tor, and is also known to be approximable within a 
onstant fa
tor as soon as themetri
 is bounded by a 
onstant. In this talk, we dis
uss te
hniques for proving lower bounds onthe approximability of TSP with bounded metri
s. In parti
ular, we �rst give lower bounds for theasymmetri
 and symmetri
 versions of TSP with distan
es one and two by the means of a gadgetredu
tion from a problem 
alled Hybrid, 
onsisting of a system of linear equations mod 2 with eithertwo or three variables per equation and exa
tly three o

urren
es of ea
h variable. We also notethat the 
onstru
tion used by Papadimitriou and Vempala to prove their re
ently announ
ed lowerbounds on the approximability of the general TSP with triangle inequality 
an be modi�ed slightlyto give 
omparable lower bounds also for the 
ase when the metri
 is bounded by a small 
onstant.Joint work with Marek Karpinski.Sampling k-Uniform Hypergraphs and Design of PTASs forDense Instan
es of Min-CSPW. Fernandez de la VegaLaboratoire de Re
her
he en InformatiqueUniversit�e Paris-SudWe introdu
e a new sampler te
hnique for k-uniform hypergraphs and apply it to design the �rstpolynomial time approximation s
hemes (PTASs) for dense instan
es ofMin-Ek-Lin2 (the problemof minimising the number of satis�ed equations within a system of linear equations mod 2 withexa
tly k variables per equation) and dense instan
es of Min-Ek-SAT.Joint work with C. Bazgan and M. Karpinski.
13



Ar
-Disjoint Paths in Expander DigraphsAlan FriezeMathemati
al S
ien
es Dept.Carnegie Mellon UniversityGiven a digraph D = (V;A) and a set of � pairs of verti
es in V , we are interested in �nding for ea
hpair (xi; yi), a dire
ted path 
onne
ting xi to yi, su
h that the set of � paths so found is ar
-disjoint.For arbitrary graphs the problem is NP-
omplete, even for � = 2.We present a polynomial time randomized algorithm for �nding ar
-disjoint paths in an r-regularexpander digraph D. We show that if D has suÆ
iently strong expansion properties and r issuÆ
iently large then all sets of � = 
(n= log n) pairs of verti
es 
an be joined. This is within a
onstant fa
tor of best possible.Joint work with Tom Bohman.Conne
tedness of the bounded-degree star pro
essCatherine GreenhillDept. of Mathemati
s & Statisti
sUniversity of MelbourneA graph pro
ess starts with an empty graph and at ea
h step adds an edge or edges, 
hosen a

ordingto some probabilisti
 rule. For �xed d, the star d-pro
ess 
hooses a vertex v of minimum degree i,uniformly at random, and then 
hooses d-i verti
es of degree less than d, uniformly at random, andjoins ea
h of these to v. Ru
inski and Wormald proved that the resulting graph is asymptoti
allyalmost surely d-regular (when dn is even). We prove that the �nal graph is asymptoti
ally almostsurely 
onne
ted for d at least 3, and is a.a.s. d-
onne
ted for large enough d (d at least 15 shoulddo).Joint work with Andrzej Ru
i�nski and Ni
holas C. Wormald.
14



Polynomial-time Approximation Algorithms forPreemptive Resour
e Constrained S
heduling andFra
tional Graph Coloring.Klaus JansenDept. of Computer S
ien
eUniversit�at KielWe study resour
e 
onstrained s
heduling problems where the obje
tive is to 
ompute feasible pre-emptive s
hedules minimizing the makespan and using no more resour
es than what are available.We present approximation algorithms along with some inapproximibility results showing how theapproximability of the problem 
hanges in terms of the number of resour
es. All the results arebased on linear programming formulations (though with exponentially many variables) that are
alled fra
tional 
overing problems. Furthermore we show some interesting 
onne
tions betweenresour
e 
onstrained s
heduling and (multi - dimensional, multiple-
hoi
e, and 
ardinality 
on-strained) variants of the 
lassi
al knapsa
k problem. Finally we present appli
ations of the aboveresults in fra
tional graph 
oloring and multipro
essor task s
heduling.Joint work with Lorant Porkolab, Imperial College London.Theoreti
al Analysis of Evolutionary AlgorithmsThomas JansenFB Informatik IIUniversit�at DortmundEvolutionary algorithms are randomized sear
h heuristi
s that are often used for optimization ofpseudo-boolean fun
tions f : f0; 1gn ! R. They are well-established in pra
ti
e and intensivelyempiri
ally investigated sin
e the 1980s. However, their theoreti
al foundation is still unsatisfying.This is espe
ially true for evolutionary algorithms that use 
rossover. Here, three examples arepresented where one 
an prove that appropriate geneti
 algorithms with 
rossover out-perform byfar mutation-based evolutionary algorithms. The �rst example is diversity oriented and proves asmall polynomial expe
ted running time for a steady-state GA with uniform 
rossover whereasmutation-based EAs have super-polynomial expe
ted running time. The se
ond example evenproves an exponential gap between a GA with 1-point 
rossover and mutation-based EAs. Finally,a third example proves the same for a GA with uniform-
rossover. The examples are based uponarti�
ial example fun
tions that are all well-stru
tured, understandable and provide some insight.They are 
onsidered to be helpful �rst steps towards a rigorous analysis of evolutionary algorithmson natural problems.Joint work with Ingo Wegener. 15



Approximating the Permanent (part I)Mark JerrumDept. of Computer S
ien
eUniversity of EdinburghThis two-part presentation (with Vigoda) develops a fully-polynomial randomized approximations
heme for 
omputing the permanent of an arbitrary matrix with non-negative entries. Part I setsthe s
ene by reviewing an existing MCMC approa
h to approximating the permanent, proposedby Broder and made rigorous by Jerrum and Sin
lair using the \
anoni
al paths" argument. Thelimitations of the existing approa
h are des
ribed, and an obsta
le to further progress identi�ed.Joint work with Alistair Sin
lair.Approximating the Permanent (part II)Eri
 VigodaDept. of Computer S
ien
eUniversity of EdinburghThis two-part presentation (with Jerrum) develops a fully-polynomial randomized approximations
heme for 
omputing the permanent of an arbitrary matrix with non-negative entries. Part IIdes
ribes how to modify the existing Markov 
hain|by applying 
arefully 
hosen weights to 
on-�gurations of unmat
hed verti
es|in order to a
hieve rapid mixing for all problem instan
es. Theweights may be approximated by an iterative pro
edure in whi
h MCMC is used to adjust theweights at ea
h step.Joint work with Alistair Sin
lair.What Can you do in one or two passes?Ravi KannanDept. of Computer S
ien
eYale UniversityThere are many appli
ations in whi
h the input data is too large to be stored in RAM. In su
h
ases, it makes sense to restri
t the number of passes one is allowed to make through the entire databe
ause a pass whi
h has to be from disk is 
ostly. We study problems whi
h 
an be approximatelysolved by making one or two passes through the data in whi
h we sample a small part of the dataand then 
ompute on the sample in time polynomial in only the size of the sample. In \blindsampling", one samples (usually uniformly at random) without �rst reading. In other algorithms,the sampling probabilities are based on one read of the data. This gives us 
onsiderable advantagein many problems like the max 
ut and other dis
rete problems as well as Prin
ipal Componentanalysis and some Information Retreival problems.16



Distributed O(� log n) -edge-
oloring algorithmMi
hal Karo�nskiDept. of Mathemati
sUniversity of PoznanWe 
onsider a problem of edge-
oloring of a graph in a distributed model of 
omputations. In ourmodel a network is represented by an undire
ted graph G = (V;E) where ea
h vertex represents apro
essor of the network and an edge 
orresponds to a 
onne
tions between pro
essors. We assumefull syn
hronization of the network: in every step, ea
h pro
essor sends messages to all its neighbors,re
eives messages from all of its neighbors, and 
an perform some lo
al 
omputations. However,we insist that the lo
al 
omputations must be performed in time whi
h is polynomial in the sizeof the graph. By default, all pro
essors have di�erent IDs, ea
h pro

esor knows jV j, the numberof verti
es in G, and �(G), the maximal degree in G. In the edge-
oloring problem the goal of adistributed algorithm is to properly 
olor the edges of G in a polylogarithmi
 (in n = jV j) numberof steps. In our talk, we present a distributed algorithm whi
h 
olors edges of graph in O(� log n)
olors. Our approa
h is based on 
omputing a family of spanners of G. It turns out that thisfamily 
an be used to 
olor a 
onstant fra
tion of edges of G using O(�) 
olors. Iterating thispro
ess O(log n) steps leads to a proper 
oloring of E. However in ea
h iteration a palette of O(�)new 
olors is needed. Spanners were previously su

essfully used by Ha�n�
kowiak, Karo�nski andPan
onesi, to design a distributed algorithm for a maximal mat
hing problem.Joint work with A. Czygrinow, M. Ha�n�
kowiak.Approximability of Dense Nearest Codeword ProblemMarek KarpinskiDept. of Computer S
ien
eUniversity of BonnWe design a polynomial time approximation s
heme (PTAS) for the dense instan
es of Nearest Code-word Problem (NCP). The problem 
an be formulated as a linear feasibility problem of 
onstru
tingan assignment x for a given system of linear equations mod 2, whi
h minimizes the number ofunsatis�ed equations. The Dense NCP was known to be NP-hard in an exa
t setting. The gen-eral problem is known to have ex
eedingly high lower approximation bound of n
(1)=loglogn (Dinur,Kindler, Raz, Safra, 2000), and an existen
e of a PTAS on dense instan
es 
omes as a surprise. Thete
hnique of solution depends on a method of approximating Smooth Polynomial Integer Programs(Arora, Karger and Karpinski, 1995), and a new density sampler te
hnique for graphs and k-uniformhypergraphs developed re
ently by Bazgan, Fernandez de la Vega and Karpinski, 2000. Despite animportan
e of the general NCP problem, and its many motivations, not mu
h was known about"good" approximation ratio algorithms, better than of order n, and this for arbitrary �elds. Onlyre
ently the �rst polynomial time algorithm with sublinear approximation ratio O(n=logn) was de-signed for the general problem by Berman and Karpinski, 2001. A 
hallenging problem remains todesign a better approximation algorithm whi
h works on general instan
es of NCP. 217



Coales
ing Parti
les on a TreeClaire KenyonLaboratoire de Re
her
he en InformatiqueUniversit�e Paris-SudThe following problem is related to the average-
ase analysis of distributed updates on trees. Con-sider a perfe
t binary tree of height h. At time 0, we begin with a parti
le at ea
h tree node. Atea
h positive integer time, one of the remaining parti
les is 
hosen at random and moved up to itsparent node, 
oales
ing with any parti
le that might already be there. How long does it take untilall parti
les 
oales
e (at the root)?Joint work with Alistair Sin
lair.Algorithms for Minimizing Preemptive Weighted FlowTimeSanjeev KhannaDept. of Computer and Information S
ien
eUniversity of PennsylvaniaWe present the �rst approximation s
hemes for minimizing weighted 
ow time on a single ma
hinewith preemption. Our �rst result is an algorithm that 
omputes a (1 + �)-approximate solutionfor any instan
e of weighted 
ow time in nO(logW logP=�3) time; here P is the ratio of maximum jobpro
essing time to minimum job pro
essing time, and W is the ratio of maximum job weight tominimum job weight. This result dire
tly gives a quasi-PTAS for weighted 
ow time when P andW are poly-bounded, and a PTAS when they are both bounded. We strengthen the former result toshow that in order to get a quasi-PTAS it suÆ
es to have just one of P and W to be poly-bounded.Our result provides a strong eviden
e that the weighted 
ow time problem has a PTAS. We notethat the problem is strongly NP-hard even for bounded P and W . We next 
onsider two importantspe
ial 
ases of weighted 
ow time, namely, when P is bounded and W is unrestri
ted, and whenthe weight of a job is inverse of its pro
essing time, refered to as the stret
h metri
. For both 
aseswe obtain a PTAS by 
ombining a novel partitioning s
heme with our PTAS for the 
ase of boundedP and W .Joint work with Chandra Chekuri.
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Approximating Minimum Size 2-Conne
tivity Problemsusing Lo
al Sear
hPiotr KrystaMPI f�ur InformatikWe study the problem of �nding the minimum size 2-edge-
onne
ted spanning subgraph. Thisproblem is NP-hard (even on 
ubi
 planar graphs) and Max SNP-hard in general. We show thatthe minimum 2-edge-
onne
ted subgraph problem 
an be approximated to within 43 � � for generalgraphs, improving upon the re
ent result of Vempala and Vetta (APPROX 2000). The signi�
an
eof this result follows from its relations to the long standing 43 metri
 TSP 
onje
ture, due to Goemans(1995). Better approximations are obtained for planar graphs and for 
ubi
 graphs. We also 
onsidersome generalizations of the 2-edge-
onne
ted spanning subgraph problem. It is important to notethat most of our algorithms use lo
al sear
h paradigm as the main method or as a subroutine. Inthe 
ase of 
ubi
 graphs, our results imply a new upper bound on the integrality gap of the naturallinear programming formulation for the 2-edge-
onne
ted spanning subgraph problem.Joint work with A. Anil Kumar.The RPR2 rounding te
hnique for semide�nite programsMi
hael LangbergDept. of Computer S
ien
e and Applied Mathemati
sWeizmann Institute of S
ien
eSeveral 
ombinatorial optimization problems 
an be approximated using algorithms based on semidef-inite programming. In many of these algorithms a semide�nite relaxation of the underlying problemis solved yielding an optimal ve
tor 
on�guration v1 : : : vn. This ve
tor 
on�guration is then roundedinto a f0; 1g solution. We present a pro
edure 
alled RPR2 (Random Proje
tion followed by Ran-domized Rounding) for rounding the solution of su
h semide�nite programs. We show that therandom hyperplane rounding te
hnique introdu
ed by Goemans and Williamson, and its variantthat involves outward rotation are both spe
ial 
ases of RPR2. We illustrate the use of RPR2 bypresenting two appli
ations. For Max-Bise
tion we improve the approximation ratio. For Max-Cut,we improve the tradeo� 
urve (presented by Zwi
k) that relates the approximation ratio to the sizeof the maximum 
ut in a graph.Joint work with Uriel Feige.
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Routing random 
alls on graphsMalwina Lu
zakMathemati
al InstituteUniversity of OxfordWe are given a 
omplete graph and a sequen
e of 
alls uniformly distributed over the edges. Forea
h 
all fv; ug in turn, the 
all is routed on the dire
t link if possible; and otherwise d nodesare sele
ted uniformly at random from V n fv; ug and the 
all is routed via one of these nodes ifpossible. The �rst �t dynami
 alternative routing algorithm FDAR 
hooses the �rst possible al-ternative route. The balan
ed dynami
 alternative routing algorithm BDAR 
hooses an alternativeroute whi
h minimises the maximum of the 
urrent loads on its two links. We 
ompare the asymp-toti
 blo
king probability a
hieved by these algorithms. We further 
onsider some extensions tonon-
omplete graphs and asymmetri
 distributions of 
alls.De
omposition, Swapping and Mean-Field ModelsDana RandallS
hool of Mathemati
sGeorgia Institute of Te
hnologySimulated tempering is a 
ompelling Markov 
hain heuristi
 used for random sampling when otherMarkov 
hains are known to be slow. The idea is to enhan
e the state spa
e with a parameter model-ing temperature, and to allow the temperature to vary during the simulation. At high temperaturebottlene
ks (whi
h 
ause slow mixing) disappear, mixing o

urs, and lowering the temperaturere
overs the stationary distribution of interest. The swapping algorithm is a variant of this method.Re
ently Madras and Zheng analyzed the swapping algorithm on two bimodal distributions, in
lud-ing the mean-�eld Ising model, and showed that it is eÆ
ient. Their proof utilizes the de
ompositionmethod in novel ways. We extend these results to show that the swap algorithm is eÆ
ient for someasymmetri
 distributions as well.Quantum Algorithms for Some Instan
es of the HiddenSubgroup ProblemMiklos SanthaLaboratoire de Re
her
he en InformatiqueUniversit�e Paris-SudIn the �rst part of the talk we give a survey on the status of the hidden subgroup problem, andin parti
ular we sket
h an eÆ
ient quantum algorithm for the Abelian 
ase. In the se
ond part weshow that 
ertain spe
ial 
ases of the non-Abelian 
ase 
an also be solved in polynomial time by aquantum algorithm. These spe
ial 
ases involve �nding hidden normal subgroups of solvable groupsand permutation groups, �nding hidden subgroups of groups with small 
ommutator subgroup andof groups admitting an elementary Abelian normal 2-subgroup of small index or with 
y
li
 fa
torgroup.Joint work with G. Ivanyos and F. Magniez. 20



Judi
ious partitions of graphs and hypergraphsAlex S
ottDept. of Mathemati
sUniversity College LondonMany 
lassi
al partitioning problems ask for the maximum or minimum of a given quantity overpartitions of a graph G. For instan
e, the 
lassi
al Max Cut problem asks for the maximum ofe(V1; V2) over partitions V (G) = V1 [ V2, or equivalently the minimum of e(V1) + e(V2). Judi
iouspartitioning problems ask for some quantity to be maximized or minimized simultaneously for allvertex 
lasses of a partition. For instan
e, for a graph G, what is the minimum of maxfe(V1); e(V2)gover all partitions V (G) = V1 [ V2?After dis
ussing some extremal results for Max Cut, and related algorithms, we present some resultson judi
ious partitions for graphs and hypergraphs and some open problems.Logarithmi
 Sobolev Constants & Average Condu
tan
e ofBalan
ed MatroidsJung-Bae SonDept. of Computer S
ien
eEdinburgh UniversityThe notion of balan
ed matroids was �rst 
oined by Feder and Mihail in 1992. They used 
ondu
-tan
e, as de�ned by Jerrum and Sin
lair, and 
anoni
al paths te
hniques to show that the randomwalk on the bases ex
hange graph of balan
ed matroids is rapidly mixing.We use two re
ent te
hniques, Kannan and Lov�asz's average 
ondu
tan
e and new lower boundsby Houdr�e on logarithmi
 Sobolev 
onstants, to improve Feder and Mihail's bounds for 
ertainbalan
ed matroids, namely regular matroids with a 
onstant number of parallel elements.Joint work with Ravi Montenegro (Yale University).
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Optimal myopi
 algorithms for random 3-SATGregory SorkinMathemati
al S
ien
es Dept.IBM T.J. Watson Resear
h Center3-SAT is a 
anoni
al NP-
omplete problem: satis�able and unsatisi�able instan
es 
annot generallybe distinguished in polynomial time. However, random 3-SAT formulas show a phase transition:sparse instan
es are almost always satis�able, and dense ones almost always unsatis�able.Proofs of the satis�ability of sparse instan
es have 
ome from analyzing simple heuristi
s: thebetter the heuristi
 analyzed, the denser the instan
es that 
an be proved satis�able with highprobability. To date, the useful heuristi
s have all been simple extensions of unit-
lause propagation,all expressible within a 
ommon framework, and analyzable in a uniform manner by employingdi�erential equations.Here, we determine optimal algorithms expressible in that framework, establishing an improveddensity bound. We extend the analysis via di�erential equations, and make extensive use of a newoptimization problem we 
all "max-density multiple-
hoi
e knapsa
k". The stru
ture of optimalknapsa
k solutions elegantly 
hara
terizes the 
hoi
es made by an optimal algorithm.Joint work with Dimitris A
hlioptas.A new performan
e measure for sto
hasti
 s
hedulingAngelika StegerInstitut f�ur InformatikTe
hnis
he Universit�at M�un
henA 
ommon approa
h in sto
hasti
 s
heduling is to minimize the expe
tation of the obje
tive fun
tionunder 
onsideration (e.g. makespan or sum of 
ompletion times). Unfortunately, the expe
tationdoes not take into a

ount the varian
e of the distributions. It is therefore easy to 
ome up withexamples for whi
h there are 
learly better strategies than those whi
h minimize the expe
tation. Wetherefore propose to use a di�erent performan
e measure, namely, the expe
tation of the 
ompetitiveratio. We also show that in the 
ase of exponentially distributed random variables the strategy"shortest expe
ted pro
essing times �rst" has a 
onstant performan
e ratio with respe
t to the sumof the 
ompletion time.Joint work with Mark S
harbrodt and Thomas S
hi
kinger.
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Can Entropy Chara
terize Performan
e of OnlineAlgorithms?Eli UpfalComputer S
ien
e DepartmentBrown UniversityViewing online problems with sto
hasti
 input as iterative gambling games, we explore the relationbetween the entropy of the input sequen
e and the performan
e of the best online algorithm for thatproblem. We present both positive and negative results, showing that entropy is a good performan
e
hara
terizer for list a

essing and prefet
hing problems, but a poor 
hara
terizer for online 
a
hing.The motivation for this work are advan
ed system and ar
hite
ture designs whi
h allow the operatingsystem to dynami
ally allo
ate resour
es to online proto
ols su
h as prefet
hing and 
a
hing. Toutilize these features the operating system needs to identify data streams that 
an bene�t frommore resour
es. This question is not addressed by the standard online 
ompetitive analysis.Perfe
t Simulation for Quen
hed Disordered SystemsDavid B. WilsonMi
rosoft Resear
hRedmondThis is a two-part talk; in the �rst part we explain the read-on
e CFTP method of perfe
t sim-ulation, and in the se
ond part we report on an appli
ation of perfe
t simulation to the study ofquen
hed disordered systems, whi
h is joint work with Gilles S
hae�er. In 
omputer s
ien
e, statis-ti
s, and physi
s it is often desirable to generate random 
on�gurations drawn from some probabilitydistribution. One prevalent method for doing this is to 
onstru
t a Markov 
hain whose stationarydistribution is the desired distribution, and then run the Markov 
hain for \a long time". Thereare a variety of methods for determining how long to run the Markov 
hain. Coupling from thepast (CFTP) (due to Jim Propp and the speaker) is a method whereby the 
omputer determineson its own how long to run the Markov 
hain, and returns a sample drawn exa
tly a

ording to thestationary distribution of the Markov 
hain. Those a
quainted with the CFTP method of perfe
tsimulation will re
all that the algorithm sometimes needs to re-use old random 
oins, and that
ipping fresh random 
oins at these times will introdu
e bias. Read-on
e CFTP is a variation ofCFTP that only reads random 
oins on
e. The se
ond part of the talk, where we dis
uss the useof perfe
t simulation to study statisti
al me
hani
al systems with quen
hed disorder, is also partlyexpository, sin
e we explain the use of additional te
hniques that members of the audien
e may �nduseful in other 
ontexts.Joint work with Gilles S
hae�er. 23
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