
Polynomial Time Approximation Schemes forDense Instances of the Minimum Constraint Satisfaction(Preliminary version)Cristina BazganLAMSADEUniversit�e Paris-Dauphine75775 Parisbazgan@lamsade.dauphine.fr Marek KarpinskiDept. of Computer ScienceUniversity of Bonn53117 Bonnmarek@cs.uni-bonn.deJanuary 6, 2000AbstractWe present a polynomial time approximation scheme for dense instances of theminimal constraint satisfaction problems,MIN kCSP. This class contains minimizationproblems that search for boolean assignments to the variables minimizing the number ofsatis�ed constraints depending on at most k variables. By dense instances of a problemin MIN kCSP we mean instances having
(nk�1)-read boolean representations wheren is the number of boolean variables.1 IntroductionIn this paper we study the approximability of dense instances of minimization versionsof boolean constraint satisfaction problems. An input of a boolean constraint satisfactionproblem is a collection F of boolean functions called constraints that are applied to asubset of at most k variables among n boolean variables. The problem consists in �ndingan assignment of the boolean variables that minimizes the number of constraints satis�ed.We call the class of all such problems MIN kCSP. This class contains problems as: MinkSat,Min kDNF, Min Equivalence,Min Paired Bisection,Min 2CNF Deletion,Min Ek Lin 2, Nearest Codeword,Min Horn Deletion,Min Implicative HittingSet-B (cf. e.g. [KST97], [BFdV99]).Constraint satisfaction problems were studied �rstly 1978 by Schaefer [S78] that gavea classi�cation of decision problems in polynomial solvable and NP-hard. An instance ofsuch a decision problem has in input m constraints of F . The language Sat(F) consists ofall instances which have an assignment satisfying all m constraints. Schaefer described sixclasses of function families and he showed that if F is a subset of one of these classes thenthe decision problem is in P, otherwise the decision problem is NP-hard.His work was followed by the work of Creignou [C95], Khanna, Sudan and Williamson[KSW97] and Khanna, Sudan, Trevisan [KST97] who obtained a classi�cation of the approx-imability of maximization and minimization problems derived from constraint satisfactionproblems. In fact [C95] and [KSW97] extend Schaefer's work to maximization problems.1

Two classes of maximization problems are de�ned MAX CSP(F) and MAX ONES(F). Aninput of a problem in such a class consists of m constraints of F that are applied at a subsetof at most k variables among n boolean variables. In the �rst case the objective is to �ndan assignment which maximizes the number of constraints that are satis�ed. In the secondcase the objective is to �nd an assignment that satis�es all the constraints and which max-imizes the number of variables set to 1. They showed the existence of a �nite partition ofall function families such that the approximability of such a problem is determined by themembership of F in one of the class of the partition. [KST97] considered the correspondingminimization classes: MIN CSP(F) and MIN ONES(F) and their result is similar to theresult of [KSW97] for MAX CSP(F) and MAX ONES(F).By a dense instance of a problem in MIN kCSP we mean an instance over n variableswith a representation in which the number of occurrences (variable reads) of each variableis
(nk�1). An average dense instance is an instance for which the number of constraintsis
(nk).The approximability theory of average dense instances of maximization problems suchas Max Cut, Max kSAT has had many successes, starting with [AKK95] and [FdV96].See [K97] for a review. In [AKK95] it was proved in particular that the average denseinstances of any problem in MAX SNP have a polynomial time approximation scheme. In[GGR96], it was proved that many of these problems can be approximated in constant timewith an additive error �n2 where n is the size of the input in a certain probe model (implyingthat the dense versions have also constant-time approximation schemes). Also Frieze andKannan [FK99], [FK96] gave constant time approximation schemes for some average denseproblems in the oracle model of computation.The case of dense instances of minimization problems seems to be harder. In [AKK95]polynomial time approximation schemes for dense Bisection and Min kCut was given.The case of dense Vertex Cover was settled in [KZ97], [CT96]: dense and average denseinstances do not have approximation schemes. Also in [KZ97], a c lnn approximation al-gorithm was given for every constant c > 0 for average dense instances of Set Cover.[AFK96] gave a polynomial time approximation scheme for average dense instances of somevariants of Min Linear Arrangement problem. For dense and average dense Band-width, [KWZ97] gave a constant approximation algorithm. In [FdVK99] it was also provedthat dense and average dense Min TSP(1,2) and Longest Path have no polynomial timeapproximation schemes. A polynomial time approximation scheme was given in [BFdV99]for dense Min 2Sat and dense Min Equivalence problems.In this paper we prove that some dense instances of any problem in MIN kCSP havepolynomial time approximation schemes. Interestingly, contrary to its maximization versionfor which average dense instances have polynomial time approximation schemes [AKK95],all the average dense MIN kCSP problems are hard to approximate.Our results imply polynomial time approximation schemes for dense instances of someoptimization problems that are hard to approximate on general instances and that remainshard to approximate on average dense instances as: Min kSat, Min kDNF, NearestCodeword,Min 2CNF Deletion. We remark that Dense MIN ONES has no polynomialtime approximation scheme since Min Vertex Cover is in MIN ONES and Dense MinVertex Cover has no polynomial time approximation scheme.The paper is organized as follows. In Section 2 we give the necessary de�nitions andprove that the problems in which we are interested are NP-hard. In Section 3 we show that2

the instances of our problems where each clause has exactly k literals are at least as hardto approximate as the instances where the clauses have at most k literals. In Section 4we give polynomial time approximation schemes for dense instances of our problems whereeach clause has exactly k literals and in Section 5 we give some conclusions.2 PreliminariesWe begin with some basic de�nitions.Approximability. Let us recall a few de�nitions about approximability. Given an instancex of an optimization problem A and a feasible solution y of x, we denote bym(x; y) the valueof the solution y, and by optA(x) the value of an optimum solution of x. The performanceratio of y is R(x; y) = max�m(x; y)optA(x) ; optA(x)m(x; y)� :For a constant c > 1, an algorithm is a c-approximation algorithm, if for any instancex of the problem it returns a solution y such that R(x; y) � c: We say that an optimiza-tion problem is constantly approximable if, for some c > 1, there exists a polynomial timec-approximation algorithm for it. An optimization problem has a polynomial time approxi-mation scheme (a PTAS, in short) if, there exists a polynomial time (1+ ")-approximationfor it for every constant " > 0.L-reductions. Let A and B be two optimization problems. ThenA is said to be L-reducible(cf. [PY91]) to B (A �L B) if there are two constants �; � > 0 such that1. there exists a function, computable in polynomial time, which transforms each in-stance x of A into an instance x0 of B such that optB(x0) � � � optA(x),2. there exists a function, computable in polynomial time, which transforms each solu-tion y0 of x0 into a solution y of x such that jm(x; y)� optA(x)j � � � jm(x0; y0) �optB(x0)j.The important property of this reduction is that it preserves PTAS; that is, if A is L-reducible to B and B has a PTAS then A has a PTAS as well.We introduce now some minimization constraints satisfaction problems. Some of theseproblems as Min kSat for k � 2 do not have PTAS on general instances [KKM94] underusual complexity theoretic assumptions but can be approximated in polynomial time withinsome constant factors [BTV96]. The problemMin kDNF on the general instances for k � 2cannot be approximated even within the ratio nc for every constant c > 0 [KT94].We assume that all Sat (DNF) representations we deal with in this paper will haveclauses essentially depending on all literals, i.e., if a clause C depends on k variables, thereis no clause C0 depending on k � 1 variables such that C is equivalent to C 0.Min kSatInput: A set of clauses C1; : : : ; Cm of size at most k on n variables x1; : : : ; xn.Output: A truth assignment to the variables that minimizes the number of clauses satis�ed.Min EkSat is the variant of Min kSat problem for which each clause contains exactly k3

literals.Min kDNFInput: A set of conjunctions C1; : : : ; Cm of size at most k on n variables x1; : : : ; xn.Output: A truth assignment to the variables that minimizes the number of conjunctionssatis�ed.Min EkDNF is the variant ofMin kDNF problem where each conjunction contains exactlyk literals.A constraint on n boolean variables is a non-constant boolean function f : f0; 1gk !f0; 1g. A constraint application is a pair (f; (i1; : : : ; ik)) (where ij 6= i` if j 6= `) where theij , 1 � j � k indicate to which among the n variables the function f is applied. In thefollowing we will not distinguish constraint applications and constraints, more exactly wewill speak only about constraints. The instances of the following two problems consist of acollection of constraints, that means that a function could appear more than one time butit is applied at di�erent sets of variables.Min kCSP(DNF)Input: A collection of m constraints f1; : : : ; fm on boolean variables x1; : : : ; xn where eachfj depends on at most k variables and is representated by a DNF formula.Output: An assignment to xi that minimizes the number of satis�ed constraints.Min kCSP(Sat)Input: A collection of m constraints f1; : : : ; fm on boolean variables x1; : : : ; xn where eachfj depends on at most k variables and is representated by a Sat formula.Output: An assignment to xi that minimizes the number of satis�ed constraints.Remark The problems Min kCSP(DNF) and Min kCSP(Sat) provide an explicit syn-tactic representation of constraints f1; : : : ; fm and will provide a basis for the underlyingnotion of dense minimization problems.Min kCSP(EDNF) and Min kCSP(ESat) are the variants of the above problemswhere the clauses of each constraint representation of the collection have the same size.Density. An instance ofMin kSat (Min kDNF) is �-dense for some constant �, if for eachvariable the total number of occurrences (reads) of the variable (and its negation) is at least�nk�1. An instance ofMin kCSP(Sat) (Min kCSP(DNF)) is �-dense if for each variablethe total number of occurrences of the variable (and its negation) is at least �nk�1 and aninstance ofMin kCSP(Sat) (Min kCSP(DNF)) is dense if there is a constant � such thatthe instance is �-dense. An instance of Min kCSP(Sat) (Min kCSP(DNF)) is average�-dense if the number of boolean functions in it is at least �nk and it is average-dense ifthere is a constant � such that the instance is average �-dense.We show in the following that Dense Min kCSP(Sat) and Dense Min kCSP(DNF)are NP-hard. In fact we show that Dense Min 2Sat is NP-hard and it is easy to see thatMin 2Sat is a particular case of Min kCSP(Sat) and Min kCSP(DNF).We construct a direct reduction from Min 2Sat (the problem proven NP-hard in[KKM94]) to Dense Min 2Sat.Given an instance F of Min 2Sat on n variables, x1; : : : ; xn and with m clausesC1; : : : ; Cm we de�ne an instance F 0 of DenseMin 2Sat as follows: We add n new variables4

y1; : : : ; yn. F 0 will containm clauses of F and the clauses xi_yj ; �xi_yj ; 1 � j � n; 1 � i � n.The total number of occurrences of xi is at least 2n and the total number of occur-rences of yj is also at least 2n. So, F 0 is a dense instance. Also, it is easy to see thatopt(F 0) = opt(F) + n2.Remark that the reduction that prove the inapproximability of Min 3DNF ([KT94])use copying of variables but this process is not allowed without the introducing of newvariables and by the introduction of new variables the density is lost.3 Some useful L-reductionsWe need �rstly some technical results. More exactly we are going to show that if denseinstances ofMin EkSat problem (where the clauses have exactly the size k) have a polyno-mial time approximation scheme then dense instances of Min kSat have also a polynomialtime approximation scheme. The same result holds also for Min kDNF, Min kCSP(Sat)and Min kCSP(DNF).Lemma 1 For any k � 2, Dense Min kSat �L Dense Min EkSat.Proof : Let F be an instance �-dense ofMin kSat on n variables x1; : : : ; xn andm clausesC1; : : : ; Cm. We consider n new variables y1; : : : ; yn. The instance of Min EkSat that weconstruct, F 0, will contain the variables x1; : : : ; xn; y1; : : : ; yn. If a clause of F contains tliterals, Ci = `1_: : :_`t where t < k, then we de�ne the clause C0i = `1_: : :_`t_y1_: : :_yk�t.If a clause Ci contains k literals then we de�ne C0i = Ci. The instance F 0 contains the clausesC0i, 1 � i � m at which we add kn ! clauses of size k that are in fact all the possibilitiesto combine the variables y1; : : : ; yn in sets of size k.Since the density of F is �, for each variable xi, the total number of occurrences of thevariable (and its negation) in F 0 is at least �nk�1 = �(2n)k�12k�1 . The variables yi, 1 � i � nhave at least k � 1n� 1 ! occurrences, so at least (2n)k�122k�2(k�1)! . So, the density of F 0 is at leastminf �2k�1 ; 122k�2(k�1)!g.Let justify in the following that this is a L-reduction. If opt(F) is the value of anoptimum solution of F then the optimum value of F 0, opt(F 0) � opt(F) (we consider thatthe variables y take the value 0). Each solution of F 0 could be transformed in a solution ofF 0 with a smaller value and where the variables y take the value 0. This solution give us asolution of F that satisfy the same number of clauses as it satisfy in F 0. 2In a similar way we can prove thatLemma 2 For any k � 2, Dense Min kDNF �L Dense Min EkDNF.Lemma 3 For any k � 2, DenseMin kCSP(DNF) �L DenseMin (2k�1)CSP(EDNF).Proof : Let F be an instance �-dense of Min kCSP(DNF) on n variables, x1; : : : ; xn andwithm functions. We construct an instance F 0 of DenseMin (2k-1)CSP(EDNF) as follow-ing: We add n new variables y1; : : : ; yn. F 0 will contain as variables x1; : : : ; xn; y1; : : : ; yn.If a function fj of F has a clause with t literals, Ci = `1 ^ : : : ^ `t where t < k then we5

de�ne the clause C 0i = `1 ^ : : :^ `t ^ y1^ : : :^ yk�t. If a clause Ci contains k literals then wede�ne C 0i = Ci. Suppose fj = Cj;1 _ : : :_ Cj;tj . We de�ne f 0j = C 0j;1 _ : : :_ C 0j;tj . We de�nein the following the clause Ai;j , 1 � i � n; 1 � j � k � 1n ! as the clause that containsthe variable xi and the jth set of k � 1 variables y among the n variables. For exampleAj;1 = xi ^ y1 ^ : : : ^ yk�1.The instance F 0 contains the functions f 0j _ Ap;q, 1 � j � m; 1 � p � n; 1 � q � k � 1n !. F 0 is an instance ofMin (2k�1)CSP(EDNF) since the clauses of the functionsof F 0 have the same size k and each depends of at most 2k � 1 variables.Since the density of F is �, for each variable xi, the total number of occurrences ofthe variable (and its negation) in F 0 is at least �nk�1 k � 1n !� c(�; k)n2k�1, where cis a constant function depending only on �; k. A variable yi has at least k � 2n !nmoccurrences, so at least c(k)n2k�1, where c is a constant function depending only on k.Let justify in the following that this is an L-reduction. If opt(F) is the value of anoptimum solution of F , then the optimum of F 0, opt(F 0) � opt(F) (the variables y takethe value 0). Each solution of F 0 can be transformed in a solution of F 0 with a smallervalue and where the variables y take the value 0. This solution give us a solution of F thatsatisfy the same number of functions as it satisfy in F 0. 2In a similar way we prove thatLemma 4 For any k � 2, Dense Min kCSP(Sat) �L Dense Min (2k� 1)CSP(ESat).4 PTAS for DenseMin kCSP(EDNF) and DenseMin kCSP(ESat)In this section we give �rstly an approximation scheme for Dense Min E3Sat, after thiswe generalized it to Dense Min EkSat and Dense Min EkDNF. At the end of the sectionwe give also a PTAS for Dense Min kCSP(EDNF) and Dense Min kCSP(ESat).The idea of these approximation schemes is to run for each �-dense instance two distinctalgorithms and to select the solution with the smallest value. Let " be the error withinwhich we want to obtain the solution. One of the algorithm gives an (1+ ")-approximationfor the instances whose minimum value is at least f("; �; n; k) where f is a certain function.This algorithm consists in writing the problem as a smooth Integer Programming (IP) andto use the algorithm of [AKK95] in order to obtain an (1 + ")-approximation. The secondalgorithm gives a good solution for the instances with an optimum value greater thanf("; �; n; k). The idea of this algorithm is to do an exhaustive sampling and to combine itwith a certain greedy algorithm. The both algorithms can be derandomized as in [AKK95].4.1 Min E3SatTheorem 5 Dense Min E3Sat has a PTAS.Let F be an input �-dense of Min E3Sat with m clauses on a set X = fx1; : : : ; xng of6

S1

xi xi

S0

Sui

Svi

S
vi

SuiFigure 1:variables. Let " be an allowed error and � = q6�3"103 . Similarly to [AKK95] we run twodistinct algorithms and select the solution with the smallest value. The �rst algorithmgives a good solution for the instances whose minimum value is at least �n3 and the secondfor the instances whose minimum value is less than �n3.1. First algorithm (Algorithm for the case of `large" instances)An ` aritmetization " method can be used to write a Min E3Sat instance as a degree3 smooth integer program. We introduce n binary variables y1; : : : ; yn and for each i,1 � i � n, we replace each occurrence of variable xi by 1� yi, each negated occurrence ofvariable xi by yi, each operator ` _ " by multiplication and for each clause we subtract theresulting term from 1. Let tj be the polynomial obtained in this way from the jth clause.So, Min E3Sat problem can be written as a degree 3 smooth IP as following :(minPmj=1 tj(y1; : : : ; yn)yi 2 f0; 1g 8i; 1 � i � n:Using the algorithm of [AKK95] we �nd in polynomial time (1 + ")-approximation toit. 2. Second algorithm (Algorithm for the case of `small" instances)Given a set S of variables and an assignment to these variables. Denote by S1 (S0) theset of literals corresponding to the variables of S that are true (false). Let X1(X0) be theset of literals that are true (false) in an optimum solution of F . We call a literal a neighborof another literal if the two literals occur in a same clause in F . A number of such neighborswill be counted with multiplicities among the clauses of F .For a variable xi we de�ne (Figure 1):uSi = jfneighbors of xi among the literals of S1gvSi = jfneighbors of xi among the literals of S0g�uSi = jfneighbors of �xi among the literals of S1g�vSi = jfneighbors of �xi among the literals of S0gLet S be a set of ` = O((logn)=�) variables picked randomly. For each possible assign-ment S1; S0 of the variables of S: 7

1. Let V1 = S1 and V0 = S0 be the current assignment to the literals. LetT1 = fxi =2 S : vSi � (uSi + vSi + �uSi + �vSi)=8gT2 = fxi =2 S : �vSi � (uSi + vSi + �uSi + �vSi)=8g:For each xi 2 T1 we assign the value true at xi and we introduce xi in V1 and �xi inV0. For each xi 2 T2 we assign the value false at xi and we introduce xi in V0 and �xiin V1.2. Let U be the set of variables that have no value after the �rst step of the algorithmand let U1 = U0 = ;. Suppose that U = fxk; : : : ; xng.For i = k to n we de�ne :vali = 1=2jfneighbors of xi in V0 that not appear in the same clause as a literal of V1gj+1=2jfclauses of F with a literal xi; a literal in V0 and a literal in U0gj+1=2jfclauses of F with a literal �xi; a literal in V0 and a literal in U1gjvali = 1=2jfneighbors of �xi in V0 that not appear in the same clause as a literal of V1gj+1=2jfclauses of F with a literal �xi; a literal in V0 and a literal in U0gj+1=2jfclauses of F with a literal xi; a literal in V0 and a literal in U1gjIf vali � vali then assign to xi the value true and put xi in U1 and �xi in U0 and letbiasi(U) = valiotherwise assign to xi the value false and put xi in U0 and �xi in U1 and let biasi(U) =vali.The clauses with at least a literal in V that are satis�ed (and that were not satis�edby the current assignment V1; V0) when xi = true are the clauses with a literal xi, a literalin V0 and a literal in U0 and the clauses with a literal �xi, a literal in V0 and a literal inU1. For a clause xi _ `1 _ `2 where `1 2 V0 and `2 2 U0 we added 1=2 + 1=2 to the sumPni=t biasi(U) when we place xi in U1. For a clause �xi _ `1 _ `2 where `1 2 V0 and `2 2 U1we added 1=2 to this sum when we placed `2 in U1 and we added 1=2 when we placed �xi inU0.Let us sketch now a proof of correctness of the second algorithm. We denote by opt(F)the value of an optimum solution of F and by m(F; sol) the value of the solution given bythe second algorithm.Lemma 6 With high probability,1. T1 contains each variable xi with the property that in an optimum solution of FvXi � (uXi + vXi + �uXi + �vXi)=10:2. T2 contains each variable xi with the property that in an optimum solution of F�viX � (uXi + vXi + �uXi + �vXi)=10:8

Also with high probability, each variable in the set T1 [T2 is placed as in the optimumsolution.Proof : 1. Let xi be a variable with the property that in the optimum solutionvXi � (uXi + vXi + �uXi + �vXi)=10:Applying the Sampling Lemma for a random sample S of O(logn) variables, the prob-ability that vSi > (uSi + vSi + �uSi + �vSi)=8is n�
(1): So, the probability that xi 2 T1 is 1� n�
(1):2. Let xi be a variable in T1. ThenvSi � (uSi + vSi + �uSi + �vSi)=8:Applying the Sampling Lemma for a random sample of O(logn) variables, the probabilitythat vXi > (uXi + vXi + �uXi + �vXi)=10is n�
(1): Then the probability thatvXi � (uXi + vXi + �uXi + �vXi)=10is 1� n�
(1): 2Lemma 7 With high probability, n� (`+ jT1j+ jT2j) � 10opt(F)�n2 .Proof : If a variable xi has no a truth value after the �rst step of the algorithm then fromLemma 6 with high probabilityvXi > (uXi + vXi + �uXi + �vXi)=10and �viX > (uXi + vXi + �uXi + �vXi)=10:Since the sum uXi +vXi + �uXi + �vXi � 2�n2, opt(F) � 1=2minfvXi ; �viXgjU j � (n� (`+ jT1j+jT2j))2�n2=2 � 10 (we divided by 2 since we can count in the above sum an edge twice). 2Lemma 8 If opt(F) < �n3 then with high probability the number of clauses satis�ed by theassignment given by the Algorithm 2 is at most (1 + ")opt(F) where " = 103�26�3 .Proof : Let v(V) be the number of clauses of F with at least a literal in V1 and let t(U)be the number of clauses with the three literals in U and at least one in U1.The number of clauses satis�ed by the solution given by the second algorithm ism(F; sol) = v(V) + nXi=k biasi(U) + t(U):9

The function t(U) � 3jU j ! � jU j3=6 and the variables are placed in U such thatnXi=k biasi(U) � nXi=k biasi(Uopt):So, m(F; sol) � v(V) + nXi=k biasi(Uopt) + t(Uopt) + t(U)� t(Uopt) �� opt(F) + t(U) � opt(F) + jU j3=6 � opt(F) + 103opt(F)3=(6�3n6) �� opt(F)(1 + 103�2n6=(6�3n6)) = opt(F)(1 + 103�2=(6�3)): 24.2 Min EkSatTheorem 9 Dense Min EkSat has a PTAS.Let F be an input �-dense ofMin EkSat withm clauses on n variables. Let " be the allowederror and � a certain function that depends of ", �, k. We run two distinct algorithms andselect the solution with the smallest value. The �rst algorithm gives a good solution forthe instances whose minimum value is at least �nk and the second for the instances whoseminimum value is less than �nk .1.First algorithm (Algorithm for the case of `large" instances)We use the ` aritmetization " method as for Min E3Sat in order to write this problemas a degree k smooth IP.2.Second algorithm (Algorithm for the case of `small" instances)Given a set S of variables and an assignment of these variables denote by S1 (S0) theset of literals of S that are true (false). Let X1(X0) be the set of literals that are true(false)in an optimum solution of F . Again a literal will be a neighbor of another literal if the twoliterals occur in a same clause in F .For a variable xi we de�ne by:uSi = jfneighbors of xi (with multiplicity) among the literals of S1gvSi = jfneighbors of xi (with multiplicity) among the literals of S0g�uSi = jfneighbors of �xi (with multiplicity) among the literals of S1g�vSi = jfneighbors of �xi (with multiplicity) among the literals of S0gLet S be a set of O((logn)=�) variables picked randomly. For each possible assignmentS1; S0 of the variables of S: 10

1. Let V1 = S1 and V0 = S0 be the current assignment of the literals.Let T1 = fxi =2 S : vSi � (uSi + vSi + �uSi + �vSi)=8gT2 = fxi =2 S : �vSi � (uSi + vSi + �uSi + �vSi)=8g:For each xi 2 T1 we assign the value true at xi and we introduce xi in V1 and �xi inV0. For each xi 2 T2 we assign the value false at xi and we introduce xi in V0 and �xiin V1.2. Let U be the set of variables that have no value assigned after the �rst step of thealgorithm and let U1 = U0 = ;. Suppose that U = fxt; : : : ; xng.For i = t to n we de�ne :� vali is the size of the set of clauses of F with a literal xi and the other literalswith a truth value: at least a literal in V0 and no literal in V1� vali is the size of the set of clauses of F with a literal �xi and the other literalswith a truth value: at least a literal in V0 and no literal in V1If vali � vali then assign to xi the value true and put xi in U1 and �xi in U0 and letbiasi(U) = valiotherwise assign to xi the value false and put xi in U0 and �xi in U1 and let biasi(U) =vali.Let us sketch now a proof of correctness of the second algorithm. We denote by opt(F)the value of an optimum solution of F by m(F; sol) the value of the solution given by thesecond algorithm.Lemma 10 With high probability,1. T1 contains each variable xi with the property that in an optimum solution of FvXi � (uXi + vXi + �uXi + �vXi)=10:2. T2 contains each variable xi with the property that in an optimum solution of F�viX � (uXi + vXi + �uXi + �vXi)=10:Also with high probability, each variable in the set T1 [T2 is placed as in the optimumsolution.Proof : Similarly with the proof of Lemma 6. 2Lemma 11 With high probability, jU j � 10kopt(F)�nk�1(k�1) .11

Proof : If a variable xi has no value after the �rst step of the algorithm then with highprobability vXi > (uXi + vXi + �uXi + �vXi)=10and �viX > (uXi + vXi + �uXi + �vXi)=10:So, opt(F) � jU j�nk�1(k � 1)=(10k). 2Lemma 12 If opt(F) < �nk then with high probability the number of clauses satis�ed bythe assignment given by the second algorithm is at most (1+ ")opt(F) where " = 10kkk�k�1�k(k�1)k .Proof : Let v(V) be the number of clauses of F with at least a literal in V1 and let t(U)be the number of clauses with the k literals in U and at least one in U1.The number of clauses satis�ed by the solution given by the second algorithm ism(F; sol) = v(V) + nXi=t biasi(U) + t(U):The function t(U) � kjU j ! � jU jk and the variables are placed in U such thatnXi=t biasi(U) � nXi=t biasi(Uopt):So, m(F; sol) � v(V) + nXi=t biasi(Uopt) + t(Uopt) + t(U)� t(Uopt) �� opt(F) + t(U) � opt(F) + jU jk � opt(F)(1 + ") 24.3 Min EkDNFWe will turn now to the Min DNF problems.Theorem 13 Dense Min EkDNF has a PTAS.Let F be an instance �-dense of Min kDNF with m clauses and n variables. Let " bean allowed error and � a certain function depending of �; "; k. We again run two distinctalgorithms and select the solution with the smallest value. The �rst algorithm gives a goodsolution for the instances whose minimum value is at least �nk and the second for theinstances whose minimum value is less than �nk .1. First algorithm (Algorithm for the case of `large" instances)Again an ` aritmetization " method can be used to write Min Ek DNF as a degree ksmooth IP. We introduce n binary variables y1; : : : ; yn and for each i, 1 � i � n, we replaceeach occurrence of variable xi by yi, each negated occurrence of variable xi by 1� yi, each12

operator ` ^ " by multiplication. Let tj be the polynomial obtained in this way from thejth clause.So, Min EkDNF can be written as a degree k smooth IP as following :(minPmj=1 tj(y1; : : : ; yn)yi 2 f0; 1g 8i; 1 � i � n:Using the algorithm of [AKK95] we can �nd a polynomial time (1 + ")-approximationfor it.2. Second algorithm (Algorithm for the case of `small" instances)Given a set S of variables and an assignment of these variables denote by S1 (S0) theset of literals of S that are true (false). Let X1(X0) be the set of literals that are true(false)in an optimum solution of F . A literal is a neighbor of another literal if the two literalsoccur in a same clause in F .For a variable xi we de�ne by:uSi = jfneighbors of xi (with multiplicity) among the literals of S1gvSi = jfneighbors of xi (with multiplicity) among the literals of S0g�uSi = jfneighbors of �xi (with multiplicity) among the literals of S1g�vSi = jfneighbors of �xi (with multiplicity) among the literals of S0gLet S be a set of O((logn)=�) variables picked randomly. For each possible assignmentS1; S0 of the variables of S:1. Let V1 = S1 and V0 = S0 be the current assignment of the literals.Let T1 = fxi =2 S : uSi � k4k + 1(uSi + vSi + �uSi + �vSi)gT2 = fxi =2 S : �uSi � k4k + 1(uSi + vSi + �uSi + �vSi)g:For each xi 2 T1 we assign the value true at xi and we introduce xi in V1 and �xi inV0. For each xi 2 T2 we assign the value false at xi and we introduce xi in V0 and �xiin V1.2. Let U be the set of variables that have no value after the �rst step of the algorithmand let U1 = U0 = ;. Suppose that U = fxt; : : : ; xng.For i = t to n we de�ne :� vali is the size of the set of clauses of F with a literal xi and the other literalswith a truth value and that are satis�ed if xi = true� vali is the size of the set of clauses of F with a literal �xi and the other literalswith a truth value and that are satis�ed if i = false13

If vali � vali then assign to xi the value true and put xi in U1 and �xi in U0 and letbiasi(U) = valiotherwise assign to xi the value false and put xi in U0 and �xi in U1 and let biasi(U) =vali.Let us sketch now a proof of correctness of the second algorithm. We denote by opt(F)the value of an optimum solution of F by m(F; sol) the value of the solution given by thesecond algorithm.Lemma 14 With high probability,1. T1 contains each variable xi with the property that in an optimum solution of FuXi � 2k4k + 1(uXi + vXi + �uXi + �vXi):2. T2 contains each variable xi with the property that in an optimum solution of F�uiX � 2k4k + 1(uXi + vXi + �uXi + �vXi):Also with high probability, each variable in the set T1 [T2 is placed as in the optimumsolution.Proof : Similarly with the proof of Lemma 6. 2Lemma 15 With high probability, jU j � c(k)opt(F)�nk�1 .Proof : If a variable xi has no value after the �rst step of the algorithm then with highprobability uXi > 2k4k+ 1(uXi + vXi + �uXi + �vXi)and �uiX > 2k4k + 1(uXi + vXi + �uXi + �vXi):So, the value vXi +�vXi < 14k+1(uXi +vXi +�uXi +�vXi) and thus uXi > 2kvXi and �uXi > 2k�vXi .The size of the multi-set of neighbors of xi that make part (in an optimum solution) ofa clause that is satis�ed is at least uXi � kvXi > k4k+1(uXi + vXi + �uXi + �vXi). So, the numberof clauses that contain xi and are satis�ed is at least 14k+1(uXi + vXi + �uXi + �vXi). The valueuXi + vXi + �uXi + �vXi � (k � 1)�nk�1. So, the number of clauses that contain xi and aresatis�ed is at least k�14k+1�nk�1. Also, there are at least k�14k+1�nk�1 clauses that contain �xiand are satis�ed.So, opt(F) � jU j�nk�1 k�1(4k+1)k since we could count a clause at most k times. 2Lemma 16 If opt(F) < �nk then with high probability the number of clauses satis�ed bythe assignment given by the second algorithm is at most (1 + ")opt(F).14

Proof : Let v(V) be the number of clauses of F with all the literals in V1.The number of clauses satis�ed by the solution given by the second algorithm ism(F; sol) = v(V) + nXi=t biasi(U) + v(U):The function v(U) � kjU j ! � jU jk and the variables are placed in U such thatnXi=t biasi(U) � nXi=k biasi(Uopt):So, m(F; sol) � v(V) + nXi=t biasi(Uopt) + v(Uopt) + v(U)� v(Uopt) �� opt(F) + v(U) � opt(F) + jU jk � opt(F)(1 + ") 24.4 Min kCSP(EDNF)Theorem 17 Dense Min kCSP(EDNF) has a PTAS.Let F be an input �-dense of Min kCSP(EDNF) on n variables with m constraintsf1; : : : ; fm in DNF each function depending of at most k variables and the clauses ofthe functions of F have the size exactly `, 1 � ` � k. Let " be the allowed error and� = g(k; "; �; `) a certain function depending of k; "; �; ` that will be determinated in thefollowing. We run two distinct algorithms and select the solution with the smallest value.The �rst algorithm gives a good solution for the instances whose minimum value is at least�nk and the second for the instances whose minimum value is less than �nk .1. First algorithm (Algorithm for the case of `large" instances)This problem can be written as a degree k smooth IP. We introduce n binary variablesy1; : : : ; yn. For an assignment of x1; : : : ; xk for which fj has the value 1 we de�ne a degreek polynomial as following: if the variable xi has the value 0 then we replace it by 1 � yiand it has the value 1 we replace it by yi. After we multiply these degree 1 polynomialsobtaining a degree k polynomial. The degree k polynomial associated to fj , tj , is the sumof these degree k polynomials corresponding to the assignments of x1; : : : ; xk for which fjtakes the value 1.So, Min kCSP(EDNF) can be written as a degree k smooth IP as following :(minPmj=1 tj(y1; : : : ; yn)yi 2 f0; 1g 8i; 1 � i � n:Using the algorithm of [AKK95] we can �nd a polynomial time (1 + ")-approximationfor it.2. Second algorithm (Algorithm for the case of `small" instances)15

x1 x1

x x

x x

x x

2 2

3 3

4 4Figure 2: The graph G(F) when k = 4; ` = 3 and F = (x1 ^ x3 ^ �x4) _ (�x2 ^ x3 ^ �x4)Given a set S of variables and an assignment of these variables denote by S1 (S0) theset of literals of S that are true (false). Let X1(X0) be the set of literals that are true(false)in an optimum solution of F .We de�ne Lit(fj) the set of the literals of the function fj .We de�ne a multi-graph associated to the collection of functions F as following: Thevertex set is the set of the 2n literals. For each clause Cj;i of the function fj = Cj;1_: : :_Cj;tjof F we add in G(F) the edges of a complete graph where the vertices are the literals ofCj;i.In the following by the neighbors of a literal we understand the neighbors of the corre-sponding vertex in G(F).Let S be a set of O((logn)=�) variables picked randomly. For each possible assignmentS1; S0 of the variables of S and for a variable xi we de�ne by:� uSi is the size of the multi-set of neighbors of xi in S1,uSi = jfneighbours of xi in S1gj� vSi is the size of the multi-set of neighbors of xi in S0,vSi = jfneighbours of xi in S0gj� �uSi is the size of the multi-set of neighbors of �xi in S1,�uSi = jfneighbours of �xi in S1gj� �vSi is the size of the multi-set of neighbors of �xi in S0,�vSi = jfneighbours of �xi in S0gj:1. Let V1 = S1 and V0 = S0 be the current assignment of the literals.Let T1 = fxi =2 S : uSi � `4`+ 1(uSi + vSi + �uSi + �vSi)gT2 = fxi =2 S : �uSi � `4`+ 1(uSi + vSi + �uSi + �vSi)g:16

For each xi 2 T1 we assign the value true at xi and we introduce xi in V1 and �xi inV0. For each xi 2 T2 we assign the value false at xi and we introduce xi in V0 and �xiin V1.2. Let U be the set of variables that have no value after the �rst step of the algorithmand let U1 = U0 = ;. Suppose that U = fxt; : : : ; xng.For i = t to n we de�ne :� vali is the size of the collection of functions of F that contains only literals witha truth value and xi, �xi and that are satis�ed if xi is true,vali = jffj : Lit(fj) � V [U [fxi; �xig; fj satisfied if xi = truegj� vali is the size of the collection of F that contains only literals with a truth valueand xi, �xi and that are satis�ed if xi is false,vali = jffj : Lit(fj) � V [U [fxi; �xig; fj satisfied if xi = falsegjIf vali � vali then assign to xi the value true and put xi in U1 and �xi in U0 and letbiasi(U) = valiotherwise assign to xi the value false and put xi in U0 and �xi in U1 and let biasi(U) =vali.Let us sketch now a proof of correctness of the second algorithm. We denote by opt(F)the value of an optimum solution of F by m(F; sol) the value of the solution given by thesecond algorithm.Lemma 18 With high probability,1. T1 contains each variable xi with the property that in an optimum solutionuXi � 2`4`+ 1(uXi + vXi + �uXi + �vXi):2. T2 contains each variable xi with the property that in an optimum solution�uiX � 2`4`+ 1(uXi + vXi + �uXi + �vXi):Also with high probability, each variable in the set T1 [T2 is placed as in the optimumsolution.Proof : Similar with the proof of Lemma 6. 2Lemma 19 With high probability, jU j � c(k; �; `)opt(F)nk�1 , where c is a constant.Proof : If a variable xi has no truth value after the �rst step of the algorithm then withhigh probability uXi > 2`4`+ 1(uXi + vXi + �uXi + �vXi)17

and �uiX > 2`4`+ 1(uXi + vXi + �uXi + �vXi):So, the value vXi +�vXi < (1� 4`4`+1)(uXi +vXi +�uXi +�vXi) and thus uXi > 2`vXi and �uXi > 2`�vXi .The size of the multi-set of neighbors of xi that make part (in an optimum solution)of a clause that is satis�ed is at least uXi � `vXi > `4`+1(uXi + vXi + �uXi + �vXi). So, thenumber of clauses that contain xi and are satis�ed is at least `4`+1(uXi +vXi + �uXi +�vXi)=` =14`+1(uXi + vXi + �uXi + �vXi).The value uXi + vXi + �uXi + �vXi � (`� 1)�nk�1. Since in the worst case the clauses thatcontain xi and are satis�ed are in the same function there are at least 14`+1(`� 1)�nk�1=2kfunctions that contain xi and are satis�ed. Also, there are at least 14`+1(` � 1)�nk�1=2kfunctions that contain �xi and are satis�ed.So, opt(F) � jU j�nk�1 `�1(4`+1)2k�k since we could count a function at most k times (onetime for each variable that it depends). 2Lemma 20 If opt(F) < �nk then with high probability the number of functions satis�ed bythe assignment given by the second algorithm is at most (1 + ")opt(F).Proof : Let f(V) be the number of constraints fj with Lit(fj) � V and that are satis�ed.The number of constraints satis�ed by the solution given by the second algorithm ism(F; sol) = f(V) + nXi=t biasi(U) + f(U):The function f(U) � kjU j ! h(k; `) � jU jkh(k; `) where h(k; `) is the number of `DNFfunctions on a �xed set of k variables. Also, the variables are placed in U such thatnXi=t biasi(U) � nXi=t biasi(Uopt):So, m(F; sol) � f(V) + nXi=t biasi(Uopt) + f(Uopt) + f(U)� f(Uopt) �� opt(F) + f(U) � opt(F) + jU jkh(k; `) � opt(F)(1 + ") 24.5 Min kCSP(ESat)Theorem 21 Dense Min kCSP(ESat) has a PTAS.Let F be an input �-dense of Min kCSP(ESat) on n variables with m constraintsf1; : : : ; fm in CNF each function depending of at most k variables and the clauses ofthe functions of F have the size exactly `, 1 � ` � k. Let " be the allowed error and� = g(k; "; �; `) a certain function depending of k; "; �; ` that will be determinated in the18

following. We run two distinct algorithms and select the solution with the smallest value.The �rst algorithm gives a good solution for the instances whose minimum value is at least�nk and the second for the instances whose minimum value is less than �nk .1. First algorithm (Algorithm for the case of `large" instances)The same as in the case of Min kCSP(EDNF).2. Second algorithm (Algorithm for the case of `small" instances)Given a set S of variables and an assignment of these variables denote by S1 (S0) theset of literals of S that are true (false). Let X1(X0) be the set of literals that are true(false)in an optimum solution of F .We de�ne Lit(fj) the set of the literals of the function fj .We de�ne a multi-graph associated to the collection of functions F as in the case ofMin kCSP(EDNF).Let S be a set of O((logn)=�) variables picked randomly. For each possible assignmentS1; S0 of the variables of S and for a variable xi we de�ne by:� uSi is the size of the multi-set of neighbors of xi in S1,uSi = jfneighbours of xi in S1gj� vSi is the size of the multi-set of neighbors of xi in S0,vSi = jfneighbours of xi in S0gj� �uSi is the size of the multi-set of neighbors of �xi in S1,�uSi = jfneighbours of �xi in S1gj� �vSi is the size of the multi-set of neighbors of �xi in S0,�vSi = jfneighbours of �xi in S0gj1. Let V1 = S1 and V0 = S0 be the current assignment of the literals.Let T1 = fxi =2 S : uSi � 2k�2`2k`+ 1(uSi + vSi + �uSi + �vSi)gT2 = fxi =2 S : �uSi � 2k�2`2k`+ 1(uSi + vSi + �uSi + �vSi)g:For each xi 2 T1 we assign the value true at xi and we introduce xi in V1 and �xi inV0. For each xi 2 T2 we assign the value false at xi and we introduce xi in V0 and �xiin V1.2. Let U be the set of variables that have no value after the �rst step of the algorithmand let U1 = U0 = ;. Suppose that U = fxt; : : : ; xng.For i = t to n we de�ne : 19

� vali is the size of the collection of functions of F that contains only literals witha truth value and xi, �xi and that are satis�ed if xi is true,vali = jffj : Lit(fj) � V [U [fxi; �xig; fj satisfied if xi = truegj� vali is the size of the collection of functions of F that contains only literals witha truth value and xi, �xi and that are satis�ed if xi is false,vali = jffj : Lit(fj) � V [U [fxi; �xig; fj satisfied if xi = falsegjIf vali � vali then assign to xi the value true and put xi in U1 and �xi in U0 and letbiasi(U) = valiotherwise assign to xi the value false and put xi in U0 and �xi in U1 and let biasi(U) =vali.Let us sketch now a proof of correctness of the second algorithm. We denote by opt(F)the value of an optimum solution of F by m(F; sol) the value of the solution given by thesecond algorithm.Lemma 22 With high probability,1. T1 contains each variable xi with the property that in an optimum solutionuXi � 2k�1`2k`+ 1(uXi + vXi + �uXi + �vXi):2. T2 contains each variable xi with the property that in an optimum solution�uiX � 2k�1`2k`+ 1(uXi + vXi + �uXi + �vXi):Also with high probability, each variable in the set T1 [T2 is placed as in the optimumsolution.Lemma 23 With high probability, jU j � c(k; �; `)opt(F)�nk�1 , where c is a constant.Proof : If a variable xi has no value after the �rst step of the algorithm then with highprobability uXi > 2k�1`2k`+ 1(uXi + vXi + �uXi + �vXi)and �uiX > 2k�1`2k`+ 1(uXi + vXi + �uXi + �vXi):So, the value vXi + �vXi < (1 � 2k`2k`+1)(uXi + vXi + �uXi + �vXi) = 12k`+1(uXi + vXi + �uXi + �vXi):So, in an optimum solution at most 12k`+1(uXi + vXi + �uXi + �vXi) clauses of size ` containingxi are not satis�ed and also at most 12k`+1(uXi + vXi + �uXi + �vXi) clauses of size ` containing�xi are not satis�ed.In the worst case these clauses are placed in di�erent functions, and thus at most12k`+1(uXi + vXi + �uXi + �vXi) functions of F containing xi are not satis�ed and at most20

12k`+1(uXi +vXi +�uXi +�vXi) functions of F containing �xi are not satis�ed. So, in an optimumsolution at most 12k`+1(uXi + vXi + �uXi + �vXi) functions containing xi or �xi are not satis�ed.Since the literals xi and �xi could appear in the 2k clauses of a function, there are at least1(`�1)2k (uXi + vXi + �uXi + �vXi) functions that contain the literals xi or �xi.So there are at least1`2k (uXi + vXi + �uXi + �vXi)� 12k`+ 1(uXi + vXi + �uXi + �vXi) = 12k`+ 1(uXi + vXi + �uXi + �vXi)functions containing xi and �xi and are satis�ed.The value uXi + vXi + �uXi + �vXi � (`� 1)�nk�1. So, opt(F) � jU j�nk�1 `�1(2k`+1)k since wecould count a function at most k times (ones for each variable that it depends). 2Lemma 24 If opt(F) < �nk then with high probability the number of functions satis�ed bythe assignment given by the second algorithm is at most (1 + ")opt(F).Proof : Let f(V) be the number of constraints fj with Lit(fj) � V and that are satis�ed.The number of constraints satis�ed by the solution given by the second algorithm ism(F; sol) = f(V) + nXi=t biasi(U) + f(U):The function f(U) � kjU j ! h(k; `) � jU jkh(k; `) where h(k; `) is the number of `CNFfunctions on a �xed set of k variables and the variables are placed in U such thatnXi=t biasi(U) � nXi=t biasi(Uopt):So, m(F; sol) � f(V) + nXi=t biasi(Uopt) + f(Uopt) + f(U)� f(Uopt) �� opt(F) + f(U) � opt(F) + jU jkh(k; `) � opt(F)(1 + ") 25 ConclusionsWe observe that all the problems considered in this paper are hard to approximate for thecase of average density. More exactly, Min X�L Average DenseMin X for all X2fEkSat,EkDNF, kCSP(ESat), kCSP(EDNF)g. We remark also that Average DenseMax kCSPdoes have PTAS (cf. [AKK95]) for all k.Our results imply existence of PTASs for dense instances of several minimization prob-lems that are very hard to approximate on general instances.Min Hitting Set and Min Implicative Hitting Set restricted to sets of boundedsize are constant approximable and MAX SNP-hard [H96]. Min 2CNF Deletion is MAXSNP-hard [KPRT97] and it is O(logn log logn)-approximable. Min UnCut is proved21

O(logn)-approximable and MAX SNP-hard [GVY93]. Tight lower bounds for Max EkLin2 were given in [H97]. The minimization version Min Ek Lin2 is also hard to approx-imate since a special case of Min E3 Lin2, Nearest Codeword, was proven [ABSS93]to be hard to approximate within a factor of 2log1�" n for any " > 0 unless NP � QP. MinHorn Deletion is a problem that is as hard to approximate as Nearest Codeword.Remark that all the above problems are included in the class MIN CSP de�ned by[KST97]. What happens with dense instances of problems from MIN ONES? Min Ver-tex Cover belong to MIN ONES and since Dense Min Vertex Cover has no PTAS([CT96],[KZ97]) the class Dense MIN ONES has no PTAS also.References[ABSS93] S. Arora, L. Babai, J. Stern and Z. Sweedyk, The hardness of approximateoptima in lattice, codes, and systems of linear equations, Proc. of 34th IEEEFOCS, 1993, 724{733.[AFK96] S. Arora, A. Frieze and H. Kaplan, A new rounding procedure for the assignmentproblem with applications to dense graph arrangements, Proc. of 37th IEEEFOCS, 1996, 21{30.[AKK95] S. Arora, D. Karger and M. Karpinski, Polynomial time approximation schemesfor dense instances of NP -hard problems, Proc. of 27th ACM STOC, 1995, 284{293. The full paper will appear in Journal of Computer and System Sciences,1999.[BFdV99] C. Bazgan and W. Fernandez de la Vega, A Polynomial Time ApproximationScheme for Dense Min 2Sat, Fundamentals of Computation Theory, LNCS1684, Springer, 1999, 91{99.[BTV96] D. Bertsimas, C-P. Teo and R. Vohra, On dependent randomized rounding algo-rithms, Conference on Integer Programming and Combinatorial Optimization,LNCS 1084, Springer, 1996, 330{344.[CT96] A.E.F. Clementi and L. Trevisan, Improved non-approximability results for ver-tex cover with density constraints, Proc. of 2nd Conference on Computing andCombinatorics, COCOON'96, Springer, 1996, 333{342.[C95] N. Creignou, A dichotomy theorem for maximimum generalized satis�abilityproblems, Journal of Computer and System Sciences 51 (1995), 511{522.[FdV96] W. Fernandez de la Vega, Max-Cut has a Randomized Approximations Schemein Dense Graphs , Random Structures and Algorithms, 8(3) (1996), 187{198.[FdVK99] W. Fernandez de la Vega and M. Karpinski, On approximation hardness of denseTSP and other path problem, Information Proccesing Letters 70 (1999), 53{55.[FK96] A. Frieze and R. Kannan, The Regularity Lemma and approximation schemesfor dense problems , Proc. of 37th IEEE FOCS, 1996, 12{20.[FK99] A. Frieze and R. Kannan, Quick Approximation to Matrices and Applications ,Combinatorica 19 (1999), 175{220.22

[GVY93] N. Garg, V. Vazirani and M. Yannakakis Approximate max-
ow min-(multi)cuttheorems and theirs applications , SIAM Journal of Computing 25(1996), 235{251.[GGR96] O. Goldreich, S. Goldwasser and D. Ron, Property Testing and its Connectionto Learning and Approximation, Proc. of 37th IEEE FOCS, 1996, 339{348. Thefull paper has appeared in Journal of the ACM, 45 (4) (1998), 653{750.[H96] M. M. Halld�orsson, Approximating kset cover and complementary graph color-ing , Proc. 5th International Conference on Integer Programming and Combina-torial Optimization, LNCS 1084, Springer, 1996, 118{131.[H97] J. Hastad, Some optimal inapproximability results , Proc. of 29th ACM STOC,1997, 1{10.[K97] M. Karpinski, Polynomial Time Approximation Schemes for Some Dense In-stances of NP -Hard Optimization Problems , Randomization and Approxima-tion Techniques in Computer Science, LNCS 1269, Springer, 1997, 1{14.[KZ97] M. Karpinski and A. Zelikovsky, Approximating Dense Cases of Covering Prob-lems , ECCC Technical Report TR 97-004, 1997, appeared also in DIMACS Se-ries in Discrete Mathematics and Theoretical Computer Science, vol. 40, 1998,169{178.[KWZ97] M. Karpinski, J. Wirtgen and A. Zelikovsky, An approximation algorithm forthe Bandwidth problem on dense graphs , ECCC Technical Report TR 97-017,1997.[KSW97] S. Khanna, M. Sudan and D.Williamson, A complete classi�cation of the approx-imability of maximization problems derived from boolean constraint satisfaction,Proc. of 29th ACM STOC, 1997, 11{20.[KST97] S. Khanna, M. Sudan and L. Trevisan, Constraint Satisfaction: the approxima-bility of minimization problems , Proc. of 12th IEEE Computational Complexity,1997, 282{296.[KPRT97] P. Klein, S. Plotkin, S. Rao and E. Tardos, Approximation algorithms for steinerand directed multicuts , Journal of Algorithms 22(1997), 241{269.[KKM94] R. Kohli, R. Krishnamurti and P. Mirchandani, The Minimum Satis�abilityProblem, SIAM Journal on Discrete Mathematics 7(1994), 275{283.[KT94] P.G. Kolaitis and M.N. Thakur, Logical de�nability of NP optimization problems,Information and Computation 115 (1994), 321{353.[PY91] C. Papadimitriou and M. Yannakakis, Optimization, Approximation and Com-plexity Classes, Journal of Computer and System Science 43 (1991), 425{440.[S78] T. Schaefer, The complexity of satis�ability problems, Proc. of 10th ACM STOC,1978, 216{226. 23

