
Randomized Splay Trees:Theoretical and Experimental ResultsSusanne Albers� Marek KarpinskiyAbstractSplay trees are self-organizing binary search trees that were introduced by Sleator andTarjan [12]. In this paper we present a randomized variant of these trees. The new algorithmfor reorganizing the tree is both simple and easy to implement. We prove that our randomizedsplaying scheme has the same asymptotic performance as the original deterministic schemebut improves constants in the expected running time. This is interesting in practice becausethe search time in splay trees is typically higher than the search time in skip lists and AVL-trees. We present a detailed experimental study of our algorithm. On request sequencesgenerated by �xed probability distributions, we can achieve improvements of up to 25%over deterministic splaying. On request sequences that exhibit high locality of reference, theimprovements are minor.

�Lehrstuhl Informatik II, Universit�at Dortmund, 44221 Dortmund, Germany. Part of this work was done whileat the Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany. Email: albers@ls2.cs.uni-dortmund.deyDepartment of Computer Science, University of Bonn, 53117 Bonn. E-mail: marek@cs.uni-bonn.de1



1 IntroductionSplay trees are self-organizing binary search trees that were introduced by Sleator and Tar-jan [12]. They represent an elegant solution to the well-known dictionary problem, where wehave to maintain a set S of elements under a sequence of operations. We assume that everyelement x 2 S consists of a key k(x), which is drawn from a totally ordered universe, andsome additional information. Each operation is either (a) an access to an element in S, (b) aninsertion of a new element into S, or (c) a deletion of an element from S.As all binary search trees, splay trees store the elements x 2 S in the nodes of the tree,each node holding exactly one element. The important feature of splay trees is that they donot maintain any height or balance constraint but rather have a restructuring rule that modi�esthe tree after each operation. More precisely, after each access to an element x 2 S, the nodestoring x is moved to the root of the tree using a special sequence of rotations that depends onthe structure of the access path. This reorganization of the tree is called splaying.Sleator and Tarjan [12] analyzed splay trees and proved a series of interesting results. Theyshowed that the amortized asymptotic time of access and update operations is as good as thecorresponding time of balanced trees. More formally, in an n-node splay tree, the amortized timeof each operation is O(logn). It was also shown [12] that on any sequence of accesses, a splaytree is as e�cient as the optimum static search tree. Moreover, Sleator and Tarjan [12] presentedas series of conjectures, some of which have been resolved or partially resolved [3, 4, 5, 15]. Onthe other hand, the famous splay tree conjecture is still open: It is conjectured that on anysequence of accesses splay trees are as e�cient as any dynamic binary search tree. We refer thereader to [2, 8, 10, 13, 14] for further work on splay trees.Splay trees have the advantage that they need no knowledge of the properties of the inputsequence, but adapt automatically to best suit the input. Moreover, the access and updateoperations are very simple and easy to implement. However, splay trees have the disadvantagethat they do rotations even during access operations. This leads to a high overhead. In fact, inpractice, the access time in splay trees is generally higher than the access time in AVL trees [1]and skip lists [11]. On insert and delete operations, splay trees perform well.In this paper we present the �rst randomized variant of splay trees. Our work is motivatedby the goal of reducing the access time in splay trees and, thus, bringing splay trees closer topractice. Our randomized splaying scheme for reorganizing the tree is very simple and easy toimplement. Existing splay tree codes can be adapted with very little extra work.The randomized restructuring algorithm, called Rand-Splay(p), is presented in Section 4 andworks for any �xed probability p 2 [0; 1]. During each access operation, Rand-Splay(p) onlysplays the tree with probability p. Intuitively, this reduces the number of rotations performedon a sequence of accesses while, if p is not too small, frequently accessed elements are still closeto the root of the tree.In order to compare Rand-Splay(p) to deterministic splay trees, we �rst have to introduce are�ned cost model (Section 3). We assume that during each access operation, following an edgeon the access path into the tree incurs a cost of 1, whereas a rotation incurs a cost of d, d > 0.In our experimental tests we observed d � 2:75. In Section 4 we show that if the amortized timeof an access operation is (1+d)T in deterministic splay trees, then the expected amortized timein our randomized splay trees is (1 + pd)T . More generally, we prove that many of the resultsshown by Sleator and Tarjan [12] for deterministic splay trees carry over to randomized splaytrees but with smaller constants in the O-notation, i.e. the expected running time is smaller.In Section 5 we present a detailed experimental study of Rand-Splay(p). We study its per-formance on various types of request sequences. We show that if requests are generated by a2



�xed probability distribution, then Rand-Splay(p) can achieve improvements of up to 25% overdeterministic splaying. On the other hand, if request sequences exhibit high locality of reference,then the improvements are almost negligible.Independent of the work presented in this paper, F�urer [6] recently presented randomizedsplaying algorithms. He presented theoretical results but gave no experimental study.2 Splay treesWe briey review deterministic splay trees and concentrate on the access operation.As mentioned before, splay trees are binary search trees. The elements of the set S to berepresented are stored in the nodes of the tree. We assume that the keys k(x), x 2 S, arepairwise distinct. At any time, the elements in the tree T are stored in symmetric order, i.e.,for every node u in T , the keys in the left subtree of u are smaller than the key stored at u, andthe keys in the right subtree of u are greater than the key at u.It is obvious how to access an element x 2 S in a binary search tree T . Starting at the rootof T , we repeatedly follow edges into the tree until x is found. At every node we either choosethe edge into the left or into the right subtree, depending on whether k(x) is smaller or greaterthan the key at the current node.
(a) Zig case

(b) Zig-zig case

(c) Zig-zag case

A B

C

D A

B

C D

U 

V

W U

V

W

A B

C A

B C

U

V U

V

V

U

W

U

V

B C D

A

B C

D A

W

Figure 1: Three cases of splayingIn a splay tree, each time an element x is accessed, the node u 2 T holding x is moved tothe root of T using a special sequence of rotations. These rotations are illustrated in Figure 1.There are three di�erent cases. Each case has a symmetric variant which is not shown. (1) Inthe zig case, the parent of u, p(u), is the root of T . We rotate the edge between u and p(u).(2) In the zig-zig case, p(u) is not the root and u and p(u) are both left children. In this case, we3



�rst rotate the edge between p(u) and the grandparent g(u). Then we rotate the edge betweenu and p(u). (3) In the zig-zag case, p(u) is not the root, and u is a left child and p(u) is a rightchild. Here, we �rst rotate the edge between u and p(u) and then the edge between u and thenew p(u).Sleator and Tarjan [12] analyze the amortized time incurred on a sequence of accesses usinga potential function �. Consider a sequence of m accesses. The amortized time taj of the j-thaccess, 1 � j � m, is de�ned as taj = tj + �(j)� �(j � 1), where tj is the actual time of theaccess and �(j)� �(j � 1) is the change in potential. The total time of the entire sequence ofaccesses is mXj=1 tj = mXj=1(taj +�(j � 1)� �(j)) = mXj=1 taj +�(0)� �(m):The potential function de�ned by Sleator and Tarjan is quite general and allows them to derivea series of results. More precisely, � is de�ned as follows. Each element x 2 S is assigned aweight w(x). For every node u 2 T , the size �(u) of u is the sum of the weights of all elementsin the subtree rooted at u. The rank �(u) of u is log(�(u)), where the base of the logarithmis 2. Now, � = Pu2T �(u). Using this potential function, Sleator and Tarjan developed thefollowing bound on the time needed by an access. Suppose that there is an access to an elementx and that u is the node storing x. Then the amortized time to access x and splay T at u is1 + 3(�(r)� �(u)), where r is the root of T .3 A re�ned cost modelIn order to compare the performance of randomized splay trees to that of deterministic splaytrees we have to introduce a re�ned cost model. We restate the most important results from [12]in this model. We avoid O-notation, used in [12], and explicitly give the hidden constants.When analyzing the time of an access to x, Sleator and Tarjan do not distinguish betweenthe time needed to search for x in the tree and the time needed to splay the tree at the node uholding x. They assume that whenever an edge e = (v; w) in the tree is rotated, the rotationtime also includes the time incurred in traversing e to continue search in the subtree rooted atw; here w is the child of v. Thus, a zig case costs 1 time unit, whereas a zig-zig or a zig-zag casecosts 2 time units. In the randomized splaying scheme that we will develop in the next section,we will reduce the number of rotations, i.e., a node holding the accessed element is not alwaysmoved to the root of the tree. Thus, we have to distinguish between search and rotation time.We assume that a traversal of an edge during a search incurs a cost of 1 and that a rotationof an edge incurs a cost of d, d > 0. Using this cost model, a zig case in Sleator and Tarjan'sdeterministic splaying scheme costs 1 + d, and a zig-zig or zig-zag case costs 2(1 + d).Now, let � = (1 + d)Xu2T �(u):Lemma 1 Suppose that there is an access to an element x and that u 2 T is the node holdingx. Then the amortized time to access x and splay the tree at u is at most (1+d)+3(1+d)(�(r)��(u)) = (1 + d) + 3(1 + d) log(�(r)=�(u)), where r is the root of the tree.This lemma can be shown in the same way as the corresponding lemma in [12]. Using Lemma 1,it is possible to derive a series of theorems. These theorems can be proved in the same way asin [12]. For each theorem we give a brief sketch of the proof that demonstrates how the overall4



change in potential �(0) � �(m) a�ects the performance bounds. This will be crucial in thenext section. In the following theorems C always reects �(0)� �(m).Consider a sequence of m accesses, and suppose that the tree contains n elements x1; : : : ; xn.Recall that w(xi) is the weight of xi. Note that �(0) � �(m) � (1 + d)Pni=1 log(W=w(xi)),where W =Pni=1 w(xi).Theorem 1 The total access time is at most (1+d)(3m logn+m)+C; where C = (1+d)n logn.Proof: Assign a weight of 1=n to each element xi. Then,W = 1. Each access needs an amortizedtime of (1 + d) + 3(1 + d) logn and �(0)� �(m) � (1 + d)n logn = C. 2The next theorem is called the static optimality theorem [12]. It implies that on any sequenceof accesses, the time needed by a splay tree is no more than a constant multiple of the timeneeded by an optimum static search tree. For any element xi, let q(xi) be the number of timesxi is accessed in the entire sequence.Theorem 2 If every element is accessed at least once, then the total access time is at most(1 + d)(3Pni=1 q(xi) log(m=q(xi)) +m) + C; where C = (1 + d)Pni=1 log(m=q(xi)).Proof: Assign a weight of q(xi)=m to each element xi. The change in potential is at most(1 + d)Pni=1 log(m=q(xi)) = C. 2Theorem 3 is the static �nger theorem. Let xij be the element accessed during the j-thaccess in the sequence.Theorem 3 If f is any �xed element, the total access time is at most (1+d)(6Pmj=1 log(jk(xij)�k(f) + 1j) + 7m) + C; where C = (1 + d)2n(logn+ 1).Proof: Assign a weight of 1=(jk(xi)�k(f)+1j)2 to element xi. Then W � 2P1i=1 1=i2 = �2=3.The amortized time of the j-th access is (1 + d) + 3(1 + d)(2 log(jk(xij)� k(f) + 1j) + logW ) �(1 + d)(6 log(jk(xij)� k(f) + 1j) + 7). The change in potential is (1 + d)Pni=1 log(W=w(xi)) �(1 + d)(n logW +Pni=1 log(1=w(xi)) � (1 + d)(2n log(�=3) + 2n logn) � (1 + d)2n(logn + 1).The second inequality follows because w(xi) � 1=n2: 2In the working set theorem below, t(j) is the number of di�erent elements accessed beforethe j-th access since the last access to element xij .Theorem 4 The total access time is at most (1 + d)(6Pmj=1 log(t(j) + 1) + 4m) + C; whereC = (1 + d)(2n logn+ n).Proof: (Sketch) At any time, the weights assigned to the n elements form a permutation of1; 1=4; 1=9; : : : ; 1=n2. Initially the weight 1; 1=4; 1=9; : : : ; 1=n2 are assigned to the elements in theorder of �rst access. The element accessed �rst gets weight 1. During the processing of accesses,the weights are reassigned. Whenever an element x with weight 1=i2 is accessed, x gets weight 1and every element y with weight 1=(i0)2, i0 < i, gets weight 1=(i0+1)2. We haveW �P1i=1 1=i2 =�2=6. During the j-th access, the weight of the accessed element is 1=(t(j) + 1)2. Thus, theamortized time of an access is (1+d)+3(1+d)(2 log(t(j)+1)+logW ) � (1+d)(6 log(t(j)+1)+4):As in the proof of Theorem 3, we can estimate the change in potential. 25



4 The randomized splaying schemeIn deterministic splay trees, the expensive part of an access operation is the splaying step.Motivated by this observation, our randomized splaying scheme executes the splaying step onlywith a certain probability p. This will decrease the expected number of rotations done on asequence of accesses. If the probability p is not too small, then frequently accessed elements willstill be close to the root of the tree, and the expected search time during an access should notincrease.The following randomized splaying scheme works for any real number p 2 [0; 1].Rand-Splay(p): When an element x is accessed, with probability p, splay the tree at the nodeholding x. With probability 1� p, leave the tree as it is.We analyze Rand-Splay(p) using the potential function� = (1=p+ d)Xu2T �(u):Loosely speaking, we will show that the (1 + d) factors in Lemma 1 and Theorems 3 { 4 reduceto (1 + pd).Lemma 2 Suppose that there is an access to an element x and that u 2 T is the node containingx. Then the expected amortized time incurred by Rand-Splay(p) to serve the access is at most(1 + pd) + 3(1 + pd)(�(r)� �(u)) = (1 + pd) + 3(1 + pd) log(�(r)=�(u)), where r is the root ofthe tree.Proof: In the tree T , consider the path from the root to the node u. On this path, the algorithmencounters zig, zig-zig and zig-zag cases. Given one of these cases, let E[ta] be the expectedamortized time needed by the algorithm. ThenE[ta] = E[t] +E[��];where E[t] is the expected actual time of the step and E[��] is the expected change in potential.For any node in the tree, let � and �0 denote the ranks before and after the step. We will showthatE[ta] � (1+pd)+3(1+pd)(�0(u)��(u)) in the zig case and thatE[ta] � 3(1+pd)(�0(u)��(u))in the zig-zig and zig-zag cases. The lemma follows by summing these bounds for all the casesthat occur on the access path.Let v denote the parent of u and w denote the parent of v if it exists.1. Zig case:The algorithm needs one time unit for searching. With probability p, one rotation is done.Thus E[t] = 1 + pd. If the edge between u and v is rotated, then the change in potential is(1=p+ d)(�0(u) + �0(v)� �(u)� �(v)) because the ranks only change at u and v. If the edge isnot rotated, then the potential does not change. Hence,E[ta] = E[t] + E[��]= 1 + pd+ p(1=p+ d)(�0(u) + �0(v)� �(u)� �(v))� (1 + pd) + (1 + pd)(�0(u)� �(u)) � (1 + pd) + 3(1 + pd)(�0(u)� �(u)):The last line follows because �(v) � �0(v) and �0(u) � �(u).2. Zig-zig case:The algorithm needs two time units for searching. With probability p, two rotations are done.6



Thus, E[t] = 2+2pd. If the rotations are done, then the change in potential is (1=p+d)(�0(u)+�0(v)+ �0(w)� �(u)� �(v)� �(w)) because the ranks only change at u, v and w. Otherwise thepotential does not change. Therefore,E[ta] = E[t] +E[��]= 2(1 + pd) + p(1=p+ d)(�0(u) + �0(v) + �0(w)� �(u)� �(v)� �(w))= (1 + pd)(2+ �0(u) + �0(v) + �0(w)� �(u)� �(v)� �(w)):Using the same techniques as in [12] we can show that (2+ �0(u) + �0(v)+ �0(w)� �(u)� �(v)��(w)) � 3(�0(u)� �(u)). Hence, E[ta] � 3(1 + pd)(�0(u)� �(u)).3. Zig-zag case:We have E[ta] = E[t] +E[��]= 2(1 + pd) + p(1=p+ d)(�0(u) + �0(v) + �0(w)� �(u)� �(v)� �(w))= (1 + pd)(2+ �0(u) + �0(v) + �0(w)� �(u)� �(v)� �(w)):Again, as in [12] we can show (2+ �0(u) + �0(v)+ �0(w)� �(u)� �(v)� �(w)) � 3(�0(u)� �(u)).We conclude E[ta] � 3(1 + pd)(�0(u)� �(u)). 2The following theorems can be developed in the same way as in Section 3.Theorem 5 The expected total access time incurred by Rand-Splay(p) is at most(1 + pd)(3m logn+m) + C; where C = (1=p+ d)n logn.Theorem 6 If every element is accessed at least once, then the expected total access time in-curred by Rand-Splay(p) is at most (1 + pd)(3Pni=1 q(xi) log(m=q(xi)) + m) + C; where C =(1=p+ d)Pni=1 log(m=q(xi)).Theorem 7 If f is any �xed element, the expected total access time incurred by Rand-Splay(p)is at most (1+ pd)(6Pmj=1 log(jk(xij)� k(f) + 1j)+ 7m)+C; where C = (1=p+ d)2n(logn+1).Theorem 8 The expected total access time incurred by Rand-Splay(p) is at most(1 + pd)(6Pmj=1 log(t(j) + 1) + 4m) + C; where C = (1=p+ d)(2n logn + n).The bounds in Lemma 2 and Theorems 5 { 8 show that our randomized splaying schemeimproves the deterministic scheme. At �rst sight Lemma 2 seems to imply that the probabilityp should be chosen as small as possible. However, this is not true. In Theorems 5 { 8, the valueof C, which reects the overall change in potential, increases as p decreases. Thus, p should bechosen in such a way that 1=p is a \constant" in the additive term C. The optimal choice of pdepends on the size of the tree.So far we have only considered accesses to elements in the tree. Suppose that we also want toexecute update operations on the set S. Obviously, an insertion of a new element x can also beimplemented using our randomized splaying strategy. First, we insert a new leaf node containingx at the appropriate position in the tree. Then, with probability p, we splay the tree at this newnode. Similarly, we can adapt the delete operation in deterministic splay trees. However, theimprovement obtained using randomized splaying can be small since a delete operation involvesmaking a join of two subtrees, see [12] for details.7



5 Experimental resultsWe have implemented Rand-Splay(p) and tested it on randomly generated request sequences.More precisely, we modi�ed an existing splay tree code by Daniel Sleator that implements top-down splaying. In top-down splaying the rotations are performed while the algorithm movesdown along the access path.In the following we report on experiments that we have done on a test set consisting ofN = 216 elements. First,N = 216 elements with distinct integer keys from 1; : : : ; N were insertedinto the tree in a random order. Then, kN access operations were executed; we considered thevalues k = 2i, i = 0; 1; : : : ; 5. Finally, the N elements were deleted from the tree. We testedRand-Splay(p) for p = 2�i, i = 0; 1; : : : ; 8, and p = 0. Note that, for p = 1, Rand-Splay(p)is identical to the deterministic splaying scheme by Sleator and Tarjan. For p = 0, Rand-Splay(p) works with the static tree that is generated during the N insertions of elements. Wedid experiments with request sequences that were generated according to the following schemes.(1) Random sequences : We considered request sequences generated by probability distribu-tions and concentrated on two classical distributions.(a) Uniform distibution: Each access was made to an element chosen uniformly at randomfrom among the N elements in the tree. This distribution has been used in theexperimental analysis of other data structures, see for instance [11].(b) Zipf 's distibution: For every request, the element with key i is requested with prob-ability qi = c=i where c = 1=HN ;and HN = PNi=1 1=i is the N -th Harmonic number. This distribution has beenstudies extensively, see for instance Knuth [7]. The distribution is motivated byZipf's observation, that in a natural language text, the n most common word occursroughly with frequence proportional to 1=n. He observed the same phenomenon incensus tables and other areas.(2) Random sequences with high locality of reference: Request sequences generated by ap-plications executed on a computer system often exhibit locality of reference: Within ashort interval of the request sequences, all requests are made to elements that come froma relatively small set W of elements. Such a set is called a working set . The workingset may change over time. We model this as follows. We assume that a working set Wchanges after roughly l requests, where l is a multiple of w = jW j, i.e. l = k � w for someconstant k. In our experiments we considered the values w = 50; 100; 150 and k = 1; 2; 3.Each working set W consists of w elements chosen uniformly at random from among theelements in the tree. We investigated subsequences of length l generated according to thefollowing schemes.(a) Uniform distribution: Each of the l requests is an element chosen uniformly at randomfrom W .(b) Zipf 's distribution: The probabilities according to which the elements from W arerequested satisfy Zipf's law.We next describe our results. All the experiments were executed on a SPARC Ultra 10. Ourexperimental results are quite stable in the sense that, for each of the request schemes (1a/b)and (2a/b), a doubling of the number of accesses results in a doubling of the total access time.8



Therefore Tables 1{ 4 only show the results for 32 �N requests. The same qualitative behaviorshows for shorter request sequences. Each table shows the time, in seconds, that is necessaryto execute 32 � N accesses using Rand-Splay(p). Additionally, we have computed the relativeaccess times, assuming that the deterministic splaying scheme Rand-Splay(1) takes 100% of time.Tables 3 and 4 show the results for working sets of size w = 100 and subsequences of lengthl = 2w. For other values of w and l we investigated, the same qualitative performance showed.The �gures do not include the time required for the N insertions and deletions of elementsbecause our goal is to concentrate on the improvement achieved on accesses. As mentionedbefore, deterministic splay trees have a good performance on insertions and deletions.p 1 12 14 18 116 132 164 1128 1256 1512 0sec. 7.47 6.56 6.08 5.87 5.77 5.74 5.70 5.69 5.74 5.79 6.0% 100 87.8 81.3 78.6 77.2 76.8 76.3 76.1 76.8 77.5 80.3Table 1: Access times (in seconds) and relative access times, assuming that deterministic splayingtakes 100% time, of Rand-Splay(p) on sequence generated according to scheme (1a).p 1 12 14 18 116 132 164 1128 1256 1512 0sec. 2.03 1.76 1.61 1.53 1.49 1.47 1.44 1.45 1.47 1.58 4.0% 100 86.7 79.3 75.3 73.4 72.4 70.9 71.4 72.4.8 77.8 197.0Table 2: Results for request sequence generated according to scheme (1b).On request sequences generated according to scheme (1), for p = 12 and p = 14 , Rand-Splay(p)achieves improvements of 12% to 20% over deterministic splaying,. For smaller values of p theimprovements are even greater, the best results being obtained using the probability p = 1128 ,with improvements of about 25%. For smaller probabilities p, p < 1128 , we typically observe againan increase in the access time. The same qualitative behaviour also shows for other dictionarysizes of, for instance, N = 215 or N = 217 elements. On the other hand, on request sequencesgenerated according to scheme (2) the results are negative. Only for probabilities (around) 1=2we observe an improvement over deterministic splaying. The improvements are in the range of2 %, which is almost marginal.p 1 12 14 18 116 0sec. 4.54 4.49 4.70 4.86 5.0 5.27% 100 98.9 103.5 107.0 110.1 116.0Table 3: Results for request sequences generated according to scheme (2a).The results can be explained as follows. Scheme (1): If requests are generated by the uniformdistribution, then it is not worthwhile to rotate the elememt currently accessed to the root of thetree because it is not likely to be accessed in the near future. Executing Rand-Splay(p) for smallprobabilities p leads to good results. If requests are generated according to Zipf's law, then itis worthwhile to rotate elements to the root of the tree because only a small set of items are9



p 1 12 14 18 116 0sec. 3.49 3.41 3.50 3.72 3.97 4.8% 100 97.7 100.2 106.6 113.7 137.5Table 4: Results for request sequence generated according to scheme (2b).ever requested. Our randomized algorithm achieves improvements over deterministic splayingbecause Rand-Splay(p) saves a lot of rotations once these items are near the root of the tree.Scheme (2): On request sequences that exhibit high locality of reference it is necessary to rotatethe requested elements to the root of the tree. In Rand-Splay(p) for p > 1=2, these movementsof elements are delayed for too long, diminishing the advantage of savings in rotations.The access times shown in the table do not include the time needed to generate pseudo-random numbers. If we add this time, then the access times are slightly (i.e. about 1%) higherand depend on the pseudo-random number generator that is used. (In our experiments we haveused the C library functions rand(), random() and lrand48().) Our motivation for neglectingthe time used in random number generation is that, in our experiments, we can achieve thesame results without any pseudo-random numbers. We obtain the same access times if wedeterminstically execute a splaying operation on every 2j-th access, j 2 f1; 2; : : : ; 8g. In abouthalf of the cases, the counter scheme even ranks slightly better. Thus, in practice, instead ofusing \expensive" pseudo-random numbers, one might as well splay deterministically on every2j-th access.Our overall recommentation is to execute Rand-Splay(p) for relatively high probabilitiesp � 1=2 (or the deterministic counter scheme for small values j � 2). This choice gives areasonable improvement on request sequences generated by a �xed distribution and should notharm the performance on sequences with high locality of reference.insertions/deletions6 ConclusionsIn this paper we investigated randomized splay trees from a theroretical and practical point ofview. The algorithm presented in Section 4 is not the only natural randomized version of splaytrees. Consider the following algorithm. During an access operation, whenever we encountera zig, zig-zig, or zig-zag case on the access path, we execute the corresponding rotations withprobability p. It is not hard to show that Lemma 2 and Theorems 5 { 8 also hold for thisalgorithm. In this paper we have examined Rand-Splay(p) in more detail because it is very easyto implement and uses only one random number during each access.
10



References[1] G. M. Adel'son-Vel'skii and E. M. Landis. An algorithm for the organization of information.Soviet Mathematics Doklady, 3:1259{1262, 1962.[2] R. Chaudhuri and H. Hoft. Splaying a search tree in preorder takes linear time. SIGACTNews, 24(2):88{93, Spring 1993.[3] R. Cole. On the dynamic �nger conjecture for splay trees. part 2: Finger searching. Tech-nical Report 472, Courant Institute, NYU, 1989.[4] R. Cole. On the dynamic �nger conjecture for splay trees. In Proc. 22nd Annual ACMSymposium on Theory of Computing, pages 8{17, 1990.[5] R. Cole, B. Mishra, J. Schmidt, and A. Siegel. On the dynamic �nger conjecture for splaytrees. part 1: Splay sorting logn-block sequences. Technical Report 471, Courant Institute,NYU, 1989.[6] M. F�urer. Randomized splay trees. In Proc. 10th Annual ACM-SIAM Symposium on Dis-crete Algorithms , short form abstract, pages S903{904, 1999.[7] D.E. Knuth. The Art of Computer Programming: Sorting and Searching . Addion Wesley,1973.[8] J. M. Lucas. On the competitiveness of splay trees; Relations to the Union-Find Prob-lem. In L.A. McGeoch and D.D. Sleator, On-Line Algorithms. DIMACS Series in DiscreteMathematics and Computer Science, pages 95{124, 1992.[9] J.I. Munro, T. Papadakis and R. Sedgewick. Deterministic skip lists. In Proc. 3rd AnnualACM-SIAM Symposium on Discrete Algorithms, pages 367{375. 1992.[10] G. Port and A. Mo�at. A fast algorithm for melding splay trees. In Proc. Workshop onAlgorithms and Data Structures (WADS '89), Spriner Lecture Notes in Computer Science,Volume 382, pages 450{459, 1989.[11] W. Pugh. Skip lists: A probabilistic alternative to balances trees. Communications of theACM, 33:668{676, 1990.[12] D.D. Sleator and R.E. Tarjan. Self-adjusting binary search trees. Journal of the ACM,32:652{686, 1985.[13] A. Subramaniam. An explanation of splaying. Journal of Algorithms, 20:512{525, 1996.[14] R. Sundar. Twists, turns cascades, deque conjecture, and scaning theorem. In Proc. 30thIEEE Foundations of Computer Science, pages 555{559, 1989.[15] R. E. Tarjan. Sequential access in splay trees takes linear time. Combinatorica, 5(4):367{378, 1985.
11


