
A Note on Approximating MAX-BISECTIONon Regular GraphsUriel Feige� Marek Karpinskiy Michael LangbergzAbstractWe design a 0:795 approximation algorithm for the Max-Bisection problem re-stricted to regular graphs. In the case of three regular graphs our results imply anapproximation ratio of 0:834.1 IntroductionGiven an undirected graph G = (V;E), the Maximum Cut of G is a partition of the vertexset V into two arbitrarily sized sets (X;Y ) such that the number of edges with one end pointin X and the other in Y is maximal. The Maximum Bisection of G = (V;E) is a partitionof V into two equally sized sets (X;Y ) that maximizes the number of edges between X andY . In the following work we analyze the ratio between the Maximum Bisection of any givenregular graph G, and its Maximal Cut. For general graphs it is not hard to see that thisratio can be arbitrarily close to 1=2. For regular graphs we show that this ratio is at leastapproximately 0:9027, and that there are in�nitely many regular graphs which obtain a ratioarbitrarily close to 0:9027.We then use this property to present a 0:795 approximation algorithm for the Max-Bisection problem restricted to regular graphs. In the case of three regular graphs ourresults imply an approximation ratio of 0:834. The best known approximation ratio forMax-Cut on regular graphs is 0:87856 [GW95]. Observe that 0:87856 � 0:9027 ' 0:793, andour approximation ratio for Max-Bisection on regular graphs slightly improves over this. Thebest known approximation ratio for the Max-Bisection problem on general graphs is 0:701achieved by Halperin and Zwick [HZ00]. Their work is an extension of the works of [FJ97]and [Ye99].2 Max Cut vs. Max-BisectionLet G = (V;E) be a � regular graph, where V = fv1 : : : vng. For every X � V andY = V nX, let w(X) be the number of edges cut by the partition (X;Y ). We call w(X) the�Department of Computer Science and Applied Mathematics, the Weizmann Institute.yDepartment of Computer Science, University of Bonn.zDepartment of Computer Science and Applied Mathematics, the Weizmann Institute.1



value of the partition (X;Y ). Let Cut(G) be the value of the Max-Cut of G, and Bis(G)be the value of the Max-Bisection of G. Given a partition (X;Y ), the out-degree of anyv 2 V is the number of neighbors that v has on the opposite side of the partition, and thein-degree is the number of neighbors that v has on its own side of the partition. We saythat a partition (X;Y ) is locally optimal if there is no vertex v with out-degree smaller thanin-degree. Clearly if (X;Y ) is not locally optimal one may obtain a partition of value strictlygreater than w(X) by moving a vertex with out-degree smaller than its in-degree from oneside of the partition to the other.Theorem 2.1 Given a regular graph G and any partition (X;Y ) of G with value w(X), onecan e�ciently �nd a bisection (X̂; Ŷ ) of G of value �w(X), where � ' 0:9027. Speci�callywe have that Bis(G) � �Cut(G).Proof : Let G = (V;E) be a � regular graph and (X;Y ) be any cut in G of value w(X).As a preliminary step we would like to turn the partition (X;Y ) into a locally optimal one.This is done by iteratively moving vertices with out-degree strictly smaller than their in-degree from one side of the partition to the other. Note that the new partition is of valuegreater than or equal to the original partition. We keep our original notation and denotethis improved partition as (X;Y ). Let cn be the size of X where c � 1=2, and xjEj be thevalue of the partition (X;Y ), i.e. w(X) = xjEj.From the de�nition of c, we conclude that cn�=2 � w(X) � �(1� c)n as there are only(1�c)n vertices in Y , and the partition (X;Y ) is locally optimal. Hence c � x � 2�2c (andc � 2=3). We would now like to move vertices from X to Y in order to obtain a bisection ofG, i.e. a partition (X̂; Ŷ ) for which jX̂j = jŶ j = n=2.Let X̂ be a random subset of X of size n=2, and Ŷ be V nX̂. In the following we computethe expected value of the bisection (X̂; Ŷ ). Afterwards, using a greedy derandomizationscheme, we show that a bisection of G with this expected value can be e�ciently obtainedfrom (X;Y ).We now analyze E[w(X̂)], i.e. the expected value of the partition (X̂; Ŷ ). Let p = 12c.The expected number of edges that were cut by the partition (X;Y ) that are still cut in(X̂; Ŷ ) is w(X)p = xpjEj. As each vertex in G is of degree �, we have that the number ofedges in the subgraph induced by X is (�cn � xjEj)=2 = (2c � x)jEj=2. We conclude thatthe expected number of these edges cut by the partition (X̂; Ŷ ) is (2c�x)jEjp(1� p) (to beprecise this expected value is slightly greater due to the fact that we are choosing a subsetof X of size n=2, for example consider the fact that any bisection of the graph K4 is of size4 instead of half the edge set which is 3).Thus, given any partition (X;Y ) of value w(X) we may obtain a partition (X̂; Ŷ ) suchthatE "w(X̂)w(X)# � xpjEj+ (2c� x)jEjp(1 � p)xjEj = x+ (2c � x) �1 � 12c�2cx = 2c� 12cx + 14c2 :The expression above, as a function of x is decreasing, and is thus minimal when x = 2� 2c.We conclude that E "w(X̂)w(X)# � 1� x(2� x)x + 1(2 � x)22



Using basic computations that are presented in the appendix, it can be seen that the aboveexpression obtains a minimal value of � ' 0:9027 when x� ' 0:7932 (c� = 1 � x�=2 '0:6034 � x�).It is left to show that given a partition (X;Y ) of value w(X) a bisection (X̂; Ŷ ) withvalue at least the expected can be obtained e�ciently. Consider the random process analyzedabove, that �xes a bisection by setting X̂ to be a random subset of X of size n=2. Note thatchoosing a random subset X̂ � X of size n=2 is equivalent to removing a random subsetof size jXj � n=2 from X and setting X̂ to be the remaining vertices of X. Furthermore,the latter is equivalent to the random process which iteratively removes one vertex in Xat a time, uniformly at random, until X is of size n=2. For i 2 [0; jXj � n=2] let (Xi; Yi)be the partition obtained by this last random process at step i (the size of Xi is jXj � i),and set (X̂; Ŷ ) to be the bisection (XjX j�n=2; YjX j�n=2). Let E[w(Xi)] be the expected valueof the partition (Xi; Yi). Given the value w(Xi), the value of E[w(Xi+1)] can be explicitlycomputed. A random vertex in Xi has expected out-degree of d = w(Xi)=jXij and expectedin-degree �� d thus E[w(Xi+1) j w(Xi)] = w(Xi) 1� 2jXij!+�:We conclude thatE[w(Xi+1)] = E[E[w(Xi+1) j w(Xi)]] = E[w(Xi)] 1� 2jXij!+�:In the following we prove that the greedy process which at each step removes the vertexin X with lowest out-degree until the set X is of size exactly n=2, will obtain a bisection ofvalue at least E[w(Xi)] for each i 2 [0; jXj � n=2]. As X̂ is set to be Xi for i = jXj � n=2,this completes our proof.Let (Ai; Bi) be the partition obtained by the above greedy process at step i, and let w(Ai)be the value of the partition (Ai; Bi). Clearly w(A0) = E[w(X0)] = w(X). Furthermore,using the fact that for each i there is a vertex in Ai with out-degree at most w(Ai)=jAij wehave that w(Ai+1) � w(Ai) 1� 2jAij!+�:We now conclude our proof using induction on i :w(Ai+1) � w(Ai) 1 � 2jAij!+� � E[w(Xi)] 1� 2jXij!+� = E[w(Xi+1)]: 2In the Section 4 we show that our result is tight, namely :Proposition 2.2 There are in�nitely many regular graphs G for which the ratio betweenBis(G) and Cut(G) is arbitrarily close to �. 3



3 Approximating Max-Bisection on regular graphsGiven a graph G, we say that an algorithm A approximates the Max-Cut (Max-Bisection) ofG within an approximation ratio of r, if by running A on the graph G we obtain a partition(bisection) (X;Y ) of value w(X) which is at least r times the value Cut(G) (Bis(G)). Notethat r � 1.In a recent breakthrough, Goemans and Williamson [GW95] present a 0:87856 approx-imation algorithm based on semide�nite programming for the general Max-Cut problem.Extending this work, [FJ97] obtains a 0:6511 approximation algorithm for the general Max-Bisection problem. A further line of extensions by [Ye99, HZ00] improve this ratio to 0:701.On the negative side, it has been shown by [H�as97] that approximating the Max-Cut andMax-Bisection problems on general graphs beyond the ratio of 1617 is NP -hard. Furthermore,[BK98] show that approximating Max-Cut on 3-regular graphs beyond some explicit constantfactor r strictly less than one is also NP -hard.In the following we extend the result of [BK98] to the Max-Bisection problem restrictedto regular graphs, and use the work of [GW95] with the results of the previous section toachieve an approximation ratio of 0:795 on this restriction of Max-Bisection.Proposition 3.1 There exists some explicit constant r < 1 for which it is NP -hard toapproximate the Max-Bisection of 3-regular graphs.Proof : Let G = (V;E) be a 3-regular graph on n vertices. Consider the graph Ĝ consistingof two disjoint copies of G. Clearly 2Cut(G) = Bis(Ĝ). Thus approximating the Max-Bisection of Ĝ within an approximation ratio of r yields an approximation of the Max-Cutof G within the same ratio. Combining this with the result of [BK98] stated above, our proofis complete. 2Theorem 3.2 The Max-Bisection problem on regular graphs can be approximated within aratio of 0:795.Proof : Consider the well known Max-Cut algorithm based on semide�nite programmingpresented in [GW95]. In this algorithm, given a graph G = (V;E), a semide�nite relaxationof the Max-Cut problem on G is solved yielding an embedding of G on the n dimensional unitsphere. This embedding is then rounded using the random hyperplane rounding technique,into a partition of G. In general, it is shown in [GW95] that the expected value of thispartition is at least � = 0:87856 times the value of the optimal cut in G.Given a � regular graph G = (V;E), using the algorithm of [GW95] one may obtain apartition (X;Y ) of G of value w(X) � �Cut(G). Applying Theorem 2.1 on this partitionnaively, a bisection (X̂; Ŷ ) of value at least �w(X) � ��Cut(G) � ��Bis(G) ' 0:793Bis(G)may be obtained. We conclude that a 0:793 approximation algorithm for Max-Bisectionon regular graphs is achieved by combining the algorithm of [GW95] and Theorem 2.1. Aslight improvement in this ratio may be achieved by noticing that the worst case value of �is obtained when w(X) is of value x�jEj = 0:7932jEj, while the worst case approximationratio � of the [GW95] algorithm is obtained when w(X) is of value 0:742jEj. Details follow.4



Denote the value of the semide�nite relaxation of G as �jEj. It is shown in [GW95] thatthe value w(X) of the partition (X;Y ) is at least x(�)jEj wherex(�) = ( acos(1�2�)� � � 0:8445� � 0:87856 � < 0:8445Assume that w(X) is exactly of value x(�)jEj. Recall, using Theorem 2.1, that we mayobtain a bisection (X̂; Ŷ ) of value at least�(x(�)) = 1 � x(�)(2� x(�))x(�) + 1(2 � x(�))2 :We conclude that in such a case, the value of the bisection (X̂; Ŷ ) is at least x(�)�(x(�))jEj �x(�)�(x(�))� Bis(G). Using basic calculations which are described in the appendix it can be seenthat the above is minimal when � ' 0:8748, yielding an approximation ratio of 0:7953.It is left to show that if the partition (X;Y ) is of value greater than that promised bythe analysis of [GW95], we obtain a strictly higher approximation ratio. Assume that w(X)is of value yjEj for some y greater than x(�). In such a case we may obtain a bisection ofG of value y�(y)� Bis(G). We conclude that in order to prove our claim it is enough to showthat the function x�(x) is increasing. Using basic calculations, which are described in theappendix, it can be seen that this is true. 2Two remarks regarding the result and proof of Theorem 3.2 are in place. The result aboveholds for regular graphs of arbitrary degree. Using the work of [FKL00], further improvedapproximation ratios for the Max-Bisection problem can be achieved when we assume thedegree is constant. For instance, [FKL00] show that the Max-Cut problem on 3-regulargraphs can be approximated within an approximation ratio of 0:924. Thus, combining thisresult with the result of Theorem 2.1, we conclude an 0:834 approximation ratio on theMax-Bisection problem restricted to 3-regular graphs.Regarding the proof of Theorem 3.2, we use the results of [GW95] which are based on asemide�nite relaxation for the Max-Cut problem. As we are interested in approximating themaximum bisection, one may add additional constraints to this semide�nite relaxation as isdone in [FJ97]. It would be interesting to see if such an addition can improve our results.4 Upper boundProposition 2.2 There are in�nitely many regular graphs G for which the ratio betweenBis(G) and Cut(G) is arbitrarily close to �.Proof : We construct a constant degree regular graph G = (V;E) = (X;Y ;E) where Xand Y are a partition of V , X is of size cn, and the ratio between Bis(G) and Cut(G) isarbitrarily close to � ' 0:9027. In general, our construction is random and consists of twosteps. In the �rst step we construct a random regular multi-graph Hx on the vertex set X,and a random regular bipartite multi-graph Hxy on the vertex sets X and Y , such that fortheir union H the ratio between Bis(H) and Cut(H) is close to �. Afterwards we show that5



H can be converted into a graph without multiple edges G that still has the above property.Using the notation of Theorem 2.1 let x ' 0:7932 and c = 1� x=2.We start by randomly constructing a �1 regular multi-graph Hx on the vertices of X.The construction is as follows. Consider the graph Ĥx consisting of jXj = cn disjoint setsfS1 : : : SjX jg of �1 vertices each, i.e. a set of �1 vertices corresponding to each vertex of Hx.De�ne the edge set of Ĥx to be a random perfect matching on its vertices. Note that Ĥx hasexactly �1jXj=2 edges. De�ne Hx to be the multi-graph obtained by shrinking each set Siof vertices in Ĥx into a single vertex i of Hx. That is Hx is the graph with a single vertex icorresponding to each set Si in which each edge connecting Si and Sj in Ĥx is expressed asan edge (i; j) in Hx. Following we analyze some properties of Hx.Lemma 4.1 For every constant " > 0 there exists a constant �1 such that with constantprobability the following holds. (a) Hx will not include self loops or multiple edges, and (b)the number of edges in every partition (A;X nA) of Hx is at most �1jAjjcn�Ajcn + "�1cn.Proof : Part (a) of Lemma 4.1 is proven in [Bol85] where it is shown that with some constantprobability (depending on �1) Hx will not include self loops or multiple edges. For part (b),let A be some subset of X of size at most jXj=2 and de�ne B to be X nA. The probabilitythat the cut (A;X nA) has value k is exactlyPr(w(A) = k) = k! �1jAjk ! �1jBjk !M(�1jAj � k)M(�1jBj � k)M(�1jXj)Where M(i) = i!( i2)! 2 i2 is the number of perfect matchings in a graph of size i. Using basiccalculations which are described in the appendix it can be seen that Pr(w(A) = k) is at most��1cn for some constant � < 1 (dependent on ") for any �1jAj � k � �1 jAjjcn�Ajcn + "�1cn.As there are at most 2cn subsets A of X and the range of k is polynomial in n, we concludeby choosing �1 large enough that with overwhelming probability (1 � �n ) part (b) of ourlemma holds. Hence both properties (a) and (b) hold for the random graph Hx with someconstant probability. 2We now construct the multi-graph Hxy, a bipartite graph on the vertex sets X andY in which the degree of each vertex in Y is � and the degree of each vertex in X is�(1=c�1). The construction is similar to the construction of Hx presented above. Considerthe graph Ĥxy consisting of jXj = cn disjoint sets fS1 : : : SjX jg each of �(1=c � 1) vertices,and jY j = (1 � c)n disjoint sets fR1 : : :RjY jg each of � vertices. De�ne the edge set ofĤxy to be a random bipartite perfect matching between the vertices in fS1 : : : SjX jg andfR1 : : : RjY jg. De�ne Hxy to be the multi-graph obtained by shrinking each vertex set Si intoa single vertex i 2 X and each vertex set Ri into a single vertex i 2 Y . We denote a pair ofedges in Hxy as parallel if they are both adjacent to the same vertices in Hxy.Lemma 4.2 For every constant " > 0 there exists a constant � such that with constantprobability the following holds. (a) Hxy has less than 2�2 pairs of parallel edges, and (b) thenumber of (multiple) edges in Hxy between every two subsets A � X and B � Y is at most�jAjjBjcn + "�(1� c)n. 6



Proof : Let N = (1 � c)�n = �jY j. For any i, j the probability that a speci�c pair ofedges is chosen in Ĥxy between the sets Si and Rj is 1N(N�1). Each such pair induces a pairof parallel edges in Hxy. We conclude that the expected number of pairs of parallel edges inHxy is approximately �2(1=c � 1). Hence, with probability at least 1=2 the number of suchpairs is less than 2�2.Let A be some subset of X and B be some subset of Y . Let �(1=c � 1)jAj = �N , and�jBj = �N . The probability that there are k edges between A and B in Hxy is exactlyPr(w(A;B) = k) =  �Nk ! �Nk !k! N � �N�N � k ! (�N � k)!(N � �N)!N !Similarly to Lemma 4.1, basic calculations which are described in the appendix yield thatPr(w(A;B) = k) is at most �N for some constant � < 1 (dependent on ") for any k � �jAjjBjcn +"�(1� c)n. As there are at most 22n subsets A,B of X,Y respectively and the range of k ispolynomial in n, we conclude that part (b) of our lemma holds with overwhelming probability.Hence both properties (a) and (b) hold for the random graph Hxy with probability arbitrarilyclose to 1=2. 2Set �1 to be (2� 1=c)� and de�ne H to be the union of the two graphs Hx and Hxy. Itis not hard to verify that H is a � regular multi-graph, and that the value of the partition(X;Y ) in H is �(1 � c)n. Thus Cut(H) is at least this value. Assume that Hx and Hxyhave the properties stated in Lemma 4.1 and 4.2 (this happens with constant probability).We show that the maximum bisection of H is at most (� + 8")Cut(H), and that H can beturned into a regular graph without multiple edges with a similar property.Let (U; V ) be some bisection of H, where U = X1_Y1, V = X2_Y2, the sets Xi are somepartition of X, and the sets Yi are some partition of Y . Denote the size of the set X1 as 
n,the size of X2 as (c� 
)n, the size of Y1 as (1=2 � 
)n, and the size of Y2 as (1=2 � c+ 
)nfor 
 2 [c=2; 1=2]. Let px be �(2�1=c)cn and pxy be �cn . We have that the value of the bisection(U; V ) is at most n2 �
(c� 
)(px � 2pxy) + c � pxy2 �+ 3"n�:Which is maximal when 
 = 1=2. Thus we conclude using the fact that c = 1� x=2 thatBis(H)Cut(H) �  1 � 2c�12c2x !+ 8" =  1� x(2 � x)x + 1(2� x)2!+ 8" ' � + 8":It is left to show that the � regular multi-graph H can be turned into a � regular graphwithout multiple edges. This can be done by turning each multiple edge of multiplicity min H into m � 1 paths of length two. I.e. for each edge (u; v) of multiplicity m in H weadd m � 1 new vertices w1 : : : wm�1 to H and replace (u; v) by the pairs (u;wi), (wi; v) fori = 1 : : : m � 1. Recall that we assume H has at most 2�2 pairs of parallel edges, thus inthis process we have added at most 2�2 new vertices and edges. The resulting graph H 0 isalmost regular. It is not hard to see that by adding at most an additional � new verticesand 3�3 new edges to H 0 we can obtain a � regular graph G. As the graph G di�ers fromthe original graph H by a constant number of edges and vertices we conclude that Cut(G)7



and Bis(G) di�er for Cut(H) and Bis(H) by only a constant value respectively. Thus theratio Bis(G)Cut(G) remains arbitrarily close to �. 2References[BK98] P. Berman and M. Karpinski. On some tighter inapproximability results, further im-provements. ECCC, TR98-065, 1998. Extended abstract appears in ICALP 1999, pages200-209.[Bol85] B�ela Bollob�as. Random graphs. Academic Press, 1985.[FJ97] A. Frieze and M. Jerrum. Improved approximation algorithms for Max-k-Cut and Max-Bisection. Algorithmica, 18:67{81, 1997.[FKL00] U. Feige, M. Karpinski, and M. Langberg. Improved approximation of max-cut on graphsof bounded degree. ECCC, TR00-021, 2000.[GW95] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximumcut and satis�ability problems using semide�nite programming. Journal of ACM, 42:1115{1145, 1995.[H�as97] J. H�astad. Some optimal inapproximability results. In Proceedings of the 28th AnnualACM Symposium on Theory of Computing, pages 1{10, 1997.[HZ00] E. Halperin and U. Zwick. Improved approximation algorithms for maximum graphbisection problems. Manuscript, 2000.[Ye99] Y. Ye. A 0.699-approximation algorithm for Max-Bisection. Submitted to Math Program-ming, available at URL http://dollar.biz.uiowa.edu/col/ye/, 1999.
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AppendixRecall that x(�) = ( acos(1�2�)� � � 0:8445� � 0:87856 � < 0:8445�(x) = 1� x(2 � x)x + 1(2� x)2 :Bounding �(x) (Theorem 2.1) :�0(x) = �x3 � 2x2 + 6x� 4x2(x� 2)3 :Using computer assisted analysis, it can be seen that �0(x) is zero only when x� ' 0:7932,yielding a lower bound of approximately 0:9027. Note that �(x) is decreasing when x �0:7932 and increasing otherwise.Monotonicity of x�(x) (Theorem 3.2) :(x�(x))0 = 2x(2 � x)3 :It can be easily seen that (x�(x))0 is positive for every x 2 [0:5; 1] (the range of our interest).Bounding x(�)�(x(�))� (Theorem 3.2) :We consider three cases, the �rst in which � 2 [0:5; 0:8445], the second in which � is in therange [0:8445; 0:8981], and the last in which � 2 [0:8981; 1]. In the �rst case we have thatx(�)�(x(�))� is equal to 0:87856 � �(� � 0:87856). As � � 0:87856 2 [0:4392; 0:7419], and �(x) ismonotone decreasing when x � 0:7932, we conclude that x(�)�(x(�))� is decreasing in this rangeand x(�)�(x(�))� � 0:87856 � �(0:7419) � 0:7983:In the third case, in which � 2 [0:8981; 1], we have that x(�) 2 [0:7932; 1]. Using the factthat x0(�) � 0 we have�x(�)� �0 = � 2x(�)1� cos(�x(�))�0 = 2(1� cos(�x(�))� �x(�) sin(�x(�)))(1� cos(�x(�)))2 x0(�) � 0:As �(x) is monotone increasing when x � 0:7932, we conclude that x(�)�(x(�))� is increasingin the range [0:8981; 1] and is of a minimal value of 0:7972 when � = 0:8981.The �nal case in which � 2 [0:8445; 0:8981] is proven using computer assisted analysis. Aplot of x(�)�(x(�))� in the above range is displayed in Figure 1. It can be seen that the functionobtains a minimal value of approximately 0:7953 when � ' 0:8748. We thus conclude thatx(�)�(x(�))� is bounded by 0:7953 in the range � 2 [0:5; 1].9
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Figure 1: The function x(�)�(x(�))� in the range � 2 [0:8445; 0:8981].Lemma 4.1 :Recall that jXj is of size cn, A � X, k � �1jAjjcn�Ajcn + "�1cn, andPr(w(A) = k) = k! �1jAjk ! �1jBjk !M(�1jAj � k)M(�1jBj � k)M(�1jXj)Where M(i) = i!( i2)! 2 i2 . Let N = �1cn, �1jAj = �N and k = �N . The condition above onk implies that � � �(1 � �) + ". Ignoring factors which are polynomial in n we concludeusing Stirling's formula thatPr(w(A) = k) ' 0@ ��(1 � �)(1��)��(�� �)���2 (1� �� �) 1����2 1ANThe above formula is decreasing in � (as long as � � �(��1)). Furthermore, using computerassisted analysis, it can be seen that by setting � to be �(1 � �) + " the resulting formulais increasing in � (as long as � � 1=2). We conclude thatPr(w(A) = k) � 0@2�14 + "�14+" �14 � "� 14�"1A�NSetting �(")N to be the above probability we have that for any constant " > 0, �(") is aconstant strictly less than 1.Lemma 4.2 :Recall that X is of size cn, Y is of size (1�c)n, A � X, B � Y , and k � �jAjjBjcn +"�(1�c)n.Let N = (1 � c)�n, �(1=c � 1)jAj = �N , �jBj = �N , and k = 
N . The condition above10



on k implies that 
 � ��+ ". Ignoring factors which are polynomial in n we conclude usingStirling's formula thatPr(w(A;B) = k) ' ����(1� �)(1��)(1� �)(1��)
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)Using computer assisted analysis it can be seen that the above formula is maximal when� = � = 1=2 and 
 = �� + ". In such a case we obtainPr(w(A;B) = k) � 0@4�14 + "�12+2" �14 � "�12�2"1A�NSetting �(")N to be the above probability we have that for any constant " > 0, �(") is aconstant strictly less than 1.
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