
Improved Approximation of MAX-CUT on Graphs ofBounded DegreeUriel Feige� Marek Karpinskiy Michael LangbergzAbstractWe analyze the addition of a simple local improvement step to various known ran-domized approximation algorithms. Let � ' 0:87856 denote the best approximationratio currently known for the Max Cut problem on general graphs [GW95]. We con-sider a semide�nite relaxation of the Max Cut problem, round it using the randomhyperplane rounding technique of ([GW95]), and then add a local improvement step.We show that for graphs of degree at most �, our algorithm achieves an approximationratio of at least �+ �, where � > 0 is a constant that depends only on �. In particular,using computer assisted analysis, we show that for graphs of maximal degree 3, ouralgorithm obtains an approximation ratio of at least 0:921, and for 3-regular graphs,the approximation ratio is at least 0:924. We note that for the semide�nite relaxationof Max Cut used in [GW95], the integrality gap is at least 1=0:884, even for 2-regulargraphs.1 IntroductionGiven a graph G = (V;E), the Max-Cut problem on G is the problem of �nding a partition(X;Y ) of the vertex set V which maximizes the amount of edges with one endpoint in Xand another in Y . Let A be an approximation algorithm for the Max-Cut problem withan approximation ratio of r. That is, running A on a given graph G we obtain a partition(X;Y ) of value at least r times the value of the optimal partition.Usually when considering random approximation algorithms A as above, one cannot besure that the partition (X;Y ), obtained by running A on G, is maximal with respect to localimprovements. For instance, it might be the case that a vertex i of G and more than half itsneighbors end up on the same side of the partition (X;Y ) above. We denote such verticesas misplaced vertices. Clearly such a partition can be improved by moving the misplacedvertex i from one side of the partition to the other, thus yielding a new partition of higherweight.In the following work, we analyze the expected approximation ratio of a number ofrandomized approximation algorithms A which are enhanced by an additional local step�Department of Computer Science and Applied Mathematics, the Weizmann Institute.yDepartment of Computer Science, University of Bonn.zDepartment of Computer Science and Applied Mathematics, the Weizmann Institute.1



that moves misplaced vertices from one side of the partition to the other, until none suchvertices are left.This approach generalizes to other problems such as the Max-Sat and Max-CSP problems,where we are given a Boolean formula ' and we are to �nd a truth assignment to the variablesof ' which maximizes the number of clauses satis�ed. In this case, misplaced variables can bede�ned analogously to misplaced vertices in the Max-Cut problem. Given a truth assignments = fs1 : : : sng to the variables of ', we say that a variable xi is misplaced in s if the numberof clauses satis�ed by s is strictly less than the number of clauses satis�ed by the modi�edassignment achieved by 
ipping the value of si.We address the restriction of the Max-Cut and Max-CSP problems to instances in whicheach variable (vertex) shares a bounded number of constraints with other variables (vertices).In the case of Max-Cut, we de�ne the bounded Max-Cut problem as the restriction of Max-Cut to graphs of bounded maximal degree, and in the case of Max-CSP we de�ne thebounded Max-CSP problem as the restriction of Max-CSP to instances in which each clauseis of bounded length and each variable appears in a bounded number of clauses.Our main results are achieved on the bounded Max-Cut problem when we consider thealgorithm based on semide�nite programming presented in [GW95] as a base for the enhance-ment described above. In this algorithm a semide�nite relaxation of the Max-Cut problemon a given graph G is solved, resulting in a set of n unit vectors in Rn corresponding to then vertices of G. These vectors are then rounded into a partition of G by choosing a randomhyperplane passing through the origin, and then setting all vertices corresponding to vectorsthat lie `above' the hyperplane to be on one side of the partition, and all remaining verticesto be on the other side. It is shown by [GW95] that for each edge e in G the ratio betweenthe expected contribution of the edge to the �nal cut and the contribution of the edge tothe objective function of the semide�nite program is at least 0:87856, thus implying (usinglinearity of expectation) that the expected approximation ratio of this algorithm is at least0:87856.The Max-Cut problem on bounded degree graphs is mentioned in [BK98] where it isshown that it is NP-hard to approximate the Max-Cut problem on regular graphs of degree3 beyond the ratio of 0:997. To the best of our knowledge, the best known approximationratio for the Max-Cut problem on bounded degree graphs is that of the general problemwhich is 0:87856. We improve this approximation ratio to 0:921 on graphs of maximaldegree three, to 0:924 on regular graphs of degree three, and to 0:87856 + "� on graphs ofmaximal degree �, where "� is a positive constant depending on � alone.These results are achieved using an algorithm that di�ers from the one presented in[GW95] not only in the additional improvement step, but also in the fact that an improvedsemide�nite relaxation of the Max-Cut problem is used as a base of our algorithm. Speci�-cally, we add triangle constraints (mentioned in [FG95]) to our relaxation. These additionalconstraints have been studied in the past in the context of several problems including theMax-Cut problem. The results of [BM86] imply that the value of the Max-Cut semide�-nite relaxation with triangle constraints is equal to the value of the optimal cut on planargraphs. Without these constraints it is shown in [GW95] that the original semide�nite re-laxation has an integrality gap of 1=0:884 even on two regular graphs (the 5 cycle). In[Zwi99] these constraints are used in order to achieve an improved approximation ratio on2



the Max-Cut problem on graphs which have a fractional triangle covering. The additionof such triangle constraints to the semide�nite relaxation of the Max-Cut problem on gen-eral graphs is not known to yield an improved approximation algorithm nor is it known toimprove the worst case integrality gap of such a relaxation. In our work, the addition ofsuch triangle constraints to the semide�nite relaxation of the Max-Cut problem on graphsof maximal degree three yields an improved approximation algorithm with a ratio of 0:921.As the original semide�nite relaxation of [GW95] has an integrality gap of 1=0:884 on a tworegular graph, we conclude that the addition of such triangle constraints to our semide�niterelaxation is crucial to the success of our algorithm.As in the algorithm of [GW95], many other algorithms based on semide�nite program-ming use the random hyperplane rounding technique, and are analyzed in a local manner (forinstance [FG95, KZ97, Zwi99]). I.e. for each edge a local expected approximation ratio iscomputed, this ratio then holds as an expected approximation ratio for the algorithm as awhole due to linearity of expectation. In our algorithm for the Max-Cut problem on graphswith maximal degree three, we present an analysis in which we compute a local approxi-mation ratio not on single edges but on clusters of edges. In particular we concentrate onpairs of edges which share a common vertex. Such an analysis allows us to evaluate thecontribution of our additional improvement step as a function of the vector con�gurationobtained by the semide�nite relaxation.The paper is structured as follows. We address three di�erent randomized approximationalgorithms as a base for the above enhancement. That is, we analyze the expected approxi-mation ratio of these algorithms when a new step is added which 
ips the value of misplacedvariables, until none such are left. In Section 2 we consider the trivial random algorithmfor the bounded Max-Cut problem which given a graph G = (V;E) constructs a partition(X;Y ) by independently choosing each vertex to be in X with probability 1=2, and achievean approximation ratio strictly greater than 1=2. In Section 3 we consider the algorithmpresented in [GW94] for the Max-Sat problem in which we �x an assignment to the variablesof a given instance ' by independently setting each variable xi in ' to be true with someprobability pi derived as a solution of a linear program. By enhancing this algorithm with alocal improvement step, we slightly improve the original approximation ratio of 3=4 statedin [GW94] when we restrict ourselves to instances of bounded Max-Sat. Finally in our mainSection 4, we return to the bounded Max-Cut problem and consider the [GW95] algorithmdiscussed above.2 The trivial algorithm for Max-CutLet G = (V;E) be a graph of maximal degree � where V = f1 : : : ng. For a partition (X;Y )of V let w(X) = jE ^ (X � Y )j be the number of edges cut by the partition, and jEj bethe total number of edges in E. In the following we denote w(X) and jEj as the weight ofthe partition (X;Y ) and the weight of the total edge set respectively. Finally, denote thenumber of edges cut by the optimal partition as Opt(G). Note that in this paper we considerunweighted graphs only. Our methods can be extended to the case of weighted graphs ofbounded degree, though the analysis becomes more complicated, and is omitted from the3



current version of the paper.Consider the following trivial random algorithm for the Max-Cut problem on G whichconstructs a partition (X;Y ) by independently choosing each vertex to be in X with prob-ability 1=2. It is clear that the expected number of edges cut by the resulting partitionis exactly half the total number of edges in G, thus this trivial algorithm has an expectedapproximation ratio of 1=2. We now improve this algorithm by adding a simple local im-provement step which moves misplaced vertices from one side of the partition to another inaim to increase the number of edges cut by the partition.Consider a random partition (X;Y ) of the vertices of G obtained by the above trivialalgorithm. We say that a vertex v is misplaced in (X;Y ) if it has more neighbors on itsside of the partition than on the opposite side. Moving such a vertex from one side of thepartition to the other will increase the value of the cut. Roughly speaking we will provethat in a random partition of the vertex set V the expected fraction of misplaced verticesis constant. Combining this with the fact that moving each misplaced vertex may a�ect atmost � other vertices, we conclude that the expected contribution of the additional step tothe trivial algorithm is a constant fraction of the total number of edges in E (assuming �is constant). This yields an approximation algorithm with an expected approximation ratiostrictly greater than 1=2 by some constant. Details follow.We start by computing the probability that a vertex v will be misplaced in a randompartition. Consider all neighbors of v. With probability at least 1=2, the random partitionpartitions them into two sets of unequal size. Thereafter, with probability at least 1=2, vertexv is placed on the same side as the majority of its neighbors. Hence the probability that vis misplaced is at least 1=4, and the expected number of misplaced vertices is at least n=4.Moving a misplaced vertex v from one side of the partition to the other contributes at leastone edge to the partition. Such a movement can reduce the number of misplaced vertices byat most �+1, because only v and its neighbors are a�ected. We conclude that enhancing thetrivial random algorithm described above by adding a step which moves misplaced verticesfrom one side of the partition to the other until none such vertices are left will achieve a cutof expected weight at leastjEj2 + n4(� + 1) � jEj 12 + 12�(� + 1)! � Opt(G) 12 + 12�(� + 1)! ;thus yielding an improved expected approximation ratio of 12 + 12�(�+1) . We remark thatthe term 12�(�+1) can be signi�cantly improved by tighter analysis, but we wish to keep theanalysis simple so as to clearly illustrate the method.A similar argument can be used in order to improve the approximation ratio of the triv-ial random algorithm on the maximization of any bounded constraint satisfaction problem(Max-CSP) in which each variable appears in at most � clauses, and each clause is of lengthat most k. In such cases, instead of moving a vertex from one side of the partition to theother we 
ip the value of a variable in aim to increase the total amount of clauses sat-is�ed. If the trivial algorithm yields an expected approximation ratio of r, our enhancedalgorithm will yield an expected approximation ratio of r + 1�22k� . Independently, H�astad4



([H�as99]) presents an algorithm for a related restriction of Max-CSP and achieves a betterapproximation ratio of r + 1�r23k=22k� using algebraic techniques.3 The LP algorithm for Max-SatLet ' be an instance of the bounded Max-Sat problem in which each clause of ' is of lengthat most k and each variable in ' appears in at most � clauses. We denote this restrictedproblem as the Max-k-Sat(�) problem. Let fx1 : : : xng be the variables of ' and fC1 : : : Cmgbe the set of clauses in '.Consider the following relaxation of the Max-k-Sat(�) problem on ' :(LP) Maximize Pmj=0 zjsubject to:(1) zj �Pxi2Cj xi +P�xi2Cj 1 � xi for j 2 [m](2) xi; zj 2 [0; 1] for i 2 [n]; j 2 [m]Where [n] = f1 : : : ng.Let fx�1 : : : x�ng be the optimal fractional solution obtained by solving (LP). In [GW94] analgorithm which obtains an assignment s = fs1 : : : sng to the variables of ' by independentlychoosing each si to be true with probability x�i is analyzed. In particular, it is shown in[GW94] that combining such an algorithmwith a trivial random algorithm, an approximationratio of 3=4 on the Max-Sat problem is achieved.Applying the same principles described in Section 2 to the above algorithm based onlinear programming we obtain the following proposition.Proposition 3.1 Adding a local improvement step to the algorithm based on relaxation (LP)yields an expected approximation ratio of 3=4+" on the Max-k-Sat(�) problem for some " > 0dependent on � and k alone.The proof is omitted from the current version of the paper.4 Semide�nite programmingConsider the well known Max-Cut algorithm based on semide�nite programming presentedin [GW95]. In this algorithm, given a graph G, a semide�nite relaxation of the Max-Cutproblem on G is solved yielding an embedding of G on the n dimensional sphere. Thisembedding is then rounded using the random hyperplane rounding technique, into a partitionof G. It is shown in [GW95] that the expected weight of this partition is at least 0.87856the weight of the optimal cut in G.We enhance the above Max-Cut algorithm by adding a local improvement step, analogousto the one presented in the previous sections, which improves the expected approximationratio of 0.87856 on graphs of bounded degree �. In contrast to the previous sections, therandom hyperplane rounding technique does not round vertices independently. Hence weneed more sophisticated methods in order to argue that there will be misplaced verticesafter applying such a rounding technique. These more sophisticated methods use the fact5



that the graph is of bounded degree, a fact that was not used for this purpose in Section 2.In the following section, we present a detailed analysis in the case of graphs with maximaldegree three, and sketch the analysis for graphs of higher maximal degree.4.1 Max-Cut on graphs of maximal degree 3Using the notation of Section 2, let G = (V;E) be a graph of maximal degree 3 and letw(X) = jE ^ (X � Y )j denote the number of edges cut by the partition (X;Y ). Denote thetotal number of edges by jEj, and the number of edges cut by the optimal partition of G asOpt(G). We present an algorithm which given G = (V;E) as above will output a partition(X;Y ) of V such that w(X) � rOpt(G) for r � 0:921. Our algorithm is an extension of thewell known Max-Cut algorithm presented in [GW95].In the �rst step of our algorithm a semide�nite relaxation of the Max-Cut problem on Gis solved to achieve a set of n unit vectors fv1 : : : vng.(SDP-Cut) Maximize Peij2E 1�vivj2subject to:(1) vi 2 Sn for 1 � i � n(2) vivj + vivk + vjvk � �1vivj � vivk � vjvk � �1 for all i; j; k 2 [n]By restricting the vectors fv1 : : : vng to be one dimensional, and setting the vertex i to be inX if and only if the vector vi = 1 it can be seen that (SDP-Cut) corresponds to the Max-Cut problem on G. Note that we have added additional triangle constraints (mentioned in[FG95]) that do not appear in the original relaxation presented in [GW95]. Without theseconstraints it is shown in [GW95] that the above semide�nite relaxation has an integralitygap of 1=0:884 even on 2 regular graphs (the 5 cycle). Hence these additional triangleconstraints are crucial to our analysis which results with an approximation ratio of 0:921on such graphs. The value of the integrality gap for this semide�nite relaxation is open.See [FG95] for a discussion of this issue.It is shown in [GW95], that obtaining a cut (X;Y ) in G by rounding the vector con�gura-tion obtained by (SDP-Cut) using the random hyperplane rounding technique, the expectedcontribution of each edge eij to the cut is �ij� , where �ij is the angle between the vectors viand vj. As the contribution of each edge to the objective function of (SDP-Cut) is 1�cos �ij2we conclude that the expected approximation ratio achieved on each edge is 2�ij�(1�cos �ij). Thisexpected ratio is minimal only when �ij = �0 = 2:3311, and in this case obtains the value� = 0:87856. We conclude that the expected weight w(X) of the partition (X;Y ) obtainedby the random hyperplane rounding technique, is at least �Opt(G), and will be exactly�Opt(G) when for all edges eij we have that the angle �ij is �0 or zero.Our main observation is the fact that in both worst cases (where for all edges in G theangle between the corresponding vectors is zero or �0) there is some constant probabilitythat a vertex and two of its neighbors lie on the same side of the partition obtained by therandom hyperplane rounding technique. In such cases moving the vertex from one side ofthe partition to the other will increase the weight of the partition. As earlier, we denote suchvertices as misplaced ones. Using this observation we add a second step to our algorithm in6



which misplaced vertices are moved from one side of the partition to the other, until nonesuch vertices are left. This step is done in a greedy manner, thus we denote this second stepas the greedy phase of our algorithm.Geometrically speaking, one can view our observation in the following way. Let v besome vertex in V , and y1, y2 be two of its neighbors. Denote the corresponding vectors inthe optimal vector con�guration as v, y1, y2 respectively. If the angles between the vectorsv and y1, v and y2 are exactly �0, (i.e. the expected approximation ratio achieved on theedges (v; y1) and (v;y2) is exactly �) then by constraint (2) of (SDP-Cut) above, it cannotbe the case that all three vectors lie on the same plane. Furthermore, this constraint impliesthat the angle between the vector v and the plane containing the vectors y1 and y2 is at least0:57. Implying a probability of at least 0:07 that after the randomized rounding the vertexv will be misplaced.We now add an additional constraint to the relaxation (SDP-Cut) which will simplify theanalysis yet to come, and �ll in the details regarding the greedy phase of our algorithm.Semide�nite relaxation :Consider an optimal partition (X;Y ) of a given graph G = (V;E) of maximal degree three.For every vertex v it cannot be the case that v and two of its neighbors lie on the sameside of the partition (i.e. v is misplaced). In such a case moving v to the other side of thepartition would increase the weight of the partition, which is a contradiction to its optimality.Hence we may add a corresponding constraint to (SDP-Cut) which rules out the possibilityof misplaced vertices, when the corresponding vectors of (SDP-Cut) are restricted to be onedimensional.Let T be the set of all triplets (i; j; k) such that i; j; k 2 [n], j < k and eij; eik 2 E, weenhanced the previous semide�nite relaxation by adding the new constraint (3) below. Theresulting relaxation will be used in our algorithm :(SDP-Cut) Maximize Peij2E 1�vivj2subject to:(1) vi 2 Sn for 1 � i � n(2) vivj + vivk + vjvk � �1vivj � vivk � vjvk � �1 for all i; j; k 2 [n](3) vivj + vivk + vjvk = �1 for all (i; j; k) 2 TGreedy phase :As mentioned earlier after the �rst step of our algorithm it might be the case that for sometriplet (i; j; k) 2 T , de�ned above, the vertices i; j and k lie on the same side of the partition.In such a case, moving the misplaced vertex i to the other side of the partition will increaseits weight. We denote such a triplet (i; j; k) 2 T in which i is misplaced as a good triplet.Given a partition (X;Y ) we are interested in moving all misplaced vertices until noneare left. In general at each step of this greedy process we could decide to move the onemisplaced vertex that increases the weight of the partition by most. But as moving onemisplaced vertex a�ects other vertices, we are also interested that the vertex moved doesnot destroy many good triplets (a good triplet is destroyed if it is no longer good). In orderto combine these two interests, at each stage of our greedy process we move the vertex for7



which the ratio between the weight added to the partition by moving it from one side of thepartition to another and the number of good triplets destroyed by this act, is maximal. Weare now ready to de�ne our algorithm on a given graph G of maximal degree 3.Algorithm Acut :1. Solve (SDP-Cut) to obtain an optimal vector con�guration fv1 : : : vng of value Z.Round the vector con�guration using the random hyperplane rounding technique from[GW95]. Denote the partition obtained by (X;Y ).2. Greedily move misplaced vertices from one side of the partition to the other accordingto the procedure above.Theorem 4.1 Acut has an expected approximation ratio of � � 0:921.Proof : First we note that w.l.o.g. we may assume that G does not have any verticesof degree 1. Otherwise we may run algorithm Acut on the graph Ĝ obtained by iterativelyremoving all vertices of degree one in G. It can be seen that an approximation algorithmwith ratio r on Ĝ yields an approximation algorithm with ratio at least r on G.AssumeG is as above, and let (X;Y ) be the partition after step (1) of algorithmAcut. LetW = w(X) be the weight of this partition. The upcoming lemma analyzes the contributionof the second greedy step of algorithm Acut, and uses the following re�nement of the set T .For each edge eij let dij be the number of triplets in T in which eij appears. It can beseen that in a graph of minimum degree 2 and maximum degree 3, dij = 2 if the degree of viand vj are 2, dij = 3 if the degree of vi di�ers from the degree of vj, and dij = 4 otherwise.Let T be the set of triplets in G, for l = 4 : : : 8 denote the set of triplets (i; j; k) 2 T in whichdij + dik = l by Tl. Given a partition (X;Y ) we denote by Sl the number of good triplets inTl.Lemma 4.2 Let (X;Y ) be some partition in G of weight W . Let T; Tl; and Sl for l = 4 : : : 8be de�ned as above. Executing step (2) of algorithm Acut on the partition (X;Y ) will yield anew partition of weight at leastW + 23S4 + 12S5 + 25S6 + 38S7 + 13S8Proof : Roughly speaking, we de�ne the contribution of each triplet (i; j; k) that is goodin (X;Y ) as the number of edges it adds to the partition the moment it is destroyed by thegreedy phase of our algorithm. Let � be one of the vertices i, j, or k. If (i; j; k) is destroyedby the movement of the vertex � , and by this act p edges are added to the partition and qtriplets (including (i; j; k)) are destroyed, we �x the contribution of the triplet (i; j; k) to bep=q. Hence, due to the nature of our greedy phase, we may bound the contribution of thegood triplet (i; j; k) from below by computing the ratio between the number of edges addedto the partition and the number of triplets destroyed by the act of moving any one of thevertices i, j, or k from one side of the partition to another. By �nding such a lower boundfor each good triplet in Tl (l = 4 : : : 8) we conclude our assertion.8



Note that for any good triplet (i; j; k) and any vertex � as above, the contribution ofmoving � from one side of the partition to another is at least one edge, while this act willdestroy at most 9 triplets. It follows that we may trivially claim that executing step (2) ofalgorithm Acut on the given partition (X;Y ) will yield a new partition of weight at leastW + 19(S4 + S5 + S6 + S7 + S8):The following case analysis re�nes this trivial analysis and provides full proof of the assertedlemma.Case 1 : Let (i; j; k) be a good triplet in T4, i.e. the vertices i; j and k are of degree 2, andall lie on the same side of the partition (X;Y ). As the greedy step (2) of Acut continues aslong as there is some misplaced vertex, the triplet (i; j; k) will be destroyed sometime duringour greedy procedure. Denote the vertex moved when (i; j; k) is destroyed by � (� is eitheri; j or k). Let p be the number of edges added to the partition when (i; j; k) is destroyed,and q be the number of good triplets destroyed along with (i; j; k).As mentioned above the degree of i; j and k are 2. Hence, if (i; j; k) is a good triplet, thenby moving the vertex i we destroy at most 3 triplets and increase the weight of the partitionby exactly 2 edges. Due to the nature of our greedy phase, we conclude that by moving �from one side of the partition to the other, the ratio between the number of edges added tothe partition and the number of triplets destroyed is at least 2=3. We conclude that when(i; j; k) is destroyed it contributes at least 2=3 to the partition.Case 2 : Let (i; j; k) be a good triplet in T5, using the same line of analysis displayed inthe previous case, it is enough to analyze the movement of the vertex i from one side of thepartition to the other. Assume that the vertex j is of degree 3 and vertices i; k are of degree2 (it cannot be the case that i is of degree 3). In Figure 1 a schematic view of our case ispresented. Solid lines represent edges that preserve sides of the partition (for instance thevertices i; j and k lie on the same side of the partition), dotted lines represent edges thatare not known to preserve sides of the partition, and bold lines represent edges that areknown not to preserve sides of the partition. It can be seen that moving i from one sideof the partition to another we gain exactly 2 edges to the partition, but destroy at most 4triplets. We conclude that (i; j; k) contributes at least 1=2 edges to the partition.
j j

i

kk

i Figure 1: Case 2.Case 3 : Let (i; j; k) be a good triplet in T6. There are two possibilities, either the vertex9



i is of degree 2 and the vertices j; k are of degree 3, or the vertex i is of degree 3 and j; k areof degree 2. Both cases are presented in Figure 2. In the �rst case (a), moving i to the other
k

x

j j

x

i

j

j

k

i

(a)

j

i

k

i

(b2)(b1)

k

i

k k

i

jFigure 2: Case 3.side of the partition increases the weight of the partition by 2 edges and destroys at most 5triplets. Hence, if we are in this case then (i; j; k) contributes 2=5 when it is destroyed.In the second case we consider two sub-cases : (b1) the case in which one of the vertices jor k are on the same side as their additional neighbor x, (b2) the case in which the additionalneighbors to j and k are both on the opposite side of the partition. In the �rst case we havethat moving j from one side of the partition to the other will contribute 2 edges to the cutand destroy at most 5 triplets, yielding a ratio of 2=5, and in the second we obtain a ratio of3=5 by again moving j (note that in the case (b2) one must �x the side of the third neighborx of i and only then analyze), thus we conclude our assertion.Case 4 : Let (i; j; k) be a good triplet in T7. It must be the case that the vertex i is ofdegree 3 and the vertices j; k are of di�erent degree (we assume that j is of degree 2). Weconsider three cases that are presented in Figure 3. In the �rst case (a) all three neighborsof i are on the same side as i. In such a case moving i one can see that a ratio of at least3=8 is achieved. In the second and third cases we assume that the additional neighbor of iis on the opposite side of the partition.In the second case (b) we assume that the additional neighbor x of j is on the same sideas j. In this case moving j we achieve a ratio of at least 2=4.At last in the third case (c1) and (c2) we assume that the additional neighbor of j isalso on the opposite side of the partition, and we consider two situations. The �rst when alladditional neighbors of k are on the same side of the partition as k, and the second whenthere is some neighbor x of k on a di�erent side. It can be seen that moving k in the �rstcase results with a ratio of at least 3=8, and moving i in the second results with a ratio ofat least 1=2. 10



i

(c2)(c1)

(b)

j

x

j

i

i

k

x

j

ii

i i

x x

k

j

kk k k

j

k

i

k

j

(a)

j

x x

jFigure 3: Case 4.Case 5 : Let (i; j; k) be a good triplet in T8. It must be the case that all three vertices areof degree 3. In Figure 4 three sub-cases are considered. In case (a) all three neighbors of iare on the same side of the partition as i, in this case moving i we obtain a ratio of 3=9. Inthe remaining cases (b), (c) we assume that the additional neighbor of i is on the oppositeside of the partition.In case (b) we assume that for one of the vertices j or k, all three of its neighbors are onthe same side of the partition as it is (in Figure 4 we assume the above for j). In such a casemoving j results with a ratio � 3=8.In the last case (c) both i, j, and k have at least one neighbor on an opposite side. Inthis case moving i we have a ratio � 1=3. 2Corollary 4.3 Let W be the weight of the partition (X;Y ) obtained by step (2) of algorithmACut, and let Sl (l = 4 : : : 8) be the number of good triplets in (X;Y ) according to the abovede�nition. The expected weight of the partition received by algorithm ACut is :E[w(ACut)] = E �W + 23S4 + 12S5 + 25S6 + 38S7 + 13S8� = E[W ] + 8Xl=4 �lE[Sl]= Xeij Pr(eij is cut) + 8Xl=4 X(i;j;k)2Tl �lPr(vi; vj ; vk are not separated)= 8Xl=4 X(i;j;k)2Tl Pr(eij is cut)dij + Pr(eik is cut)dik + �lPr(vi; vj; vk are not separated):For �4:::8 = (2=3; 1=2; 2=5; 3=8; 1=3).Proof : All probabilities above are taken over random hyperplanes cutting the unit sphereof Rn. The second and third equalities are due to linearity of expectation, and the fourth isdue to the fact that each edge eij is in exactly dij triplets in T . 211



i

(a)

j

i

k

x

j

k

ii

(c)(b)

j

j
y y

j

x

i

k

i

kkk

jFigure 4: Case 5.Lemma 4.4 For every triplet (i; j; k) 2 Tl, using the fact that dij; dik 2 f2; 3; 4g, l = dij +dik 2 f4 : : : 8g we have that :Pr(eij is cut)dij + Pr(eik is cut)dik + �lPr(vi; vj ; vk are not separated) � r 1� vivj2dij + 1� vivk2dik !for r = 0:921.Proof : Let l = dij + dik, de�ne the following functions :f(�ij ; �ik) = �ijdij� + �ikdik� + �l �1� 12� (�ij + �ik + arccos(�1 � cos(�ij)� cos(�ik)))�g(�ij; �ik) = 1� cos(�ij)2dij + 1 � cos(�ik)2dikh(�ij; �ik) = f(�ij; �ik)g(�ij; �ik)Where �ij (�ik) is the angle between vi and vj (vi and vk).The function f(�ij ; �ik) represents the expected contribution of the triplet (i; j; k) to thecut. As stated earlier summing over f(�ij; �ik) for all triplets (i; j; k) in T yields the expectedsize of the cut obtained by ACut. Similarly, the function g(�ij; �ik) represents the contributionof each triplet (i; j; k) to the objective function of (SDP-Cut).In order to prove the above claim it is su�ce to show that h(�ij; �ik) > r in the range�ij 2 [0; �]; �ik 2 [� � �ij; �] (the triangle constraints added to (SDP-Cut) imply thatcos(�ij) + cos(�ik) � 0). By evaluating the value of h over a number of points in the aboverange and bounding the derivative of h over the whole range our lemma is proven. 212



By Corollary 4.3 and Lemma 4.4 we have that the expected weight of the partition obtainedby algorithm ACut isE[w(ACut)] � r 8Xl=4 X(i;j;k)2Tl 1� vivj2dij + 1� vivk2dik ! = rZ � rOpt(G);for r = 0:921.This completes the proof of Theorem 4.1. The same line of analysis yields an 0.924approximation ratio on 3 regular graphs. 24.2 Max-Cut on graphs of maximal degree �In the following section we deal with the Max-Cut problem on graphs of maximal degree �.We present a slightly di�erent algorithm and analysis than the ones presented in the casewhere � = 3, and achieve an improved approximation ratio of �+ "� where � = 0:87856 asbefore and "� > 0 decreases as � increases.As in the previous section, the starting point of our enhanced algorithm is the followingsemide�nite relaxation of the Max-Cut problem on a given graph G = (V;E).(SDP-Cut) Maximize Peij2E 1�vivj2subject to:(1) vi 2 Sn for 1 � i � n(2) vivj + vivk + vjvk � �1vivj � vivk � vjvk � �1 for all i; j; k 2 [n]Note that constraint (3) used in the previous section is no longer valid.As earlier, solving (SDP-Cut) on a given graph G, we obtain a set of n vectors corre-sponding to the vertices of G. We are interested in the case in which for all edges eij in G theangle between the corresponding vectors vi and vj is �0 = 2:3311, for in this case the randomhyperplane technique will yield a partition (X;Y ) of expected weight exactly � times theweight of the optimal partition in G. 1In this worst case, we will show that there is some probability (depending on � alone) thata vertex and more than half its neighbors lie on the same side of the partition obtained by therandom hyperplane rounding technique. As earlier, we denote such vertices as misplaced, andby adding an additional step which moves misplaced vertices from one side of the partitionto the other, we are able to achieve an improved approximation ratio.Consider the following algorithm for the Max-Cut problem on graphs with boundeddegree �.Algorithm ACut :1As noted earlier, there are other worst cases for the [GW95] algorithm, namely when for some edges eijthe angles between the corresponding vectors is zero. In [Zwi99] it is shown how to deal with these casesby the use of an improved rounding technique which uses outward rotations. We deal with such cases in adi�erent manner which will be explained in the proof of Theorem 4.7.13



1. Solve the semide�nite relaxation (SDP-Cut) and round the resulting optimal vectorcon�guration using the random hyperplane rounding technique. Denote the partitionobtained by (X;Y ).2. Move misplaced vertices in (X;Y ) from one side of the partition to another in aim toincrease the value of the partition, until none such vertices are left.As mentioned above, in order to prove that ACut has an improved approximation ratio,one must prove that given an optimal vector con�guration fv1 : : : vng in which for each edgeeij the angle between the vectors vi and vj is �0, there is some non-negligible probability thatany vertex vi will be misplaced after the rounding mentioned above. We are able to provesuch a claim using the triangle constraints appearing in relaxation (SDP-Cut).Consider a vertex vi and all its neighbors fy1 : : : y�g. If the angle between vi and yj is�0 for all j 2 [�], then constraint (2) of (SDP-Cut) above implies that the angle betweenyj and yj0 for any couple j; j0 2 [�] is at most 1:184 (signi�cantly smaller than �=2). Weare interested in the probability that vi along with more than half its neighbors end upon the same side of a random hyperplane. Let fŷ1 : : : ŷ�g be the projection of the vectorsfy1 : : : y�g on the subspace orthogonal to vi. Roughly speaking, the above probability canbe bounded by the probability that a random hyperplane containing vi partitions the vectorsfŷ1 : : : ŷ�g in an unbalanced manner (i.e. more than half of the vectors ŷj lie on the sameside of the random hyperplane). As the angle between yj and yj0 is bounded by 1:184, itcan be seen that the angle between ŷj and ŷj0 is bounded by 1:763 (a bit above �=2). Hencewe are interested in the probability that a set of � vectors fŷ1 : : : ŷ�g which are relativelyclose to each other (i.e. the angle between each pair ŷj and ŷj0 is bounded) are separatedin an unbalanced manner by a random hyperplane. Intuitively, this probability seems non-negligible (for instance consider the related case in which the angle between each pair ŷj andŷj0 is �=2 or less, in such a con�guration it can be seen that with probability at least 2��all vectors ŷj will lie on the same side of a random hyperplane).In the following we present a few technical lemmas which con�rm this intuition. Letfv1 : : : vng be the vector con�guration obtained after solving the semide�nite relaxation(SDP-Cut) on G. Let (X;Y ) be the partition received after rounding this vector con�g-uration using the random hyperplane rounding technique ([GW95]). De�ne an edge eij tobe bad if the inner product (vi; vj) is equal to �0:688 (i.e. �ij = �0). De�ne a vertex i to beall bad if for all neighbors j of i we have that the edge eij is bad. Denote by N(i) the set ofvertices adjacent to i.Lemma 4.5 Let v be some vector in Rn of norm kvk, and let r = (r1; : : : ; rn) 2 Rn be thenormal of a random hyperplane in Rn (i.e. each ri has normal distribution N(0; 1)). Thesize of the projection of v on r can be bounded as follows :Pr[j(v; r)j � �kvk] = Pr[jr1j � �] � 1� �:Pr[(v; r) 2 [0; �]kvk] = Pr[r1 2 [0; �]] 2 [�=8; �=2]:Where � 2 [0; 1].Proof : As the distribution of r is spherically symmetric ([Ren70] Theorem IV.16.3), wemay assume that v is the vector (kvk; 0; : : : ; 0), thus (v; r) is exactly r1kvk. 214



Lemma 4.6 Let (X;Y ) be the partition obtained after the random hyperplane rounding tech-nique. Let i be an all bad vertex of degree d. With probability at least � it is the case thatmore that half of the vertices in N(i) lie on the same side of the partition (X;Y ) as thevertex i, where � = �d � 1219d2 .Proof : Let N(i) = fu1 : : : udg and denote the vector vi corresponding to the vertex i as v.As the vectors v; fu1 : : : udg lie in a common d+1 dimensional space, the following representa-tion of v; fu1 : : : udg may be assumed without loss of generality. Let v = (1; 0; : : : ; 0) 2 Rd+1and uj = (�j; �j; 
j) for j 2 [d]. Where �j 2 R, �j 2 R, 
j 2 Rd�1, and �j; �j; 
j arevectors in mutually orthogonal subspaces. The vertex i is all bad, thus for all j 2 [d] wehave that the inner product (v; uj) = �j equals �0:688, and that the vector (�j; 
j) 2 Rd isof norm 0.725. Furthermore, we may assume for the vector u1 that �1 = 0:725 and 
1 = 0.For i; j 2 [d] the following constraint appears in our semide�nite program :(v; ui) + (v; uj) + (ui; uj) � �1:We conclude that (ui; uj) = �i�j + �i�j + (
i; 
j) � 0:376. Hence �i�j + (
i; 
j) � �0:097meaning that the angle between the vectors (�i; 
i); (�j; 
j) 2 Rd is at most 1:763. Note thatthe vectors (�j; 
j) are the projection of ui to the subspace orthogonal to v and are norm0:725.Let r = (r1 : : : rd+1) be a d + 1 dimensional random variable representing the normal toa random hyperplane, i.e every ri is an independent standard normal random variable. Asabove, denote r by (�r; �r; 
r) where �r = r1, �r = r2, and 
r = (r3; : : : ; rd+1).In general we intend to prove that with some probability �d over r, the vector v andmore than half its neighbors lie on the same side of the hyperplane corresponding to r. Let�1 be the probability that the vector v lies very close but above the random hyperplanecorresponding to r, i.e. the inner product of (v; r) is small but positive. Note that thisprobability is dependent on r1 alone, and corresponds to a positive r1 of low magnitude.Conditioning on such r (i.e r1), we are interested in the probability that more than half ofthe vectors in N(i) also lie above the hyperplane corresponding to r. As r1 is small, this isroughly the probability that more than half of the projected vectors (�j; 
j) 2 Rd for j 2 [d]will be above the random hyperplane corresponding to the random vector (r2; r3).If the number of vectors in N(i) is odd (i.e. d is odd), then the above will happen withprobability 1=2, and we may conclude that �d is roughly �1=2.Otherwise we condition on an additional projection. Let �2 be the probability that thevector u1 is also very close but above a random hyperplane corresponding to a random vectorr. As before this probability is dependent on r1 and r2 alone (recall that u1 = (�1; �1; 0)).Now conditioning the random vector r on r1 and r2 (in order to assure that both v and u1lie close to and above the random hyperplane corresponding to r), we are interested in theprobability that more than half of the remaining vectors in N(i) also lie above the hyperplanecorresponding to r. As above, due to the fact that r1 and r2 are of small magnitude thisprobability is roughly the probability that more than half of the projected vectors 
j 2 Rd�1for j 2 f2 : : : dg will be above the random hyperplane corresponding to the random vectorr3. We are now in a case similar to the case in which d is odd, and conclude that �d isroughly �1�2=2. Detailed proof follows. 15



By Lemma 4.5 we have that with probability at least �=16 (over �r 2 R) it is the case that(v; r) = �r 2 [�=8; �], and with probability at least �=2 (over �r 2 R) we have that �r 2 [�; 8�](we assume that � < 1=8). We conclude that with probability at least �225 over the randomvector r we have that both v and u1 lie above the hyperplane corresponding to r.Furthermore, considering a vector 
j , we conclude using Lemma 4.5 that with probabilityat least 1 � 14d (over 
r) the value of j(
j; 
r)j is at least 14dk
jk. Hence with probability atleast 3=4 (over 
j) we have for all vectors 
j that j(
j ; 
r)j � 14dk
jk.Finally, consider the probability over 
r that more than half the inner products (
j ; 
r)are non-negative (j 2 [d]). As described above, this probability is at least half, due to thefact that for any 
r we have (
1; 
r) = 0. We conclude, that with probability 1=4 over 
r,we are in the case in which (
r; 
j) � 14dk
jk for more than half of the vectors 
j . Denotethe set of these vectors as N̂(i). Note that u1 2 N̂(i).Let r be a random vector r = (�r; �r; 
r) with �r; �r; 
r as above (this happens withprobability at least �227 ). We now claim that choosing an appropriate �, we obtain for allvectors uj in N̂(i) that the inner product (uj; r) > 0, as jN̂(i)j > d=2 this completes theproof of our lemma.Let uj = (�j; �j; 
j) be some vector in N̂(i). If �j � 0:7 then we have that(uj; r) = �j�r + �j�r + (
j ; 
r) � (�j � 0:688)� + 14dk
jk > 0:Otherwise assume that for uj 2 N̂ (i) we have �j < 0:7. As we have shown earlier, the normof (�j; 
j) is 0:725 for all vectors in N(i), thus we conclude that in this case k
jk must be atleast 1=8. Furthermore, for any vector uj 2 N(i) the inner product (u1; uj) = �1�j + �1�jis at least 0:376, thus implying that �j must be at least �0:14 (recall that u1 = (�1; �1; 0)).We conclude that(uj ; r) = �j�r + �j�r + (
j ; 
r) � (�1:12� 0:688)�+ 14dk
jk > 125d � 2�:Setting � to be less than 126d the above inner product is positive.All in all, the proof of our lemma is complete with �d � 1219d2 . 2Theorem 4.7 (Sketch) There exists a semide�nite based algorithm that for every � > 0approximates the Max-Cut problem on graphs with bounded degree � within an expectedratio of �+ "� where "� = 1233�4 .Proof : Consider the optimal vector con�guration fv1 : : : vng, and the partition (X;Y )achieved after step (1) of algorithm ACut. Let Z be the value of the above optimal vectorcon�guration, and w(X) the weight of the partition (X;Y ). Using the analysis of [GW95]it can be seen that the expected value of w(X) is at least �Z where � = 0:87856. De�nean edge eij to be bad if the inner product (vi; vj) is close -0.688, i.e. (vi; vj) 2 [�0:688 �0:01;�0:688 + 0:01].We start by assuming that a (1� 12�) fraction of edges in E are bad. As each edge that isgood (i.e. not bad) may a�ect at most two vertices, we conclude that at most jEj=� verticesare not all bad. Hence at least n � jEj=� � n=2 vertices are all bad. Moving an all badvertex from one side of the partition to another has an expected contribution of � edges to16



the cut. Where by Lemma 4.6 we have that � � �� = 1219�2 . Note that in Lemma 4.6 wedealt with the case in which eij was assumed to be bad if (vi; vj) was exactly �0:688. Asour analysis in Lemma 4.6 was slack, it can be seen that we obtain the same results for theabove de�nition of a bad edge as well. As each vertex moved may a�ect at most � othervertices, we conclude that the additional step of our algorithm has an expected contributionof n220�3 edges, which is at least Opt(G)219�4 . In such a case we achieve an approximation ratio ofat least �+ 1219�4 .Otherwise there are at least jEj2� edges eij such that vivj 62 [�0:688� "1;�0:688 + "1]. Ingeneral, using the analysis of [GW95] we conclude that the expected approximation ratio oneach of these edges is strictly greater than � by at least 1212 .Let Zgood be the contribution of these edges to the value Z de�ned above, and " be somesmall positive constant. If Zgood is greater than "Z we have thatE[w(X)] � �(Z � Zgood) + ��+ 1212�Zgood � ��+ "212�Z:We are left with the case in which the contribution of the good edges, Zgood, is less that "Z.In such a case neglecting these edges and running step (2) of ACut on the original graph Gwithout the set of good edges, we are able to achieve a cut of value��1 + 1219�4� (1 � ")ZSetting " to be 1221�4 our proof is complete. 2AcknowledgementsThe �rst author is the Incumbent of the Joseph and Celia Reskin Career Development Chair.This research was supported in part by a Minerva grant, and by DFG grant 673/4-1, EspritBR grants 7079, 21726, and EC-US 030, and by the Max-Planck Research Prize.References[BK98] P. Berman and M. Karpinski. On some tighter inapproximability results, further im-provements. ECCC, TR98-065, 1998. Extended abstract appears in ICALP 1999, pages200-209.[BM86] F. Barahona and A.R. Mahjoub. On the cut polytope. Mathematical Programming, 36:157{173, 1986.[FG95] U. Feige and M.X. Goemans. Approximating the value of two prover proof systems withapplications to Max-2-Sat and Max-Dicut. Proceedings of th 3rd IEEE Israel Symposiumon Theory of Computing and Systems, pages 182{189, 1995.[GW94] M.X. Goemans and D.P. Williamson. New 3/4-approximation algorithms for the maximumsatis�ability problem. SIAM Journal on Discrete Mathematics, 7(4):656{666, 1994.17



[GW95] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximumcut and satis�ability problems using semide�nite programming. Journal of ACM, 42:1115{1145, 1995.[H�as99] J. H�astad. On approximating CSP-B. ECCC, TR99-039, 1999.[KZ97] B. Karlo� and U. Zwick. A 7=8-approximation algorithm for Max-3-Sat? In Proceedings ofthe 38th Annual IEEE Symposium on Foundations of Computer Science, pages 406{415,1997.[Ren70] A. Renyi. Probability theory. Elsevier, New York, 1970.[Zwi99] U. Zwick. Outward rotations: a new tool for rounding solutions of semide�nite program-ming relaxations, with application to Max-Cut and other problems. In Proceedings of the31th ACM Symposium on Theory of Computing, pages 679{687, 1999.

18


