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1 IntroductionIn this paper we study approximability hardness of dense instances of Minimum Con-straint Satisfaction Problems (MIN-CSP) connected to the minimum satis�ability of denseinstances of kSat-formulas, and linear equations mod 2 with exactly k variables per equa-tion, Ek-LIN2. Somewhat surprisingly we prove existence of polynomial time approxima-tion schemes (PTASs) for these two classes of problems. This should be contrasted withapproximation hardness of a dual MIN-CSP problem of minimum satis�ability of dense2DNF-formulas, the problem which is easily seen to be at least as hard to approximateas the dense Vertex Cover problem, the problem proven to be MAX-SNP-hard in [CT96],[KZ97]. It was also noticed by Luca Trevisan (personal communication) that one can easilydensify arbitrary 2DNF-formulas by adding disjoint copies of original variables, and thenadding all clauses having exactly one original and one copied variable, without changing thevalue of the optimum. In this context it is an interesting artifact that the dense and every-where dense Maximum Constraint Satisfaction (MAX-CSP) analogs of the above problemsare known to have PTASs (cf. [AKK95]). It is also not di�cult to see that average-denseinstances of MIN-CSP are approximation hard for the general instances.The MIN-kSat problems are known to be MAX-SNP-hard for all k � 2 [KKM94], andapproximable within 2(1 � 1=2k) [BTV96]. Unlike the MIN-kSAT problems, MIN-Ek-LIN2 problems are exceedingly hard to approximate for all k � 3, they are known to beNP-hard to within a factor n
(1)= log logn [ABSS93], [KST97], [DKS98], [DKRS00]. Theyare also easy to be seen equivalent to the k-ary versions of the Nearest Codeword problem(cf. [KST97], [BFK00]).The special case of MIN-E2-LIN2 problem with all underlying equations being equalto 0, is equivalent to the MIN-Uncut problem (cf. [KST97]) and known to be MAX-SNP-hard. The general MIN-E2-LIN2 is approximable to within a factor O(logn), cf.[GVY96]. It is also easily seen to be approximation (and density) preserving reducible toMIN-E3-LIN2, whereas obviously an opposite approximate reduction does not exist unlessNP=P.As mentioned before it is not di�cult to see that the results of [AKK95], [F96], [FK96],[FK00], and [GGR96] on existence of PTASs for dense and average dense MAX-CSP prob-lems cannot be applied for a large class of dense MIN-CSP problems. There were howeversome dense minimization problems, namely, dense BISECTION andMIN-k-Cut, identi�edin [AKK95] as having PTASs. Recently, the �rst boolean dense MIN-CSP problem, namelythe problem of MIN Equivalence, was identi�ed to have a PTAS [BF99]. This problemis also known as the MIN Equivalence Deletion problem, and was proven in [GVY96]to be MAX-SNP-hard, and approximable within a factor O(logn) on general instances.This problem is also clearly equivalent to the MIN-E2-LIN2 problem mentioned before.It has turned however out that the proof of the main result of [BF99] to the e�ect that thedense MIN-2Sat has a PTAS, based on the existence of a PTAS for dense MIN-E2-LIN2,2



contained an error. This was one of the starting points of this paper and the aim was toshed some light on approximation hardness of dense MIN-kSAT and dense MIN-Ek-LIN2problems for arbitrary k.In this paper (following [BFK00]) we design, somewhat surprisingly, the PTASs for bothclasses of Minimum Constraint Satisfaction, dense MIN-kSat, and dense MIN-Ek-LIN2problems for all k0s.The problemsMIN-Ek-LIN2 are known to be hard to approximate for all k � 3 withina factor n
(1)= log logn (cf. [KST97], [DKS98], [DKRS00]), and this hardness ratio is in factalso valid for average dense instances. Only recently a polynomial time algorithm withthe �rst sublinear approximation ratio O(n=logn) was designed for the general problem in[BK01]. Thus, the improvement in approximation ratio for the dense instances given bythis paper seems to be the largest known for any NP-hard constraint satisfaction problem.This paper extends the density sampler technique for graphs developed in [BFK00] tok-uniform hypergraphs for k � 3, as the main tool to attack the dense MIN-Ek-LIN2problems, or equivalently, k-ary versions of the Nearest Codeword problems, and the denseMIN-EkSat problems. The paper is organized as follows. In Section 2 we give the pre-liminaries and prove NP-hardness in exact setting of all the dense minimum satisfactionproblems considered in this paper. Section 3 contains our main result on sampling k-uniformhypergraphs crucial for the rest of the paper. In Section 4, we design a PTAS for denseMIN-Ek-LIN2 and in Section 5 a PTAS for dense MIN-EkSAT for any k.2 PreliminariesWe start with de�ning theminimum constraint satisfaction problemsMIN-kSat andMIN-Ek-LIN2 and give some other basic de�nitions.MIN-kSatInput: A set of m clauses C1; : : : ; Cm in boolean variables x1; : : : ; xn with each Cjdepending on at most k variables.Output: An assignment that minimizes the number of clauses satis�ed.MIN-EkSat is the version of MIN-kSat when each clause contains exactly k literals.MIN-Ek-LIN2Input: A set of m equations in n variables x1; x2; :::; xn over GF[2] where each equationhas exactly k variables.Output: An assignment to the variables that minimizes the number of satis�ed equations.Approximability. A minimization problem has a polynomial time approximation scheme(PTAS) if for every � > 0 there exists a polynomial time approximation algorihm computingfor every instance x a solution y of value m(x; y) such thatm(x; y) � (1+�)opt(x) for opt(x)the value of an optimum solution. 3



Density. A family of instances of MIN-kSat is �-dense if for each variable, the totalnumber of occurrences of the variable and its negation is at least �nk�1 in each instance. Afamily of instances ofMIN-kSat is dense, if there is a constant � > 0 such that this familyis �-dense.An instance ofMIN-kSat is average �-dense if the number of clauses is at least �nk . Aninstance of MIN-kSat is average-dense if there is a constant � > 0 such that the instanceis average �-dense.A family of instances of MIN-Ek-LIN2 is �-dense if for each variable x, the totalnumber of occurrences of x is at least �nk�1 in each instance. A family of instances ofMIN-Ek-LIN2 is dense, if there is a constant � > 0 such that the family is �-dense.DL-reductions. We call an L-reduction (cf. [PY91]) between problems P and Q densitypreserving (DL-) if it maps each dense instance of P into a dense instance of Q.MIN-EkSat for any k � 2 does not have PTAS on general instances [KKM94] underusual complexity theoretic assumptions but can be approximated in polynomial time withinsome constant factor [BTV96].The following reduction fromMIN-E2Sat can be used to prove that DenseMIN-E2Satis NP-hard in exact setting. Given an instance F of MIN 2Sat with n variables x1; : : : ; xnand m clauses C1; : : : ; Cm, we de�ne an instance F 0 of Dense MIN-2Sat as follows.We add n new variables y1; : : : ; yn. F 0 will contain the clauses of F and the clauses xi _yj ; �xi _ yj ; 1 � j � n; 1 � i � n. The total number of occurrences of xi is at least 2n andthe total number of occurrences of yj is also at least 2n. So, F 0 is a dense instance. Also, itis easy to see that opt(F 0) = opt(F )+n2. A similar reduction shows that dense MIN-kSatproblems are NP-hard in exact setting for every k � 2.We prove now NP-hardness (in exact setting) of Dense MIN-E2-LIN2, and in conse-quence also Dense MIN-Ek-LIN2 for every k. The reduction is from the general MIN-E2-LIN2 problem which is known to be MAX-SNP-hard [GVY96]. Given an instance I ofMIN-E2-LIN2 on a set of variables X = fx1; :::; xng with m equations xi � xi = b withb 2 f0; 1g, we construct an instance I 0 of Dense MIN-E2-LIN2 as follows. We extend theset of variables x by a disjoint set Y = fy1; :::; yng. I 0 contains all equations of I , and allequations of the form xi�yj = 0 and xi�yj = 1 for all 1 � i; j � n. Note that the instanceI 0 is dense. Note also that exactly n2 of the new added equations are satis�ed independentlyof the values of the variables in X and Y. Thus, we have opt(I 0) = opt(I)+ n2. The similarconstruction can be used to prove that Dense MIN-Ek-LIN2 problems are NP-hard inexact setting for any k.It is also not di�cult to see that for the special case k = 2, MIN-E2-LIN2 (MINEquivalence) is DL-reducible to MIN-E3-LIN2 (Nearest Codeword). For supposethat an instance I of dense MIN-E2-LIN2 on a set of n variables X = fx1; :::; xng withm equations xi � xj = b is given. We construct an instance I 0 of Dense MIN-E2-LIN24



by extending the set of variables X by a disjoint set Y = fy1; :::; yng, and extending theoriginal set of m equations xi�xj = b by mn+�n3� new equations of the form xi�xj �yk =b; yl1�yl2�yl3 = 1. An optimum assignment for I 0 does have all y0s set to zero and de�nesan optimum assignment (for x0s) for I . We have opt(I) = opt(I 0).Interestingly, it is also easy to show that both average-dense MIN-EkSat and average-dense MIN-Ek-LIN2 problems are approximation hard for general instances. To see thatit is enough to extend the set of variables by a new disjoint set Y = fy1; :::; yng, and thenadd the set of all clauses yi1 _yi2 _ :::_yik , (respectively, equations yi1 �yi2 � :::�yik = 1.)The resulting instances are clearly average dense, and the optima are preserved in bothcases (for all variables yi assigned to 0).3 Sampling k-uniform hypergraphs with bounded weightsAs mentioned in Introduction, there are no approximation preserving reductions fromMIN-Ek-LIN2 to MIN-E2-LIN2 for all k � 3, under usual complexity theoretic assumptions.Also, there are no known approximation and density preserving reductions from MIN-EkSat problems to MIN-E2Sat. Therefore we prove our results by a generic methodfor arbitrary constant k. The straightforward generalization of our method for MIN-E3-LIN2 ([BFK00]) to higher k's does not work without leaving the structures of graphs. Weneed therefore a new sampling technique for k-uniform hypergraphs. This is due to thefollowing observation. Let us consider MIN-EkSat and let us denote by LS the set ofliterals corresponding to the set of variables S. For the instances of MIN-EkSat with\small" value of the optimum, a basic step in our method consists, for each assignment oftruth values to the variables in a random sample S, in trying to set the truth value of eachof the other variables so as to minimize the number of satis�ed clauses within the clauseswhich contain this variable and k � 1 literals from LS .For this scheme to be e�cient, we need roughly the size of S to be O(logn) and also thenumber of clauses in the instance containing only literals from LS and any �xed literal tobe 
(logn=�2�) for an accuracy requirement �. This is achieved by the sampling proceduresdescribed below. Note that if we had only to sample a (k � 1)-uniform hypergraph H =(X; E), we could use a much simpler procedure: namely pick uniformly at random elementsfrom Xk�1 and ask for each picked element whether or not it belongs to E .We need �rst the following inequality due to Hoe�ding [H64].Lemma 1 Let X1; :::; Xm be independent random variables and each distributed as X1. Let� = E(X1) and assume that X1 satis�es 0 � X1 � �. Let Sm =Pmi=1Xi. Then, for every�xed 
 > 0, Pr(jSm � �mj � 
�m) � 2 exp(�2
2m): (1)25



Let k � 2 be �xed. Hk will denote a k-uniform hypergraph with vertex set V , jV j = n,obtained from the complete hypergraph on V by assigning to each hyperedge E = fx1; ::; xkga non-negative weight w(x1; :::xk).Suppose that S0; S1; ::; Sk�1 are disjoint random samples picked from V all with the samesize m = 
(logn=�2). Let S = S0 � S1:::� Sk�1. We denote by H(S) the sub-hypergraphof Hk which contains the edges of Hk with precisely one vertex in each of S0; S1; :::Sk�1.We denote by w(H), (resp. w(H(S))), the sum of the weights of the edges of H, (resp. ofH(S)). Our PTAS for the instances of MIN-Ek-LIN2 with \small" value is based on thefollowing sampling theorem.Theorem 1. Let m = 
(logn=�2) and let Hk have 0,1 weights. For any �xed � > 0,we have Pr" �����w(Hk(S))� mkw(Hk)�nk� ����� � �mk# � 1� o(1=n):Proof of Theorem 1. We need the following lemma.Lemma 2. Let a (k + 1)-uniform hypergraph Hk+1 have weights bounded above by hand suppose that S0 is a random sample of size m picked from V = V (Hk+1) and de�ne�o = Xy2So XA2(V nSok )w(A [ fyg):Then, for each �xed � > 0, su�ciently large n and m = o(n1=2), we have thatPr" �����o � m(k + 1)n w(Hk+1)���� � �h nk!# � 1� 3e�2m�2 :Proof. Clearly,�o = Xy2So XA2(V nfygk )w(A [ fyg)� Xy2So XA2(V nfygk ):A\So 6=;w(A[ fyg)= Xy2SoWy �O m2 nk � 1!!where, Wy = XA2(V nfygk )w(A[ fyg):Let us write �0o = Xy2So Wy :Thus �o = �0o �O(m2hnk�1). We have thatmaxy2V Wy � h n� 1k !6



and E(�0o) = m(k + 1)n w(Hk+1):Now �0o is the sum of m terms randomly chosen within the Wy; y 2 V . Lemma 3 givesPr " �����0o � m(k + 1)n w(Hk+1)���� � �h n � 1k !# � 1� 2e�2m�2 :Lemma 2 follows. 2For simplicity, we put now Tk = w(Hk(S)). The hypergraph Hk will be de�ned in thecontext.Lemma 3. Let ` and h denote natural integers. Let m = 
(logn=�2). Assume thatPr " �����T`�ǹ�m` � w(H`)����� � � ǹ!mh# � 1� o(1=n);for any `-uniform hypergraph H` on n vertices with maximum weight at most mh. We havethen, Pr " �����T`+1� n`+1�m`+1 � w(H` + 1)����� � �0 ǹ!mh�1# � 1� o(1=n);for any (`+1)-uniform hypergraph H`+1 on n vertices with maximum weight at most mh�1and where �0 is any constant greater than �.Proof. We have E(T`+1) = m`+1( n`+1)w(H`+1) by simple counting. Thus we have to boundonly from above the 
uctuations of T`+1. ClearlyT`+1 = Xx12S1;:::x`2S`W (x1; :::x`)where W (x1; :::x`) = Xy2So w(y; x1; :::x`):Thus, we can estimate T`+1 by sampling the `-uniform hypergraph K with vertex setV (H`+1)nSo, and where the edge fx1; x2; :::x`g has weight W (x1; x2; :::x`). Note that Khas maximum weight at most mh since H`+1 has maximum weight at most mh�1. Thusthe assumption of Lemma 3 readsPr" �����T`+1�ǹ�m` � w(K)����� � � ǹ!mh# � 1� o(1=n):Using Lemma 1, we have that w(K) = m(`+1)n w(H`+1)��mh�1�nk� with probability 1�o(1=n)and thus, after multiplication by nm(`+1) ,Pr" �����T`+1� n`+1�m`+1 � w(H`+1)����� � �(mh +mh�1) n`+ 1!# � 1� o(1=n);7



implying Pr" �����T`+1� n`+1�m`+1 � w(H`+1)����� � �0mh n`+ 1!# � 1� o(1=n);which is the assertion of the lemma in which we can take in fact �0 = (1 + o(1))�. 2In order to prove Theorem 1 for any �xed value of k, we just have to apply k� 1 timesLemma 3, the starting assumption ` = 1; h = k � 1 being obtained by applying Lemma 2to the sum of a sample of size m picked from a list of n terms each bounded above by mk .We apply Lemma 3 �rst for ` = 1; h = k � 1, then for ` = 2; h = k � 2, an so on until` = k � 1; h = 1. This gives after scaling the assertion of Theorem 1. 24 A PTAS for MIN-Ek-LIN2Our techniques for designing PTASs forMIN-Ek-LIN2 and forMIN-EkSat can be viewedas the new extensions of the technique of [AKK95]. In both cases, for each �-dense instanceof size n we run in parallel two distinct algorithms (Algorithm A and Algorithm B forMIN-Ek-LIN2, Algorithm 1 and Algorithm 2 forMIN-EkSat), and we select the solutionwith the smallest value. Algorithm 1 and Algorithm A provide good approximations forthe instances whose minimum value is "large" (the precise meaning of large will be spec-i�ed later). These algorithms use the Smooth Integer Programming method of [AKK95].Algorithms 2 and B provide good approximations for the instances whose optimum valueis "small".We assume now that the system of equations S = fE1; :::; Emg is a �-dense instance ofMIN-Ek-LIN2, on a set X of n variables fx1; : : : ; xng.We run two distinct algorithms on S, Algorithm A and Algorithm B, and select thesolution with the smallest value.4.1 Algorithm AAlgorithm A formulates the problem as a Smooth Integer Program to degree k and uses amethod of [AKK95]. This gives a PTAS for the instances whose optimum value is 
(nk).We refer to [BFK00] for an explicit construction of a smooth program for the case of k = 3.4.2 Algorithm BThe algorithm B is guaranteed to give in polynomial time, as we will prove, approximationratio 1+� for each �xed �, whenever the optimum is at most �nk for some �xed �, dependingon � and on �. 8



Algorithm BInput: Dense system S of linear equations in GF[2] over a set X of n variables withexactly k variables per equation.1. Pick k � 1 disjoint random samples S1; :::; Sk�1 � X of size m = � �logn=�2��. LetS = [1�i�k�1Si.2. For each possible assignment a; y ! ya of f0; 1g values to the variables in S do thefollowing:2.1. For each variable x =2 S do the following:LetHax;0 andHax;1 be the (k�1)-uniform hypergraphs with common vertex set V (Hax;0) =V (Hax;1) = S and edge setsE(Hax;0) = ffx1; :::; xk�1g : �Si (xi) = 1; 1 � i � k � 1; x� (�1�i�k�1xi) = b 2 S^ �1�i�k�1xai = bgandE(Hax;1) = ffx1; :::; xk�1g : �Si(xi) = 1; 1 � i � k � 1; x� (�1�i�k�1xi) = b 2 S^ �1�i�k�1xai = bg:Let ma0 = jE(Hax;0)j, ma1 = jE(Hax;1)j.If ma0 � 23(ma0 +ma1), then set x to 1.If ma1 � 23(ma0 +ma1), then set x to 0.Otherwise, set x to be unde�ned.2.2. In this stage, we assign values to the variables which are unde�ned after thecompletion of stage 2.1. Let Da be the set of variables assigned in stage 2.1, Ua = S [Daand let V a = X n Ua denote the set of unde�ned variables. For each unde�ned variable y,let Sy denote the set of equations which contain y and whose k � 1 other variables belongto Ua. Let ka0 (resp. ka1) denote the number of equations in Sy satis�ed by a and by settingy to 0 (resp. to 1).If ka0 � ka1 , then set y to 0. Else, set y to 1.Let Xa denote the overall assignment produced at the end of this stage.Among all the assignments Xa pick one which satis�es the minimum number of equa-tions of S.Output this solution ao. 9



4.3 Proof of correctness of algorithm B when the value of the instanceis "small"We assume, as we can, that a is the restriction to S of an optimal assignment a� 2 f0; 1gn.For each y 2 X , we let ya� denote the value of y in a�. Let x 2 X n S.Let Hx;0 and Hx;1 be the hypergraphs with common vertex set V (Gx;0) = V (Gx;1) = Xand edge setsE(Hx;0) = f fx1; :::; xk�1g : �Si (xi) = 1; 1 � i � k � 1; x� (�1�i�k�1xi) = b 2 S^ �1�i�k�1xa�i = bgandE(Hx;1) = f fx1; :::; xk�1g : �Si (xi) = 1; 1 � i � k � 1; x� (�1�i�k�1xi) = b 2 S^ �1�i�k�1xa�i = bg:Let na�0 = jE(Gx;0)j; na�1 = jE(Gx;1)j, na� = na�0 + na�1 . Also, let ma = ma0 +ma1.Lemma 4.1. Assume that x is such that we havena�0 � 3(na�0 + na�1 )4 :Then, with probability 1� o(1=n), x is assigned (correctly) to 1 in step 2.1 of Algorithm B.Lemma 4.2. Assume that x is such that we havena�1 � 3(na�0 + na�1 )4 :Then, with probability 1� o(1=n), x is assigned (correctly) to 0 in step 2.1 of algorithm B.Lemma 4.3. With probability 1� o(1=n), each �xed variable y 2 Da is assigned to itscorrect value ya� by the Algorithm B.REMARK: The property in Lemma 4.1 holds simultaneously for all variables withprobability 1� o(1). The same is true for Lemmas 4.2 and for 4.3.Proof of Lemmas 4.1 and 4.2. Let us �rst observe that ma�o (resp. ma�1 ) is thenumber of equations in S containing x and which are satis�ed by setting x to 0 (resp. to1) and all other variables according to a�. Thus if ma�o < ma�1 , then we can assert that x isset to 0 in a�. Similarly, if ma�o > ma�1 , then we can assert that x is set to 1 in a�.We prove Lemma 4.1. The proof of Lemma 4.2. is similar to that of Lemma 4.2.Theorem 2 applied to the hypergraph Gx;0 with d = na�0( nk�1) and the samples S1; :::; Sk�1,gives Pr ma0 � (1� �)mk�1� nk�1�na�0 ! = 1� o(1=n):10



Let ma = ma0 +ma1: We apply now Theorem 2 to the union of the graphs Gx;0 and Gx;1.This gives Pr ma � (1 + �)mk�1� nk�1�na�! = 1� o(1=n):Substraction givesPr ma0 � 2ma3 � mk�1� nk�1� ((1� �)na�o � (1 + �)2(na�0 + na�1 )3 )! = 1� o(1=n):Using the inequality na�0 + na�1 � 4na�03 , we obtainPr ma0 � 2ma3 � 2m2n(n� 1) 1� 20�9 na�o ! = 1� o(1=n);which implies Pr�ma0 � 2ma3 � 0� = 1� o(1=n);if � � 1=20. This concludes the proof. 2Proof of Lemma 4.3. Suppose that y is assigned to 1 in stage 2.1. The case wherey is assigned to 0 is similar. We have to prove that na�0 � na�1 with probability 1� o(1=n)since if in an optimum solution xi = 1 then na�0 � na�1 . Thus, Theorem 1 applied to thehypergraph Hx;0 and the samples S1; :::; Sk�1 gives, with � = 1=7,Pr ma0 � 8na�0 mk�17� nk�1� ! = 1� o(1=n);and so, Pr na�0 � 7ma0� nk�1�8mk�1 ! = 1� o(1=n): (2)Theorem 1 applied to the union of the hypergraphs Hx;0 and Hx;1 with the samplesS1; :::; Sk�1 and � = 1=9; givesPr ma � 8na�mk�19� nk�1� ! = 1� o(1=n);and so, Pr na� � 9ma� nk�1�4m2 ! = 1� o(1=n): (3)Since y is assigned to 1 in stage 2.1, we have that ma0 � 2=3ma, implying with 2 and 3,Pr na�0na� � 1427! = 1� o(1=n):Lemmas 4.3 follows. 211



The following lemma is crucial.Lemma 5. With probability 1-o(1), the number of variables unde�ned after the com-pletion of stage 2.1 satis�es jV aj � 4 opt�n2 :Proof. Assume that x is unde�ned. We have thus simultaneously na�0 < 34(na�0 + na�1 )and na�1 < 34(na�0 +na�1 ) and so na�1 > 14(na�0 +na�1 ) and na�0 > 14(na�0 +na�1 ). Since x appearsin at least �n2 equations, na�0 + na�1 � �n2: Thus,opt � minfna�0 ; na�1 g � jV aj � �n24 jV aj:The assertion of the lemma follows. 2We can now complete the correctness proof. Let val denote the value of the solutiongiven by our algorithm and let opt be the value of an optimum solution.Theorem 2. Let � be �xed. If opt � �nk where � is su�ciently small, then we havethat val � (1 + �)opt.Proof. Let us write val = X0�i�k valiwhere vali is the number of satis�ed equations with exactly i variables in V a.With an obvious intended meaning, we write alsoopt = X0�i�k opti. We have clearly val0 = opt0 and val1 � opt1. Thus,val � opt + X2�i�k(vali � opti)� opt + X2�i�k vali� opt + X2�i�k jV aji ! nk � i!� opt + X2�i�k jV ajink�i� opt + (k � 1)jV aj2nk�2� opt + 16(k� 1)opt2�2nkwhere we have used Lemma 5 for the last line. Thus,val � opt�1 + 16(k� 1)opt�2nk �� opt(1 + �)12



if opt � ��2nk16(k�1) . 2It is known that the Algorithm A runs in polynomial time for any �xed � > 0 [AKK95],and the same is now easy to check for the Algorithm B on "small" instances. Thus we have,for any �xed k, a PTAS for MIN-Ek-LIN2.5 Dense MIN-kSat has a PTASIn this section, we apply the technique of sampling k-uniform hypergraphs of Section 3 toobtain a PTAS for Dense MIN-EkSat for each �xed k. As a side e�ect we give also PTASfor the general Dense MIN-kSat.Lemma 6. For any k � 2, Dense MIN-kSat is DL-reducible to Dense MIN-EkSat.Proof. Let F be a �-dense instance of MIN kSat with n variables x1; : : : ; xn and mclauses C1; : : : ; Cm. We construct an instance F 0 of Dense MIN-EkSat as follows: F 0 isbuilt over the variables of F and a set Y of n new variables y1; : : : ; yn. For each clause ofF , `1_ : : :_ `t, of length t < k, we put in F 0 the clause `1 _ : : :_ `t_ y1 _ : : :_ yk�t. We alsoput in F 0 all the clauses of F of length k and all the clauses of length k with all variablesin Y .Let us justify that this is a DL-reduction.It is easy to see that opt(F 0) = opt(F ). Now, given an optimal solution v of F 0, wecan assume that each variable y takes the value zero in v, since otherwise we obtain asolution with a smaller value by assigning false to y. The assignment v satis�es in Fm(F; v) � m(F 0; v) clauses. Thus we have an L-reduction.Since F is �-dense the number of occurrences of the variable xi and its negation for eachi = 1; : : : ; n is �nk�1. Each variable y appears in F 0, �(nk�1) times. Thus F 0 is dense.5.1 A PTAS for MIN-EkSat1. Algorithm 1. (Algorithm for the case of \large" instances)For each �xed k � 2, we can formulate MIN-EkSat as a degree k smooth integerprogram. We can then use again the approximation method of [AKK95]. Let us displaysuch a smooth program for k = 2. For each clause Ci we construct a smooth polynomialPi where Pi � 1� (1� x)(1� y) if Ci = x _ yPi � 1� (1� x)y if Ci = x _ �yPi � 1� x(1� y) if Ci = �x _ yPi � 1� xy if Ci = �x _ �y13



Optimum solution ofMIN-E2Sat corresponds now to the optimum solution of the followingdegree 2 smooth integer program:( minPmj=1 Pjxi 2 f0; 1g 1 � i � n:2. Algorithm 2. (Algorithm for the case of instances with a "small" value)We need �rst some notation. Let F be a �-dense instance of MIN-EkSat, with mclauses over a set X = fx1; : : : ; xng of n variables. Let S = fS1; :::; Sk�1g be a familyof k � 1 disjoint subsets of X . (Actually these sets will be random as de�ned in thealgorithm below.) Let S = [k�1i=1 Si and denote by Li the set of literals corresponding toSi; 1 � i � k� 1. We denote by CS the set of clauses of length k� 1 obtained by picking aliteral from each of the sets Li. We write also, for a �xed assignment a of truth values tothe variables in S, CS;0 = fC 2 CS : C false under agand CS;1 = fC 2 CS : C true under agFinally, we denote by C1 (resp. C0) the set of clauses of length k � 1 which are true (resp.false) under an optimal assignment a�.For each variable x =2 S, we denote by FS the set of clauses in F of the form C _ x orC _ �x for some clause C 2 CS and we de�ne the numbers� ua1 = jfC 2 CS;1 : C _ x 2 FSgj; ua�1 = jfC 2 C1 : C _ x 2 Fgj;� uao = jfC 2 CS;0 : C _ x 2 FSgj; ua�0 = jfC 2 C0 : C _ x 2 Fgj;� va1 = jfC 2 CS;1 : C _ �x 2 FSgj; va�1 = jfC 2 C1 : C _ �x 2 Fgj;� va0 = jfC 2 CS;0 : C _ �x 2 FSgj; va�0 = jfC 2 C0 : C _ �x 2 Fgj:Algorithm 2. (Algorithm for the case of \small" instances)Input. A dense instance F of MIN-EkSat over a set of variables X .1. Pick k � 1 random disjoint sets S1; :::; Sk�1 each countaining` = �(logn=�2�) variables. Let S = [k�1i=1 Si.2. For each possible assignment a : S ! f0; 1g of the variables of S do the following:2.1. For each variable x 2 XnS do the following with ua1; ua0; ::: as de�ned above:If ua1 + ua0 + va1 � (ua1 + ua0 + vao + va1)=8, then set x to 1.If ua1 + va0 + va1 � (ua1 + ua0 + vao + va1)=8, then set x to 0.14



Otherwise, set x to be unde�ned.2.2. In this stage, we assign values to the variables which are unde�ned after thecompletion of stage 2.1. Let Da be the set of variables assigned in stage 2.1, Ua = S [Daand let V a = X n Ua denote the set of unde�ned variables. For each unde�ned variable y,let Sy denote the set of clauses which contain y or �y and whose k � 1 other literals belongto Ua. Let ka0 (resp. ka1) denote the number of clauses in Sy satis�ed by a and by settingy to 0 (resp. to 1).If ka0 � ka1 , then set y to 0 and bias(y) = ka1�ka0 . Else, set y to 1 and bias(y) = ka0 �ka1 :Let ax denote the overall assignment produced at the end of this stage.Among all the assignments ax pick one which satis�es the minimum number of clausesin F .Output this solution a.We denote by B(F ) the value of the solution given by the Algorithm 2, i.e., the numberof clauses in F satis�ed by the assignment a.5.2 Proof of correctness of Algorithm 2 when the value of the instanceis "small"Lemma 7.1. With probability 1 � o(1=n), each variable x with the property such that inan optimum assignment a� of X which coincides with a on S we have thatua�1 + ua�0 + va�1 � (ua�1 + ua�0 + va�1 + va�o )=8 (4)is assigned to 1 (as in a�) in stage 2.1 of algorithm 2.Lemma 7.2. With probability 1 � o(1=n), each variable x with the property such thatin an optimum assignment a� of X which coincides with a on S we have thatva�1 + va�o + ua�1 � (ua�1 + ua�0 + va�1 + va�o )=8 (5)is assigned to 0 (as in a�) in stage 2.1 of algorithm 2.Lemma 7.3. With probability 1� o(1=n), each �xed variable x for which either 4 or 5holds is assigned in a as in a�.Note that the property in Lemma 7.1 holds simultaneously for all variables with prob-ability 1� o(1). The same is true for Lemmas 7.2 and 7.4.Before turning to the proof of these lemmas, let us observe that mo = ua�1 + ua�0 + va�1is the number of clauses in F containing the variable x and which are satis�ed by setting xto 0 (and the other variables according to a�) and m1 = ua�1 + va�1 + va�o is the number ofclauses containing x and which are satis�ed by setting x to 1. Thus, if m0 < m1, (that is15



if ua�o < va�o ,) then we can assert that x is set to 0 in a�. Similarly, if m1 < m0, then wecan assert that x is set to 1 in a�. Observe also that no = ua1 + ua0 + va1 is the number ofclauses in FS containing the variable x and which are satis�ed by setting x to 0 (and theother variables according to a�). Also n1 = ua1 + va1 + vao is the number of clauses in FScontaining x and which are satis�ed by setting x to 1.Proofs. We prove 7.1 and 7.3. The proof of 7.2 is similar to that of 7.1. and is omitted.Proof of Lemma 7.1. Let x be a variable with the property that in the optimumsolution ua�1 + ua�0 + va�1 � (ua�1 + ua�0 + va�1 + �ua�0 )=10: Plainly, ua1, (resp. ua0; va1 ; vao), areobtained by sampling the hypergraphs with edge sets Ua�1 , (resp. Ua�0 ; V a�1 ; V a�o ), whereUa�i = fC 2 Ci : C _x 2 Fg; i = 0; 1, and V a�i = fC 2 Ci : C _ �x 2 Fg; i = 0; 1, (and vertexset the literals) in the sense of Theorems 1 and 2. We can thus apply Theorem 2 to thesequantities. (Actually, for k = 2 we are sampling points rather than edges, but then we canuse Hoe�ding's inequality.) This gives for any �xed 
 > 0,Pr(jua1 � ua�1n `j � 
`) � 1� n�
(1): (6)Similarly we have, Pr(juao � ua�0n `j � 
`) � 1� n�
(1); (7)Pr(jva1 � va�1n `j � 
`) � 1� n�
(1) (8)and Pr(jvao � va�on `j � 
`) � 1� n�
(1): (9)These inequalities imply clearlyua1 + uao + va1 + vao � ǹ(ua�1 + ua�0 + va�1 + va�o )� 4
`with probability 1� n�
(1), and alsoua1 + uao + va1 � ǹ(ua�1 + ua�0 + va�1 ) + 3
`:So, again with probability 1� n�
(1),ua1 + uao + va1 � 18(ua1 + uao + va1 + vao) � � 7`8n (ua�1 + ua�0 + va�1 + va�o ) + 7
`2� �7�`8 + 7
`2which is negative for 
 � �4 . 2Proof of Lemma 7.3. Let us assume that x is assigned to 0 in a� (the other case issimilar). Thus we assume that that the inequaliy ua�0 � va�o holds and we have to provethat the inequality ua�1 + ua�0 + va�1 � (ua�1 + ua�0 + va�1 + va�o )=816



implies ua1 + ua0 + va1 > (ua1 + ua0 + vao + va1)=8:Using the inequalities (6)-(8), we have that, with probability 1� n�
(1), for a �xed 
,ua1 + uao + va1 � ǹ(ua�1 + ua�0 + va�1 )� 3
`and using the inequality (9), vao8 � 8̀nva�o + 
8̀ :By substraction, we get, again with probability 1� n�
(1),ua1 + uao + va1 � vao8 � ǹ(ua�1 + ua�0 + va�1 � va�o8 )� 4
`:Since ua�0 � va�o and ua�1 + ua�0 + va�1 + va�0 � �n, we haveua�1 + va�1 + ua�0 � 18va�o > ua�1 + va�1 + 68ua�0 � 38�n:So, the di�erence ǹ(ua�1 + ua�0 + va�1 � va�08 )� 4
`is positive if 
 < 328�. Thus, with high probability if 
 < 328�, ua�1 + ua�o + va�1 � va�o8 > 0which is what we want. 2Lemma 8. With probability 1� o(1), the number of unde�ned variables satis�esjV aj � 8opt(F )�n. Proof. If the variable x is unde�ned after stage 2.1 of the Algorithm 2, then fromLemma 4.2 with high probability we haveua�1 + ua�0 + va�1 � (ua�1 + ua�0 + va�1 + va�o )=8;and va�1 + va�o + ua�1 � (ua�1 + ua�0 + va�1 + va�o )=8:Since ua�1 + ua�0 + va�1 + va�o � �n, the optimum value opt(F ) satis�esopt(F ) � minfua�1 + ua�0 + va�1 ; va�1 + va�o + ua�1 gjV aj� jV aj�n=8:Theorem 3. If opt(F ) < �n2 then with high probability B(F ) � (1 + ")opt(F ) where" = 64��2 . 17
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