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1 IntroductionThe max-bisection and min-bisection problems, i.e., the problems of constructing a halvingof the vertex set of a graph that respectively maximizes or minimizes the number of edgesacross the partition, belong to the basic combinatorial optimization problems.The best known approximation algorithm for max-bisection yields a solution whose size isat least 0:701 times the optimum [15] whereas the best known approximation algorithm formin-bisection achieves \solely" a log-square approximation factor [11]. The former factorfor max-bisection is considerably improved for regular graphs to 0:795 in [10] whereas thelatter factor for min-bisection is improved for graphs excluding any �xed minor (e.g., planargraphs) to a logarithmic one in [11]. For dense graphs, Arora, Karger and Karpinski givepolynomial time approximation schemes for max- and min-bisection in [2].In this paper, we study the max-bisection and min-bisection problems on bounded treewidthgraphs and on planar graphs. Both graph families are known to admit exact polynomial-timealgorithms for max-cut, i.e., for �nding a bi-partition that maximizes the number of edgeswith endpoints in both sets in the partition [9, 14].Our �rst main result are exact polynomial-time algorithms for �nding a partition of abounded treewidth graph into two sets of a priori given cardinalities, respectively maximizingor minimizing the number of edges with endpoints in both sets. Thus, in particular, we ob-tain polynomial-time algorithms for max-bisection and min-bisection on bounded treewidthgraphs.The complexity and approximability status of max-bisection on planar graphs have beenlong-standing open problems. Karpinski et al. observed in [17] that the max-bisectionproblem for planar does not fall directly into the Khanna-Motwani's syntactic frameworkfor planar optimization problems [18]. On the other hand, they provided a polynomial-timeapproximation scheme (PTAS) for max-bisection in planar graphs of sublinear maximumdegree. (In fact, their method implies that the size of max-bisection is very close to that ofmax-cut in planar graphs of sublinear maximum degree.)Our second main result is the �rst polynomial-time approximation scheme for the max-bisection problem for arbitrary planar graphs. It is obtained by combining (via tree-typeddynamic programming) the original Baker's method of dividing the input planar graphinto families of k-outerplanar graphs [4] with our method of �nding maximum partitionsof bounded treewidth graphs.It is interesting to note that our PTAS result for Max-Bisection on planar graphs is thebest possible under usual assumptions. Very recently, Jerrum [16] established NP-hardnessof exact Max-Bisection on planar graphs, in contrast to the status of Max-Cut problem onplanar graphs ([14]). The technique used in his proof was similar to the method used byBarahona [5] to prove hardness of the planar spin glass problem within a magnetic �eld (P5).2



2 PreliminariesWe start with formulating the underlying optimal graph partition problems.De�nition 2.1 A partition of a set of vertices of an undirected graph G into two sets X; Yis called an (jXj; jY j)-partition of G: The edges of G with one endpoint in X and the otherin Y are said to be cut by the partition. The size of an (l; k)-partition is the number of edgeswhich are cut by it. An (l; k)-partition of G is said to be a maximum (l; k)-partition of G ifit has the largest size among all (l; k)-partitions of G: An (l; k)-partition of G is a bisection ifl = k: A bisection of G is a max bisection or a min bisection of G if it respectively maximizesor minimizes the number of cut edges. An (l; k)-partition of G is a max cut of G if it hasthe largest size among all (l0; k0)-partitions of G: The max-cut problem is to �nd a max cutof a graph. Analogously, the max-bisection problem is to �nd a max bisection of a graph.The min-cut problem and the min-bisection problem are de�ned similarly.The notion of treewidth of a graph was originally introduced by Robertson and Seymour[19]. It has turned out to be equivalent to several other interesting graph theoretic notions,e.g., the notion of partial k-trees [1, 6].De�nition 2.2 A tree-decomposition of a graph G = (V;E) is a pair (fXi j i 2 Ig; T =(I; F )), where fXi j i 2 Ig is a collection of subsets of V , and T = (I; F ) is a tree, such thatthe following conditions hold:1. Si2I Xi = V .2. For all edges (v;w) 2 E, there exists a node i 2 I, with v;w 2 Xi.3. For every vertex v 2 V , the subgraph of T , induced by the nodes fi 2 I j v 2 Xig isconnected.The treewidth of a tree-decomposition (fXi j i 2 Ig; T = (I; F )) is maxi2I jXij � 1. Thetreewidth of a graph is the minimum treewidth over all possible tree-decompositions of thegraph. A graph which has a tree-decomposition of treewidth O(1) is called a bounded treewidthgraph.Fact 1[7]: For a bounded treewidth graph, a tree decomposition of treewidth O(1) can befound in linear time.To state our results on max-bisection for planar graphs we need the following de�nition.De�nition 2.3 A real number � is said to be an approximation ratio for a maximizationproblem, or equivalently the problem is said to be approximable within a ratio �, if there3



is a polynomial time algorithm for the problem which always produces a solution of size atleast � times the optimum. If a problem is approximable for arbitrary � < 1 then it is saidto admit a polynomial time approximation scheme (a PTAS for short). Similarly we de�neapproximation ratios and PTASs for minimization problems.2.1 Optimal partitions for graphs of bounded treewidthLet G be a graph admitting a tree-decomposition T = (I; F ) of treewidth at most k, forsome constant k. By [9], one can easily modify T; without increasing its treewidth, suchthat one can see T as a rooted tree, with root r 2 I, full�ling the following conditions:1. T is a binary tree.2. If a node i 2 I has two children j1 and j2, then Xi = Xj1 = Xj2 .3. If a node i 2 I has one child j, then either Xj � Xi and jXi �Xj j = 1, or Xi � Xjand jXj �Xij = 1.We will assume in the remainder that such a modi�ed tree-decomposition T of G is given.For each node i 2 I, let Yi denote the set of all vertices in a set Xj with j = i or j is adescendant of i in the rooted tree T . Our algorithm is based upon computing for each nodei 2 I a table maxci. For each subset S of Xi, there is an entry in the table maxci, ful�llingmaxci(S) = maxS0�Yi ; S0\Xi=S jf(v;w) 2 E j v 2 S0; w 2 Yi � S 0gj.In other words, for S � Xi, maxci(S) denotes the maximum number of cut edges for apartition of Yi, such that all vertices in S are in one set in the partition, and all vertices inXi n S are in the other set in the partition.Our algorithm computes for each i 2 I, an array maxpi with O(2k jYij) entries. For eachl 2 f0; 1; :::; jYijg and each subset S of Xi, the entry maxpi(l; S) is set tomaxS0�Yi;jS0j=l;S0\Xi=S jf(v;w) 2 Ejv 2 S0 & w 2 Yi n S0gj: In other words, maxpi(l; S) is setto the maximum number of cut edges in an (l; jYij� l)-partition of Yi where S and Xi nS arein the di�erent sets of the partition and the set including S is of cardinality l: For convention,if such a partition is impossible, maxpi(l; S) will be set to �1:The entries of the array are computed following the levels of the tree-decomposition T in abottom-up manner. The following lemma shows how the array can be determined e�ciently.4



Lemma 2.1� Let i be a leaf in T: Then for all l 2 f0; 1; :::; jXijg and S � Xi where jSj = l;maxpi(l; S) = jf(v;w) 2 Ejv 2 S;w 2 Xi n Sgj: The remaining entries of maxpi areset to �1:� Let i be a node with one child j in T: If Xi � Xj then for all l 2 f0; 1; :::; jYijg andS � Xi; maxpi(l; S) = maxS0�Xj;S0\Xi=S maxpj(l; S0):� Let i be a node with one child j in T: If Xj [ fvg = Xi where v =2 Xj then for alll 2 f0; 1; :::; jYijg and S � Xi; if v 2 S then maxpi(l; S) = maxpj(l � 1; S n fvg) +jf(v; s)js 2 Xi n Sgj else maxpi(l; S) = maxpj(l; S) + jf(v; s)js 2 Sgj:� Let i be a node with two children j1; j2 in T; with Xi = Xj1 = Xj2 : For all l 2f0; 1; :::; jYijg and S � Xi; maxpi(l; S) = maxl1+l2�jSj=l&l1�jSj&l2�jSjmaxpj1(l1; S) +maxpj2(l2; S)� jf(v;w) 2 Ejv 2 S;w 2 Xi n Sgj:It follows that computing an array maxpi on the basis of the arrays computed for thepreceding level of T can be done in time O(2kjYij2): Consequently, one can compute thearray maxpr for the root r of T in cubic time.Theorem 2.1 All maximum (l; n � l)-partitions of a graph on n nodes given with a tree-decomposition of treewidth k can be computed in time O(2kn3):By substituting min for max, we can analogously compute all minimum (l; n� l)-partitionsof a graph with constant treewidth.Theorem 2.2 All minimum (l; n � l)-partitions of a graph on n nodes given with a tree-decomposition of treewidth k can be computed in time O(2kn3):By Fact 1 we obtain the following corollary.Corollary 2.1 All maximum and minimum (l; n�l)-partitions of a bounded treewidth graphon n vertices can be computed in time O(n3):Since a tree-decomposition of a planar graph on n vertices with treewidth O(pn) can befound in polynomial time by the planar separator theorem [8], we obtain also the followingcorollary.Corollary 2.2 All maximum and minimum (l; n � l)-partitions of a planar graph on nvertices can be computed in time 2O(pn): 5



3 A PTAS for max-bisection of an arbitrary planargraphThe authors of [17] observed that the requirements of the equal size of the vertex subsets in atwo partition yielding a max bisection makes the max-bisection problem hardly expressible asa maximum planar satis�ability formula. For this reason we cannot directly apply Khanna-Motwani's [18] syntactic framework yielding PTASs for several basic graph problems onplanar graphs (e.g., max cut). Instead, we combine the original Baker's method [4] with ouralgorithm for optimal maximum partitions on graphs of bounded treewidth via tree-typedynamic programming in order to derive the �rst PTAS for max-bisection of an arbitraryplanar graph.Algorithm 1input: a planar graph G = (V;E) on n vertices and a positive integer k;output: (1 � 1k+1 )-approximations of all maximum (l; n� l)-partitions of G1. Construct a plane embedding of G;2. Set the level of a vertex in the embedding as follows: the vertices on the outer boundaryhave level 1, the vertices on the outer boundary of the subgraph obtained by deletingthe vertices of level i� 1 have level i;3. For each level j in the embedding construct the subgraph Hj of G induced by thevertices on levels j; j + 1; :::; j + k;4. For each level j in the embedding set n0j to the number of vertices in Hj and computeall maximum (l; n0j � l)-partitions of Hj ;5. For each i; 0 � i � k; set Gi to the union of the subgraphs Hj where j mod k + 1 = i;6. For each i; 0 � i � k; set ni to the number of vertices in Gi and compute all maximum(l; ni� l)-partitions of Gi by dynamic programming in a tree fashion, i.e., �rst computeall maximum partitions for pairs of \consecutive" Hj where j mod k + 1 = i; then forquadruples of such Hj etc.;7. For each l; 1 � l < n; output the largest among the maximum (l; n� l)-partitions ofGi, 0 � i � k:Lemma 3.1 For each l; 1 � l < n; Algorithm 1 outputs an (l; n� l)-partition of G withink=(k + 1) of the maximum. 6



Proof: Let P be a maximum (l; n� l)-partition of G: For each edge e in P; there is at mostone i; 0 � i � k; such that e is not an edge of Gi: Consequently, there is i0; 0 � i0 � k;such that Gi0 does not include at most jP j=(k + 1) edges of P: It follows that a maximum(l; n � l)-partition of such a Gi0 cuts at least kjP j=(k + 1) edges. Algorithm 1 outputs an(l; n� l)-partition of G cutting at least so many edges as a maximum (l; n� l)-partition ofGi0 : 2Lemma 3.2 Algorithm 1 runs in O(k23k�1n3) time.Proof: The time complexity of the algorithm is dominated by that of step 4 and 6.The subgraphs Hj of G are so called k-outerplanar graphs and have bounded treewidth3k � 1 [8]. Hence, for a given i; 0 � i � k; all maximum (l; n0j � l)-partitions of Hj wherej mod k+1 = i can be computed in timeO(23k�1n3) by Lemma 2.1, the pairwise disjointnessof the subgraphs and j � n: It follows that the whole step 4 can be implemented in timeO(k23k�1n3):In step 6, a maximum (l; ni � l)-partition of the union of 2q+1 \consecutive" Hj 's satisfyingj mod k + 1 = i can be determined on the basis of appropriate maximum partitions of itstwo halves, each being the union of 2q of the Hj 's, in time O(n): Hence, since l � ni and thenumber of nodes in the dynamic programming tree is O(n), the whole step 6 takes O(kn3)time. 2Theorem 3.1 Algorithm 1 yields a PTAS for all maximum (l; n� l)-partitions of a planargraph.Corollary 3.1 The problem of max-bisection on planar graphs admits a PTAS.4 Final remarkWe can easily obtain an analogous PTAS for Min-Bisection on planar graphs in a specialcase when the size of Min-Bisection is 
(n): If the size of Min-Bisection is o(n) and many ofthe removed edges have endpoints in the di�erent sides of the bisection, such a method mayhowever fail to produce a good approximation.5 AcknowledgmentsWe thank Uri Feige, Mark Jerrum, Mirek Kowaluk, Mike Langberg, and Monique Laurentfor many stimulating remarks and discussions.7
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