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factor. Till recently only a very few optimization problems were known to havepolynomial time approximation schemes (PTAS), approximating to within arbi-trary small constant factors. In a recent breaktrough Arora [A96] shown existenceof PTASs for Euclidean TSP and a number of other geometric problems.Some of the approximation algorithms with small approximation ratiosachieve also good practical performances, like some cases of STEINER TREEproblems (cf. [KZ97a]), some other algorithms do not yield yet e�cient practicalsolutions for dealing with optimization problems.In this paper we are concerned with the problem of e�cient approximabilityof the dense instances of NP-hard optimization problems.Starting in 1995, the �rst polynomial time approximation schemes have beendesigned for such problems in Arora, Karger and Karpinski [AKK95], Fernandezde la Vega [FdV96], Arora, Frieze and Kaplan [AFK96], and Karpinski and Ze-likovsky [KZ97b]. Later on, Goldreich, Goldwasser and Ron [GGR96], and Friezeand Kannan [FK97] gave a constant sample size approximation schemes for somedense optimization problems. Fernandez de la Vega and Karpinski [FdVK97] gavealso the �rst polynomial time approximability characterization for dense weightedinstances of NP-hard problems; same authors [FdVKa98], and also Fotakis andSpirakis [FS98] proved approximation hardness of dense (1,2)-TSP problem.This developmentwas in contrast to the fact that the existence of such schemesfor general instances of all the above mentioned problems would imply thatP=NP, by results of Arora, Lund, Motwani, Sudan and Szegedy [ALMSS92].The development above was followed by the study of the dense covering prob-lems in Karpinski and Zelikovsky [KZ97b], and the dense bandwidth minimiza-tion problems, Karpinski, Wirtgen and Zelikovsky [KWZ97]; as well as metricinstances of MAX-CUT, Fernandez de la Vega and Kenyon [FdVKe98].It is also a very interesting artifact that the recent successes in design of thepolynomial time approximation schemes for dense optimization problems parallelthe successes of the past attacks on dense approximate counting problems, Broder[B86], Jerrum and Sinclair [JS89], Dyer, Frieze, Jerrum [DFJ94], and Alon, Friezeand Welsh [AFW95]. 2



2 MAX-SNP and Dense MAX-SNP Classes,and BEYONDWe consider in this Section the dense instances of the MAX-SNP class of opti-mization problems introduced by Papadimitriou and Yannakakis [PY91]. MAX-SNP class contains constraint-satisfaction problems, where the constraints arede�nable by quanti�er-free propositional formulas.We recall:De�nition: A (maximization) problem A is in MAX-SNP if there exists a se-quence of relation symbols G1; : : : ; Gm, a relation symbol S, and a quanti�er-freeformula �(G1; : : : ; Gm; S; x1; : : : ; xk), with xi variables, such that the following istrue:1. there is a polynomial time algorithm that for any given instance I of theproblem A produces a set V and a sequence of relations GV1 ; : : : ; GVm over V(GVi preserve the arity of Gi);2. The value of the optimum solution OPT (I) of A on instance I, satis�esOPT (I) =MAXSV ����f(x1; : : : ; xk) 2 Vk����(GV1 ; : : : ; GVm; SV; x1; : : : ; xk) = TRUEg����for SV the relation over V of the same arity as S.Example: MAX-CUT (cf. [GJ79], [P94]) is in MAX-SNP, since its optimumsolution can be written asMAXS�V � j f(x; y) j (G(x; y) _ G(y; x) ^ S(x) ^ :S(y))g j �for V the set of vertices of the graph, G(x; y) its adjacency relation, and S aunary relation describing the one side of the cut.For the notions of MAX-SNP-completeness, and MAX-SNP-hardness see[P94], and [AL97].We de�ne next the problem MAX-k-FUNCTION-SAT for some �xed integerk. MAX-k-FUNCTION-SAT has as an input m boolean functions f1; f2; : : : ; fm3



in n variables, and each fi depends only on k variables. The problem is to �ndan assignment to the variables as to satisfy as many fi's as possible.It is known that every problem A from MAX-SNP can be viewed as a MAX-k-FUNCTION-SAT problem for a �xed k (cf. [P94]). Following [AKK95] wecall an instance of a MAX-SNP problem dense if the corresponding instance ofMAX-k-FUNCTION-SAT has 
(nk) functions.Given an optimization problem A, a (meta) algorithmA is called a polynomialtime approximation scheme (PTAS) if for every �xed � > 0, A is a polynomialtime algorithm with approximation ratio 1 + � (meaning A outputs a solution Sto every instance I of A such that MAX� SOPT (I); OPT (I)S � � 1+ �, for OPT(I) theoptimal solution, and the running time of A is polynomial in the size of I).Only a very few problems, such as KNAPSACK [IK75], and BIN PACKING[FL81], [KK82], were till recently known to have PTASs.In Arora, Karger and Karpinski [AKK95] the following general result on theexistence of PTASs was proven.Proposition 1. ([AKK95]) Dense MAX-SNP problems have PTASs.The proof method involves the representation of MAX-k-FUNCTION-SATby smooth degree{k integer programs, and the general result on approximatingsuch programs (cf. [AKK95]).Below is the list of problems were the smooth integer programs can be applieddirectly to obtain the PTASs. (We call a graph dense if it has �(n2) edges, ahypergraph of dimension d is dense if it does have �(nk) edges.)� MAX-CUT: For a given graph, partition its vertices into two sets so as tomaximize the number of edges between them.� MAX-DCUT: The directed version of the MAX-CUT.� MAX-HYPERCUT(d): A generalization of MAX-CUT to hypergraphs ofdimension d (an edge is considered in a cut if it has at least one vertex oneach side).� DENSE-k-SUBGRAPH: Given a graph, �nd a subset of k vertices thatinduces a graph with the most edges (cf. [KP93]).Following [AKK95], we have 4



Proposition 2. ([AKK95]) Dense instances of the following problems havePTASs:MAX-CUT, MAX-DCUT, MAX-HYPERCUT(d), and DENSE-k-SUBGRAPHfor k = 
(n).In what follows we call a graph G everywhere dense if its minimum degree is
(n). We consider everywhere dense instances of three further problems.� SEPARATOR: Given a graph, partition its vertices into two sets, each withat least 13 of the vertices, so as to minimize the number of edges betweenthem.� BISECTION: Given a graph, partition its vertices into two equal halves soas to minimize the number of edges between them.� MIN-k-CUT: Given a graph with n vertices, and k source vertices, partitionits vertices into k groups such that (1) each group contains one source, and(2) the number of edges between di�erent groups is minimized.Consider a graph with a minimum degree �n, and let c denote the capacityof its minimum bisection. The PTAS for BISECTION of [AKK95] consists oftwo algorithms, one of which is a PTAS when c � �n2, and the other whenc < �n2 for � a small constant. The algorithm for c � �n2 uses the abovementioned method for approximating smooth integer programs. For the casec < �n2 we use the fact that in a minimum bisection, there must be one sidewhose every vertex has at most half of its neighbors on the other side, andconstruct a randomized exhaustive correction sample algorithm. The algorithmcan be also easily derandomized (cf. [AKK95]). Similar PTASs work for theSEPARATOR and MIN-k-CUT problems.Proposition 3. ([AKK95]) Everywhere dense instances of the following problemshave PTASs: BISECTION, SEPARATOR and MIN-k-CUT.Fernandez de la Vega [FdV96] has independently developed a PTAS for ev-erywhere dense instances of MAX-CUT problem. His algorithm does not appearto generalize though to the other problems listed above.Arora, Frieze, and Kaplan [AFK96] constructed a new rounding procedurefor the quadratic assignment problem and used it to obtain PTASs on thedense instances of the NP-hard problems like QUADRATIC-ASSIGNMENT,5



MIN-LINEAR-ARRANGEMENT, d-DIMENSIONAL-ARRANGEMENT, BE-TWEENESS, and MIN-CUT-LINEAR-ARRANGEMENT (cf. [AFK96]).In the other development the Regularity Lemma of Szemer�edi was used to ob-tain more e�cient PTAS for the above problems (cf. Frieze and Kannan [FK96]).Using also independent methods Goldreich, Goldwasser and Ron [GGR96], andFrieze and Kannan [FK97] gave constant time approximation schemes for somedense problems in the oracle model of computation.Very recently Bazgan and Fernandez de la Vega [BFdV99] designed the �rstPTAS for everywhere dense MIN-2SAT and MIN-EQUIVALENCE problems us-ing techniques similar to that of a BISECTION technique of [AKK95].3 Dense Covering ProblemsWe turn now to the three dense covering problems: SET COVER, STEINERTREE, and VERTEX COVER (cf. [H97], [AL97]). They do not fall into thedense MAX-SNP class de�nition of section 2 (VERTEX COVER is in MAX-SNP only if the degree of the graph is bounded.)� SET COVER: Given a �nite set X and a family of its subsets P, �nd aminimum size subfamily M of P such that X � SM.We call an instance of SET COVER (X = fx1; : : : xng;P = fp1; : : : ; pmg)�-dense (for � > 0) if every element of X belongs to at least �m sets fromP. (The instances of SET COVER are called dense if they are �-dense forsome � > 0. We call SET COVER restricted to dense instances a denseSET COVER accordingly.)� STEINER TREE: Given a connected graph G and a set of its distinguished(terminal) vertices S. Find a minimum size tree within G that spans alldistinguished vertices from S.We call an instance G = (V;E) of the STEINER TREE problem �-denseif every distinguished terminal vertex is adjacent to at least �� j V n S jnonterminals.� VERTEX COVER: Given a graph G, �nd a minimum size vertex set X ofG which covers all edges of G (i.e. at least one endpoint of any edge belongsto X). 6



We start with the dense SET COVER problem. The general SET COVERwas proven recently to have a threshold (1 � o(1)) ln n for any olynomial timeapproximation (cf. Feige [F96]), which in fact is matching asymptotically theapproximation ratio by the well known greedy heuristic algorithm.It is shown in Karpinski and Zelikovsky [KZ97b] that the greedy heuristicalgorithm can be applied more e�ciently towards ther dense SET COVER.Proposition 4. ([KZ97b]) For any constant c > 0 and any � > 0, there is apolynomial time approximation algorithm for the �-dense SET COVER with theapproximation ratio c � log n.Interestingly, we cannot expect on the lower bound side of the dense SETCOVER, its NP-hardness, as the results of Papadimitriou and Yannakakis [PY96]imply.Proposition 5. ([KZ97b]) Unless NP � DTIME [nlogn], the dense SET COVERis not NP-hard.We conjecture that dense SET COVER cannot be approximated to within aconstant factor.Conjecture 1. The dense SET COVER cannot be approximated in polynomialtime to within a constant approximation ratio.The second problem we discuss in this section is the �-dense STEINER TREEproblem. We note �rst in passing that for � > 12 , �-dense STEINER TREEproblem is a special case of the network STEINER TREE problem with edgelengths 1 and 2, the problem which is still MAX-SNP-hard, Bern and Plassmann[BP89]. For the dense STEINER TREE problem the existence of a PTAS hasbeen recently proven in Karpinski and Zelikovsky [KZ97b].Proposition 6. ([KZ97b]) There exists a PTAS for the �-dense STEINER TREEproblem.It is not di�cult to see that there is a polynomial time reduction of the �-dense SET COVER to the �-dense STEINER TREE problem, and vice versa.Therefore, the similar result to Proposition 5 holds also for the dense STEINERTREE problem. 7



Furthermore we conjecture,Conjecture 2. The dense STEINER TREE problem cannot be computed ex-actly in polynomial time .The third problem, VERTEX COVER, is one of the �rst NP-hard op-timization problems for which the approximation algorithms were proposed([GJ79]). The problem is known to be MAX-SNP-hard, and the well-known2-approximation algorithm is also believed to be the best possible (cf. [H97]). InKarpinski and Zelikovsky [KZ97b] the new approximation algorithm is designedfor dense VERTEX COVER problems beating the approximation ratio 2.We call a graph G = (V;E) everywhere �-dense if its minimum degree is atleast �� j V j. We call G �-dense if j E j� �� j V j2.Proposition 7. ([KZ97b]) There exists a polynomial time approximation algo-rithm for the VERTEX COVER problem on �-dense graphs with approximationratio 22�p1�� .For the everywhere dense instances we getProposition 8. ([KZ97b]) There exists a polynomial time approximation al-gorithm for the VERTEX COVER problem on everywhere �-dense graphs withapproximation ratio 21+� .Proposition 7 and 8 show that the density do help essentially in approximatingthe VERTEX COVER problem. Can we expect though existence of a PTAS forthe dense VERTEX COVER problem?The answer is no, as the everywhere �-dense (and �-dense) VERTEX COVERis MAX SNP-hard. (cf. [KZ97b], [CT96]). This is due to the following densi�-cation construction. Start with a general instance (a graph G with n vertices) ofthe VERTEX COVER, and densify it by joining its all vertices with all verticesof a clique of size �1��n. The resulting graph is everywhere �-dense. An existenceof �-approximation algorithm for dense instances of VERTEX COVER entailsnow also �(1 + �)-approximation algorithm for the general VERTEX COVERproblem which is MAX-SNP-hard.Proposition 9. ([CT96], [KZ97b]) The dense VERTEX COVER problem isMAX-SNP-hard. 8



4 Dense BANDWIDTH MINIMIZATIONWe discuss now the problem of approximability of dense instances of the BAND-WIDTH problem. The BANDWIDTH problem has a long and very interestinghistory, and a number of important technical applications (cf., e.g. [CCDG82]).It belongs also to the class of so called layout problems and is one of the hard-est in this class ([DSS94]). Its approximability status resembled till recently theBISECTION problem discussed in Section 2 in what there was a general lack ofapproximation algorithms with essentially sublinear approximation ratios, andon the other hand, till recently, a lack of any innapproximability results. Thissituation has changed only recently. Blache, Karpinski and Wirtgen [BKW98]proved that there are no PTAS for the BANDWIDTH problem, Unger [U98] ex-tended the hardness result to the arbitrary constants, and Feige [F98] designedthe �rst polylogarithmic factor approximation algorithm for that problem. Thesituation on dense instances of the BANDWIDTH seemed to be even more di�-cult than that of the dense BISECTION for which we have constructed a PTAS(see Section 2). For the dense BANDWIDTH however, even the existence of aconstant ratio approximation algorithms was an open problem.We note also that the positive result on existence of a PTAS for the denseBISECTION illustrates the di�culty of proving inapproximability result for thegeneral problem. It indicates that the standard method of reducing balanced(50/50) MAX-CUT to BISECTION on the complementary graph cannot workfor a good reason. BISECTION still lacks any nontrivial approximation lowerbounds, however Feige [F00] was able to prove recently the existence of a poly-logarithmic factor approximation algorithm for this problem.The situation with the BANDWIDTH (the problem which is remotely con-nected to BISECTION , cf. [DSS94]) is, in fact, even more subtle to analyze ina dense setting. The standard graph operations or a slight densi�cation seem todestroy completely the structure of the instance.We give now an exact formulation of the problem.� BANDWIDTH: Given a graph G = (V;E), compute the numbering of itsvertices such that the maximumdi�erence between the numbers of adjacentvertices is minimal.We de�ne also the directed BANDWIDTH problem.9



� DBANDWIDTH: Given a directed graph G = (V;E), compute the num-bering of its vertices as above such that for every vertex v its numbering isgreater than any numbering of a vertex u such that (u; v) 2 E.The DBANDWIDTH problem corresponds to that of minimizing the bandwidthof an upper triangular matrix by simultaneous row and column permutations (cf.Garey, Graham, Johnson and Knuth [GGJK78]).The problem is known to be NP-hard even if restricted to binary trees (cf.[GGJK78]), or caterpillars with hairs of length at most 3, Monien [M83]. Thismakes the BANDWIDTH one of the very rare combinatorial problems which arecomputationally 'hard' for trees. Interestingly, the problem is e�ciently com-putable for complete trees, Smithline [Sm95]. Only a very few special cases ofthis problem were known before to have sublinear approximation ratio algorithms,among them log n-approximation algorithm for the caterpillars ([HMM91]).We consider here the BANDWIDTH problem on the everywhere dense graphs.Using a randomized placing technique combinedwith the special perfect matchingdesign Karpinski, Wirtgen and Zelikovsky [KWZ97] provedProposition 10. ([KWZ97]). There exists a randomized polynomial timeapproximation algorithm for the BANDWIDTH problem on everywhere densegraphs with approximation ratio 3.Using a more constrained nature of DBANDWIDTH the similar techniquesyield.Proposition 11. ([KWZ97]). There exists a randomized polynomial time ap-proximation algorithm for the DBANDWIDTH problem on everywhere densegraphs with approximation ratio 2.It is still an open problem whether there are constant ratio approximationalgorithms for 'dense' instances of the BANDWIDTH, and the DBANDWIDTH.A challenging question remains also whether there exist PTASs for the denseBANDWIDTH problems, or whether some of these problem are in fact MAX-SNP-hard. 10



5 Dense (1,2)-TSP and the Longest Path Pro-blemThe problems left open in [AKK95], and other papers discussed previously werethe dense instances of Traveling Salesman and Longest Path problems. Thestatus of these two problems were settled by Fernandez de la Vega and Karpinski[FdVKa98], and Fotakis and Spirakis [FS98].Let us denote by (1,2)-TSP the Traveling Salesman Problem with distances1 and 2. We call (1,2)-TSP, d-dense if the minimum degree of the subgraphspanned by the edges with length 1 is at least dn.The �rst explicit lower approximation bounds for general (1,2)-TSP wereobtained by Engebretsen [E99] using lower approximation bounds on certainbounded dependency optimization problems obtained recently by Berman andKarpinski [BK99]. The 7/6 upper approximation bound for (1,2)-TSP was provedby Papadimitriou and Yannakakis [PY93].We de�ne also a d-dense Longest Path Problem as a Longest Path Problemrestricted to Hamiltonian graphs with the minimum degree dn.Proposition 12. ([FdVKa98], [FS98]). d-dense (1,2)-TSP and d-dense LongestPath Problem are both MAX-SNP-hard for every 0 < d < 12 .The above results are constructive, and based on Engebretsen [E99] result,they yield the �rst explicit lower approximation bounds on d-dense (1,2)-TSPand d-dense Longest Path Problems which depend on the density parameter d ofan instance.6 Summary of Dense Approximation ResultsWe present here a table summarizing the results of Sections 2-5 with the bestknown approximation results, and the best up to date nonapproximability resultson dense problems. 11



Problem Approx. Ratio Approx. Hardness Ref.DENSE MAX-SNP PTAS | [AKK95]DENSE MAX-CUT PTAS | [AKK95],[FdV96]DENSE MAX-DCUT PTAS | [AKK95]DENSEMAX-HYPERCUT(d) PTAS | [AKK95]DENSEDENSE-K-SUBGRAPH PTAS | [AKK95]EVERYWHEREDENSE SEPERATOR PTAS | [AKK95]EVERYWHEREDENSE BISECTION PTAS | [AKK95]EVERYWHEREDENSE MIN-K-CUT PTAS | [AKK95]DENSE MIN-LINEAR-ARRANGEMENT PTAS | [AFK96]DENSE d-DIMENSIONAL-ARRANGEMENT PTAS | [AFK96]DENSE MIN-CUT-LINEAR-ARRANGEMENT PTAS | [AFK96]DENSE SET COVER Tc c � ln n OPEN [KZ97b]DENSE STEINER TREE PTAS | [KZ97b]DENSE VERTEX COVER 22�p1�" MAX-SNP-hard [KZ97b]EVERYWHEREDENSE VERTEX COVER 21+" MAX-SNP-hard [KZ97b]EVERYWHEREDENSE BANDWIDTH 3 OPEN [KWZ97]EVERYWHEREDENSE DBANDWIDTH 2 OPEN [KWZ97]DENSE (1,2)-TSP 7/6 MAX-SNP-hard [FdVKa98],[FS98]Table 1: Table of known dense approximability results.12



7 Polynomial Time Approximability of DenseWeighted Instances of NP-Hard ProblemsThe natural instances of optimization problems involve also weights (cf. [GJ79])while the results studied before were concerned mainly with 0; 1 cases. In Arora,Karger, Karpinski [AKK95], the dense MAX-CUT PTAS can be adjusted as towork also for the dense MAX WEIGHT CUT problem ([GJ79]) for the caseof weights being bounded by B. In this case the algorithm produces a cut ofweight of at least maximum weight of a cut minus �n2B. This and also otherbounded weight problems were considered brie
y in Goldreich, Goldwasser andRon [GGR96], and Frieze and Kannan [FK97]. Both papers evaluate the addi-tional costs of handling bounded weights instead of 0,1 weights.In a recent paper Fernandez de la Vega and Karpinski [FdVK97] gave the �rstpolynomial time approximability characterization of dense (unbounded) weightedinstances of MAX WEIGHT CUT, and MAX WEIGHT BISECTION, and someother dense weighted NP-hard optimization problems, in terms of their empiricalweight distribution. The crucial point of this paper is a new unbounded weightSampling Lemma. The reader is referred to [FdVK97] for details.8 Beyond the Dense Instances of CombinatorialOptimization ProblemsWe will turn our attention now to the problem which is not dense in our previoussense but can be attacked by using dense methods similar to those developed in[FdVK97]. We de�ne metric MAX-CUT as a MAX-CUT problem with verticesembedded in a metric space. The objective is to divide a set of vertices (points)into two parts as to maximize the sum of the distances between vertices belongingto two di�erent parts.Fernandez de la Vega and Kenyon [FdVKe98] were able to prove the followingresult on the metric MAX-CUT problem.Proposition 13. ([FdVKe98]). Metric MAX-CUT has a PTAS.Another example of a problem which could be solved by using dense techniqueof smooth integer programs of [AKK95] was, so called, Maximum Quartet Con-13



sistency (MQC) problem of inferring evolutionary trees studied in computationalmolecular biology, Jiang, Kearney and Li [JKL98].9 Further Research and Open ProblemsIt remains to be seen whether the techniques used with success for the denseinstances of NP-hard optimization problems, like approximating smooth higherdegree integer programs by linear programs, might be useful in approximatinggeneral problems. Perhaps some other, di�erent from exhaustive sampling meth-ods can be developed for the nondense instances as well. Another interestingissue is to develop new more e�cient techniques for the dense unbounded weightinstances of the optimization problems for which costs of allowing weights arenot prohibitively high.On the level of speci�c dense problems discussed before, it would be interestingto shed some light on the Conjectures 1 and 2. Is there even more dramaticimprovement in approximation ratio for the dense SET COVER, like o(log n),still possible (cf. Proposition 4)?One of the most challenging open dense problems today are the dense and ev-erywhere dense BANDWIDTH problems. Is there an approximation ratio below3 (cf. Proposition 10), and even more strongly, is there a PTAS possible for thisproblem, or perhaps, is this problem 'approximation hard' in some sense?AcknowledgmentMy thanks to Sanjeev Arora, Dorit Hochbaum, Haim Kaplan, Se� Naor, andUri Zwick for helpful discussions, and to J�urgen Wirtgen for a careful reading ofthe manuscript.References[AFW95] N. Alon, A. Frieze and D. Welsh, Polynomial Time Randomized Ap-proximation Schemes for the Tutte Polynomial of Dense Graphs, RandomStructures and Algorithms 6 (1995), pp. 459-478.[A96] S.Arora, Polynomial Time Approximation Schemes for Euclidean TSP andother Geometric Problems, Proc. 37th IEEE FOCS (1996), pp. 2-12.14
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