Polynomial Time Approximation Schemes for
Dense Instances of the Minimum Constraint Satisfaction
(Preliminary version)

Cristina Bazgan Marek Karpinski
LAMSADE Dept. of Computer Science
Université Paris-Dauphine University of Bonn
75775 Paris 53117 Bonn
bazgan@lamsade.dauphine.fr marek@cs.uni-bonn.de

January 6, 2000

Abstract

We present a polynomial time approximation scheme for dense instances of the
minimal constraint satisfaction problems, MIN kCSP. This class contains minimization
problems that search for boolean assignments to the variables minimizing the number of
satisfied constraints depending on at most k& variables. By dense instances of a problem
in MIN £CSP we mean instances having Q(n*~1)-read boolean representations where
n 1s the number of boolean variables.

1 Introduction

In this paper we study the approximability of dense instances of minimization versions
of boolean constraint satisfaction problems. An input of a boolean constraint satisfaction
problem is a collection F' of boolean functions called constraints that are applied to a
subset of at most k variables among n boolean variables. The problem consists in finding
an assignment of the boolean variables that minimizes the number of constraints satisfied.
We call the class of all such problems MIN kCSP. This class contains problems as: MIN
ESAaT, MIN kDNF, MIN EQUIVALENCE, MIN PAIRED BisecTioN, MIN 2CNF DELETION,
MiN Ek LIN 2, NEAREST CODEWORD, MIN HORN DELETION, MIN IMPLICATIVE HITTING
SET-B (cf. e.g. [KSTI7], [BFdV99]).

Constraint satisfaction problems were studied firstly 1978 by Schaefer [S78] that gave
a classification of decision problems in polynomial solvable and NP-hard. An instance of
such a decision problem has in input m constraints of F. The language SAT(F') consists of
all instances which have an assignment satisfying all m constraints. Schaefer described six
classes of function families and he showed that if I is a subset of one of these classes then
the decision problem is in P, otherwise the decision problem is NP-hard.

His work was followed by the work of Creignou [C95], Khanna, Sudan and Williamson
[KSWO97] and Khanna, Sudan, Trevisan [KST97] who obtained a classification of the approx-
imability of maximization and minimization problems derived from constraint satisfaction
problems. In fact [C95] and [KSW9T] extend Schaefer’s work to maximization problems.

Two classes of maximization problems are defined MAX CSP(F) and MAX ONES(F). An
input of a problem in such a class consists of m constraints of F’ that are applied at a subset
of at most k variables among n boolean variables. In the first case the objective is to find
an assignment which maximizes the number of constraints that are satisfied. In the second
case the objective is to find an assignment that satisfies all the constraints and which max-
imizes the number of variables set to 1. They showed the existence of a finite partition of
all function families such that the approximability of such a problem is determined by the
membership of F in one of the class of the partition. [KST97] considered the corresponding
minimization classes: MIN CSP(F) and MIN ONES(F') and their result is similar to the
result of [KSW97] for MAX CSP(F) and MAX ONES(F).

By a dense instance of a problem in MIN £CSP we mean an instance over n variables
with a representation in which the number of occurrences (variable reads) of each variable
is Q(n*~1). An average dense instance is an instance for which the number of constraints
is Q(nk).

The approximability theory of average dense instances of maximization problems such
as Max Cut, Max kSAT has had many successes, starting with [AKK95] and [FdV96].
See [K97] for a review. In [AKKO95] it was proved in particular that the average dense
instances of any problem in MAX SNP have a polynomial time approximation scheme. In
[GGRI6], it was proved that many of these problems can be approximated in constant time
with an additive error en? where n is the size of the input in a certain probe model (implying
that the dense versions have also constant-time approximation schemes). Also Frieze and
Kannan [FFK99], [FK96] gave constant time approximation schemes for some average dense
problems in the oracle model of computation.

The case of dense instances of minimization problems seems to be harder. In [AKK95]
polynomial time approximation schemes for dense BISECTION and MIN £CUT was given.
The case of dense VERTEX COVER was settled in [KZ97], [CT96]: dense and average dense
instances do not have approximation schemes. Also in [KZ97], a ¢Inn approximation al-
gorithm was given for every constant ¢ > 0 for average dense instances of SET COVER.
[AFK96] gave a polynomial time approximation scheme for average dense instances of some
variants of MIN LINEAR ARRANGEMENT problem. For dense and average dense BAND-
WIDTH, [KWZ97] gave a constant approximation algorithm. In [FdVK99] it was also proved
that dense and average dense MIN TSP (1,2) and LONGEST PATH have no polynomial time
approximation schemes. A polynomial time approximation scheme was given in [BFdV99]
for dense MIN 2SAT and dense MIN EQUIVALENCE problems.

In this paper we prove that some dense instances of any problem in MIN kCSP have
polynomial time approximation schemes. Interestingly, contrary to its maximization version
for which average dense instances have polynomial time approximation schemes [AKK95],
all the average dense MIN kCSP problems are hard to approximate.

Our results imply polynomial time approximation schemes for dense instances of some
optimization problems that are hard to approximate on general instances and that remains
hard to approximate on average dense instances as: MIN kSAT, MIN kDNF, NEAREST
CoDEWORD, MIN 2CNF DELETION. We remark that Dense MIN ONES has no polynomial
time approximation scheme since MIN VERTEX COVER is in MIN ONES and Dense MIN
VERTEX COVER has no polynomial time approximation scheme.

The paper is organized as follows. In Section 2 we give the necessary definitions and
prove that the problems in which we are interested are NP-hard. In Section 3 we show that

the instances of our problems where each clause has exactly k literals are at least as hard
to approximate as the instances where the clauses have at most £ literals. In Section 4
we give polynomial time approximation schemes for dense instances of our problems where
each clause has exactly k literals and in Section 5 we give some conclusions.

2 Preliminaries

We begin with some basic definitions.

Approximability. Let us recall a few definitions about approximability. Given an instance
z of an optimization problem A and a feasible solution y of , we denote by m(z, y) the value
of the solution y, and by opt4(z) the value of an optimum solution of z. The performance

ratio of y is
R(ac, y) — max { m(xv y) 7 OPtA(x) } .
OPtA($) m(x,y)

For a constant ¢ > 1, an algorithm is a c-approzimation algorithm, if for any instance
z of the problem it returns a solution y such that R(z,y) < ¢. We say that an optimiza-
tion problem is constantly approzimable if, for some ¢ > 1, there exists a polynomial time
c-approximation algorithm for it. An optimization problem has a polynomial time approzxi-
mation scheme (a PTAS, in short) if, there exists a polynomial time (14 ¢)-approximation
for it for every constant £ > 0.

L-reductions. Let A and B be two optimization problems. Then A is said to be L-reducible
(cf. [PY91]) to B (A <p, B) if there are two constants «, > 0 such that

1. there exists a function, computable in polynomial time, which transforms each in-
stance of A into an instance 2’ of B such that optg(2') < a - opta(z),

2. there exists a function, computable in polynomial time, which transforms each solu-
tion y' of 2’ into a solution y of x such that |m(z,y) — opta(x)| < 5 - |m(2’,y) —
optp(z')].

The important property of this reduction is that it preserves PTAS; that is, if 4 is L-
reducible to B and B has a PTAS then A has a PTAS as well.

We introduce now some minimization constraints satisfaction problems. Some of these
problems as MIN kSAT for k > 2 do not have PTAS on general instances [KKM94] under
usual complexity theoretic assumptions but can be approximated in polynomial time within
some constant factors [BTV96]. The problem MIN kDNF on the general instances for k > 2
cannot be approximated even within the ratio n¢ for every constant ¢ > 0 [KT94].

We assume that all SAT (DNVF') representations we deal with in this paper will have
clauses essentially depending on all literals, i.e., if a clause C' depends on k variables, there
is no clause C’ depending on k — 1 variables such that C'is equivalent to C".

MIN ESAT
Input: A set of clauses C'q, ..., (), of size at most k on n variables xq, ..., z,.
Output: A truth assignment to the variables that minimizes the number of clauses satisfied.

MIN EESAT is the variant of MIN kSAT problem for which each clause contains exactly k

literals.

MiN kEDNF

Input: A set of conjunctions Cq, ..., C,, of size at most k on n variables xq, ..., z,.
Output: A truth assignment to the variables that minimizes the number of conjunctions
satisfied.

MiN EEDNF is the variant of MIN kDNF problem where each conjunction contains exactly
k literals.

A constraint on n boolean variables is a non-constant boolean function f : {0,1}* —
{0,1}. A constraint application is a pair (f, (¢1,...,%)) (where i; # ip if j # {) where the
i;, 1 < 7 < k indicate to which among the n variables the function f is applied. In the
following we will not distinguish constraint applications and constraints, more exactly we
will speak only about constraints. The instances of the following two problems consist of a
collection of constraints, that means that a function could appear more than one time but
it is applied at different sets of variables.

MiN £kCSP(DNF)

Input: A collection of m constraints fi,..., f,, on boolean variables z{,..., z, where each
f; depends on at most k variables and is representated by a DNF formula.

Output: An assignment to z; that minimizes the number of satisfied constraints.

MIN kECSP(SAT)

Input: A collection of m constraints fi,..., f,, on boolean variables z{,..., z, where each
f; depends on at most k variables and is representated by a SAT formula.

Output: An assignment to z; that minimizes the number of satisfied constraints.

Remark The problems MIN kCSP(DNF') and MIN kCSP(SAT) provide an explicit syn-
tactic representation of constraints fi,..., f,, and will provide a basis for the underlying
notion of dense minimization problems.

MiN kCSP(EDNF) and MIN kCSP(ESAT) are the variants of the above problems
where the clauses of each constraint representation of the collection have the same size.

Density. An instance of MIN £SAT (MIN kDNF) is -dense for some constant 6, if for each
variable the total number of occurrences (reads) of the variable (and its negation) is at least
§n*~1. An instance of MIN kCSP(SaT) (MiN kCSP(DNF)) is §-dense if for each variable
the total number of occurrences of the variable (and its negation) is at least 6! and an
instance of MIN kCSP(SaT) (MIN kCSP(DNVF)) is dense if there is a constant ¢ such that
the instance is -dense. An instance of MIN kCSP(SaT) (MIN kCSP(DNF)) is average
5-dense if the number of boolean functions in it is at least én* and it is average-dense if
there is a constant § such that the instance is average §-dense.

We show in the following that Dense MIN kCSP(SAT) and Dense MIN kCSP(DNF)
are NP-hard. In fact we show that Dense MIN 2SAT is NP-hard and it is easy to see that
MIN 2SAT is a particular case of MIN £kCSP(SAT) and MiN kCSP(DNF).

We construct a direct reduction from MIN 2SAT (the problem proven NP-hard in
[KKM94]) to Dense MIN 2SAT.

Given an instance F of MIN 25AT on n variables, zi,...,z, and with m clauses
C1,...,C,p, we define an instance F” of Dense MIN 2SAT as follows: We add n new variables

Yi, -5 Yn. F' will contain m clauses of F’ and the clauses z;Vy;, Z;Vy;, 1 < j <n,1 <i<n.
The total number of occurrences of x; is at least 2n and the total number of occur-
rences of y; is also at least 2n. So, F” is a dense instance. Also, it is easy to see that
opt(F") = opt(F) + n?.

Remark that the reduction that prove the inapproximability of MiN 3DNFE ([KT94])
use copying of variables but this process is not allowed without the introducing of new
variables and by the introduction of new variables the density is lost.

3 Some useful L-reductions

We need firstly some technical results. More exactly we are going to show that if dense
instances of MIN EESAT problem (where the clauses have exactly the size k) have a polyno-
mial time approximation scheme then dense instances of MIN kSAT have also a polynomial
time approximation scheme. The same result holds also for MiN kDNF, MiN £CSP(SaT)
and MIN kCSP(DNF).

Lemma 1 For any k > 2, Dense MIN kSAT <j Dense MIN EELSAT.

Proof: Let F be an instance §-dense of MIN kSAT on n variables zq, ..., z, and m clauses
Cq,...,Ch. We consider n new variables gy, ..., 4,. The instance of MIN EASAT that we
construct, I/, will contain the variables z(,...,2,,y1,...,y,. If a clause of F contains ¢

literals, C; = €1V.. .Vl where t < k, then we define the clause C! = {1V.. VO Ny V.. Vyg_y.
If a clause C; contains k literals then we define C7 = ;. The instance I’ contains the clauses

C!, 1 <4< m at which we add " clauses of size k that are in fact all the possibilities

to combine the variables yy, ..., y, in sets of size k.
Since the density of F' is 4, for each variable z;, the total number of occurrences of the
variable (and its negation) in F” is at least snk-1 = % The variables y;, 1 <1< n
- (2n)*!

have at least (;- S0, the density of F' is at least

22k—2(k_1)

1) occurrences, so at least
n j—

: s 1
mm{ 2F=T1 22k=3(k_1)! }

Let justify in the following that this is a L-reduction. If opt(F) is the value of an
optimum solution of I then the optimum value of I, opt(F") < opt(F') (we consider that
the variables y take the value 0). Each solution of F’ could be transformed in a solution of
F’ with a smaller value and where the variables y take the value 0. This solution give us a
solution of I that satisfy the same number of clauses as it satisfy in F”. |

In a similar way we can prove that
Lemma 2 For any k > 2, Dense MIN kDNF <; Dense MIN EEDNF.
Lemma 3 For any k > 2, Dense MIN kCSP(DNF') <, Dense MIN (2k—1)CSP(EDNF).

Proof: Let I’ be an instance d-dense of MIN kCSP(DNF') on n variables, z1, ..., 2, and
with m functions. We construct an instance F’ of Dense MIN (2k-1)CSP(EDNF) as follow-
ing: We add n new variables y,...,y,. F’ will contain as variables @1,...,Zp, ¥y1,.-.,Yn-
If a function f; of F' has a clause with ¢ literals, C; = {3 A ... A {; where ¢ < k then we

define the clause C! = (4 A AL AYyL AL Ayg—y. If a clause C; contains £ literals then we
define Cf = C;. Suppose f; = C;1V ...V, . Wedefine fl=C"% V...V C}t]. We define

. . . . k-1 .
in the following the clause 4;; , 1 <¢<n,1 < ;< ") as the clause that contains

the variable z; and the jth set of & — 1 variables y among the n variables. For example
AJ‘J :$i/\y1/\.../\yk_1.
The instance I contains the functions fI VvV A,,, 1 < j < m,1 < p<ml <g<
k ; L . I is an instance of MIN (2k—1)CSP(EDNF') since the clauses of the functions
of F' have the same size k and each depends of at most 2k — 1 variables.

Since the density of F' is 4, for each variable z;, the total number of occurrences of

the variable (and its negation) in I’ is at least dn*~! (b ; 1)Z c(8, k)n*=1 where ¢

k—2
is a constant function depending only on &, k. A variable y; has at least (")nm

occurrences, so at least c(k)n?*~1 where ¢ is a constant function depending only on k.
Let justify in the following that this is an L-reduction. If opt(F') is the value of an
optimum solution of I, then the optimum of F’, opt(F') < opt(F) (the variables y take
the value 0). Each solution of F’ can be transformed in a solution of F’ with a smaller
value and where the variables y take the value 0. This solution give us a solution of F' that
satisfly the same number of functions as it satisfy in F”.
O

In a similar way we prove that

Lemma 4 For any k > 2, Dense MIN kCSP(SaT) <7, Dense MIN (2k — 1)CSP(ESaT).

4 PTAS for Dense MIN kCSP(EDNF) and Dense MIN kCSP(ESAT)

In this section we give firstly an approximation scheme for Dense MIN E3SAT, after this
we generalized it to Dense MIN EASAT and Dense MIN EADNF. At the end of the section
we give also a PTAS for Dense MIN kCSP(EDNF') and Dense MIN kCSP(ESaT).

The idea of these approximation schemes is to run for each é-dense instance two distinct
algorithms and to select the solution with the smallest value. Let ¢ be the error within
which we want to obtain the solution. One of the algorithm gives an (1+ ¢)-approximation
for the instances whose minimum value is at least f(e,d,n, k) where f is a certain function.
This algorithm consists in writing the problem as a smooth Integer Programming (IP) and
to use the algorithm of [AKK95] in order to obtain an (14 ¢)-approximation. The second
algorithm gives a good solution for the instances with an optimum value greater than
f(e,0,m, k). The idea of this algorithm is to do an exhaustive sampling and to combine it
with a certain greedy algorithm. The both algorithms can be derandomized as in [AKK95].

4.1 MIN E3SAT
Theorem 5 Dense MIN E3SAT has a PTAS.

Let F' be an input é-dense of MIN E3SAT with m clauses on a set X = {ay,...,2,} of

Figure 1:

variables. Let ¢ be an allowed error and a = 4/ 61%335. Similarly to [AKK95] we run two
distinct algorithms and select the solution with the smallest value. The first algorithm
gives a good solution for the instances whose minimum value is at least an® and the second

for the instances whose minimum value is less than an®.

1. First algorithm (Algorithm for the case of ‘large” instances)

An © aritmetization ” method can be used to write a MIN IE3SAT instance as a degree
3 smooth integer program. We introduce n binary variables yq,...,y, and for each i,
1 < ¢ < n, we replace each occurrence of variable z; by 1 — y;, each negated occurrence of
variable x; by y;, each operator ‘* V ” by multiplication and for each clause we subtract the
resulting term from 1. Let ¢; be the polynomial obtained in this way from the jth clause.
So, MIN EE3SAT problem can be written as a degree 3 smooth IP as following :

min ZTZI t] (yh .. '7yn)
yi € {0,1} Vi, 1< i< n.

Using the algorithm of [AKK95] we find in polynomial time (1 + ¢)-approximation to
it.
2. Second algorithm (Algorithm for the case of ‘small” instances)

Given a set S of variables and an assignment to these variables. Denote by S; (Sp) the
set of literals corresponding to the variables of S that are true (false). Let X;(Xo) be the
set of literals that are true (false) in an optimum solution of F. We call a literal a neighbor
of another literal if the two literals occur in a same clause in F'. A number of such neighbors
will be counted with multiplicities among the clauses of F.

For a variable z; we define (Figure 1):

u? = |{neighbors of x; among the literals of S}

k3

S = |{neighbors of x; among the literals of So}
uf = |{neighbors of &; among the literals of Sy}

S

v
vy = [{neighbors of &; among the literals of Sy}

Let S be a set of £ = O((logn)/é) variables picked randomly. For each possible assign-
ment S, .5 of the variables of .5:

1. Let Vi = .51 and Vj = Sp be the current assignment to the literals. Let
Ty={ei ¢ Sev) < (uf +o] +a? +707)/8}

Ty={a; ¢5:07 < (uf + 07 +u) +v)/8}.

For each @; € T} we assign the value true at z; and we introduce z; in V; and &; in
Vo. For each z; € Ty we assign the value false at z; and we introduce z; in V; and &;

in Vl.

2. Let U be the set of variables that have no value after the first step of the algorithm
and let U; = Uy = 0. Suppose that U = {zp,...,2,}.

For ¢« = k to n we define :
val; = 1/2|{neighborsof z; in Vy that not appear in the same clause as a literal of V1 }|

+1/2|{clauses of F with a literal x;, a literal in Vo and a literal in Upy}|
+1/2|{clauses of F with a literal z;, a literal in Vo and a literal in Uy }|

val; = 1/2|{neighborsof &; in Vo that not appear in the same clause as a literal of V1 }|
+1/2|{clauses of F with a literal z;, a literal in Vo and a literal in Upy}|
+1/2|{clauses of F with a literal x;, a literal in Vo and a literal in Uy }|

If val; < val; then assign to z; the value true and put z; in U; and #; in Uy and let

bias;(U) = val;

otherwise assign to z; the value false and put z; in Uy and z; in Uy and let bias;(U) =
val;.

The clauses with at least a literal in V' that are satisfied (and that were not satisfied
by the current assignment Vi, V) when z; = true are the clauses with a literal z;, a literal
in V5 and a literal in Uy and the clauses with a literal z;, a literal in Vy and a literal in
Uy. For a clause z; V {1 V {5 where {1 € Vy and {5 € Uy we added 1/2 4 1/2 to the sum
Yor, bias;(U) when we place z; in Uy. For a clause @; V {1 V {3 where {1 € V and {3 € Uy
we added 1/2 to this sum when we placed (3 in Uy and we added 1/2 when we placed z; in
Uo.

Let us sketch now a proof of correctness of the second algorithm. We denote by opt(F)
the value of an optimum solution of I and by m(F, sol) the value of the solution given by
the second algorithm.

Lemma 6 With high probability,
1. Ty contains each variable x; with the property that in an optimum solution of F
of < (uff +off +au +0)/10.
2. Ty contains each variable x; with the property that in an optimum solution of F

o < (uf + o + @t +0)/10,

Also with high probability, each variable in the set Ty U Ty is placed as in the optimum
solution.

Proof: 1. Let z; be a variable with the property that in the optimum solution
of < (uff +off +au +0)/10.

Applying the Sampling Lemma for a random sample S of O(logn) variables, the prob-
ability that

v? > (uf +od 4+ uf 4 0P)/8
is n=2(1) So, the probability that a; € T} is 1 — n=51),
2. Let x; be a variable in T;. Then
v? < (u o 4 ud 4 0P) /8.

Applying the Sampling Lemma for a random sample of O(logn) variables, the probability
that
of > (uff +off +u +0)/10

is n=(1) Then the probability that

v < ()t + o) + 5t +0Y)/10

is 1 — p—S1), O

Lemma 7 With high probability, n — ((+ |Ty| + |Ts|) < N%Q(F)

Proof: If a variable z; has no a truth value after the first step of the algorithm then from
Lemma 6 with high probability

v > (u + o +u +0X)/10
and
5 > (ul 4o + @ +57)/10.

Since the sum uX +0X +aX + 07 > 26n?, opt(F) > 1/2min{v®, 0,5 }U| > (n— (€+|T1|+
|T2]))26n?/2 - 10 (we divided by 2 since we can count in the above sum an edge twice). O

Lemma 8 Ifopt(F) < an® then with high probability the number of clauses satisfied by the
10%a2
68° -

assignment given by the Algorithm 2 is at most (1 + ¢)opt(F’) where ¢ =

Proof: Let v(V) be the number of clauses of F with at least a literal in V; and let ¢(U)
be the number of clauses with the three literals in U and at least one in Uj.
The number of clauses satisfied by the solution given by the second algorithm is

m(F, sol) = v(V) + Zn:biasi(U) +t(U).
1=k

3

The function ¢(U) <
0s(

) < |U|?/6 and the variables are placed in U such that

Z bias;(U) < Z bias;(Ugpt).
=k =k

So,

m(F, sol) < v(V)+ Zn:biasi(Uopt) +t(Ugpt) +t(U) — t(Uppt) <
i=k

< opt(F) + 1(U) < opt(F) + [U/6 < opt(F) + 10°%0pt (F)*/(65°0°) <
< opt(F) (14 10%°an®/(66°n°)) = opt(F)(1 + 10°a?/(65°)).

4.2 MIN EESAT
Theorem 9 Dense MIN ELESAT has a PTAS.

Let F' be an input d-dense of MIN EASAT with m clauses on n variables. Let £ be the allowed
error and « a certain function that depends of £, 4, k. We run two distinct algorithms and
select the solution with the smallest value. The first algorithm gives a good solution for
the instances whose minimum value is at least an* and the second for the instances whose

minimum value is less than an”.

1.First algorithm (Algorithm for the case of ‘large” instances)

i

We use the ¢ aritmetization ” method as for MIN E3SAT in order to write this problem

as a degree k smooth IP.
2.Second algorithm (Algorithm for the case of ‘small” instances)

Given a set S of variables and an assignment of these variables denote by Sy (Sp) the
set of literals of S that are true (false). Let X;(Xo) be the set of literals that are true(false)
in an optimum solution of F. Again a literal will be a neighbor of another literal if the two
literals occur in a same clause in F.

For a variable z; we define by:

u? = |{neighbors of x; (with multiplicity) among the literals of Sy}

vP = [{neighbors of x; (with multiplicity) among the literals of So}

u? = |{neighbors of Z; (with multiplicity) among the literals of Sy}

()
()
()
o2 = |{neighbors of Z; (with multiplicity) among the literals of S}

Let S be a set of O((logn)/é) variables picked randomly. For each possible assignment
S, 90 of the variables of .5:

10

1. Let Vi = .51 and V;, = .Sp be the current assignment of the literals.

Let
Ty={zi ¢ S:vd < (uf +v) +ad +v7)/8}

Ty={z; ¢ S:0] < (uf +v° +ad +v7)/8)}.

For each @; € T} we assign the value true at z; and we introduce z; in V; and &; in
Vo. For each z; € Ty we assign the value false at z; and we introduce z; in V; and &;

in Vl.
2. Let U be the set of variables that have no value assigned after the first step of the
algorithm and let U; = Uy = 0. Suppose that U = {ay,...,2,}.
For : =t to n we define :
o val; is the size of the set of clauses of I/ with a literal x; and the other literals
with a truth value: at least a literal in V; and no literal in V;
e val; is the size of the set of clauses of I/ with a literal #; and the other literals
with a truth value: at least a literal in V; and no literal in V;
If val; < wal; then assign to z; the value true and put z; in Uy and &; in Uy and let
bias;(U) = val;

otherwise assign to z; the value false and put z; in Uy and z; in Uy and let bias;(U) =
val;.

Let us sketch now a proof of correctness of the second algorithm. We denote by opt(F)
the value of an optimum solution of F' by m(F, sol) the value of the solution given by the
second algorithm.

Lemma 10 With high probability,
1. Ty contains each variable x; with the property that in an optimum solution of F

v < () + o) + 5t +o))/10.

2. Ty contains each variable x; with the property that in an optimum solution of F

o < (uf + o + @t +0)/10,

Also with high probability, each variable in the set Ty U Ty is placed as in the optimum
solution.

Proof: Similarly with the proof of Lemma 6. O
Lemma 11 With high probability, |U| < %jﬁ(ﬂ).

11

Proof: If a variable z; has no value after the first step of the algorithm then with high
probability
of > (g +of @ +07)/10
and
5 > (ul 4o + @ +57)/10.
So, opt(F) > |U|én*~1(k — 1)/(10k). O

Lemma 12 [f opt(F') < an® then with high probability the number of clauses satisfied by
lokkkak_l

the assignment given by the second algorithm is at most (14 <)opt(F') where ¢ = SEh=TyF

Proof: Let v(V) be the number of clauses of F with at least a literal in V; and let ¢(U)
be the number of clauses with the k literals in U and at least one in Uj.
The number of clauses satisfied by the solution given by the second algorithm is

m(F, sol) = v(V) + Zn:biasi(U) +t(U).

The function ¢(U) < () < |U|* and the variables are placed in U such that

k
U]
Z bias;(U) < Z bias;(Ugpt).
1=t 1=t

So,
m(F, sol) < v(V)+ Zbiasi(Uopt) +t(Ugpt) +t(U) — t(Uppt) <
1=t

< opt(F) +t(U) < opt(F) + |U|* < opt(F)(1+¢)

4.3 MiNn EEDNF

We will turn now to the MIN DNF problems.
Theorem 13 Dense MIN EEKDNF has a PTAS.

Let F' be an instance é-dense of MIN kDNF with m clauses and n variables. Let ¢ be
an allowed error and « a certain function depending of §,¢, k. We again run two distinct
algorithms and select the solution with the smallest value. The first algorithm gives a good
solution for the instances whose minimum value is at least an* and the second for the

instances whose minimum value is less than an®.

1. First algorithm (Algorithm for the case of ‘large” instances)

[4

Again an ¢ aritmetization ” method can be used to write MIN Ek DNF as a degree k
smooth IP. We introduce n binary variables y1, ..., y, and for each ¢, 1 <1 < n, we replace
each occurrence of variable x; by y;, each negated occurrence of variable z; by 1 — y;, each

12

operator * A 7 by multiplication. Let ¢; be the polynomial obtained in this way from the
jth clause.
So, MIN EEDNF can be written as a degree k smooth IP as following :
min Z;nzl t] (917 sy yn)
y, € {0,1} Vi, 1 <i<n.

Using the algorithm of [AKK95] we can find a polynomial time (1 + ¢)-approximation
for it.

2. Second algorithm (Algorithm for the case of ‘small” instances)

Given a set S of variables and an assignment of these variables denote by Sy (Sp) the
set of literals of S that are true (false). Let X;(Xo) be the set of literals that are true(false)
in an optimum solution of F. A literal is a neighbor of another literal if the two literals
occur in a same clause in F.

For a variable z; we define by:

u? = |{neighbors of x; (with multiplicity) among the literals of Sy}

vP = [{neighbors of x; (with multiplicity) among the literals of So}

u? = |{neighbors of Z; (with multiplicity) among the literals of Sy}

()
()
()
1?25 = {neighbors of z; (with multiplicity) among the literals of So}

Let S be a set of O((logn)/é) variables picked randomly. For each possible assignment
S, 90 of the variables of .5:

1. Let Vi = .51 and V;, = .Sp be the current assignment of the literals.

Let
S S S -5 =S
— Iz cud < : : : :
Ty {$2¢S Uy = 4k+1(u2 +up 4 Uy + v)}
Tzz{xlﬁéS:ufS4kl:_1(u;s—|—v;s—|—uf—|—v;s)}.

For each @; € T} we assign the value true at z; and we introduce z; in V; and &; in
Vo. For each z; € Ty we assign the value false at z; and we introduce z; in V; and &;

in Vl.
2. Let U be the set of variables that have no value after the first step of the algorithm
and let Uy = Uy = (. Suppose that U = {ay,...,2,}.
For : =t to n we define :
o val; is the size of the set of clauses of I/ with a literal x; and the other literals
with a truth value and that are satisfied if x; = true

e val; is the size of the set of clauses of I/ with a literal #; and the other literals
with a truth value and that are satisfied if ; = false

If val; < wal; then assign to z; the value true and put z; in Uy and &; in Uy and let
bias;(U) = val;
otherwise assign to z; the value false and put z; in Uy and z; in Uy and let bias;(U) =

val;.

Let us sketch now a proof of correctness of the second algorithm. We denote by opt(F)
the value of an optimum solution of F' by m(F, sol) the value of the solution given by the
second algorithm.

Lemma 14 With high probability,

1. Ty contains each variable x; with the property that in an optimum solution of F

% 2k
X X _X _X
u, < A 1 (UZ + v; + u; + v;)

2. Ty contains each variable x; with the property that in an optimum solution of F

2k
X < (X +oX + 7 + 7)),

7

Also with high probability, each variable in the set Ty U Ty is placed as in the optimum
solution.

Proof: Similarly with the proof of Lemma 6. O

Lemma 15 With high probability, |U| < %.

Proof: If a variable z; has no value after the first step of the algorithm then with high
probability

uX > 2 X o X 4 o)

! 4k +1
and
aX s 2 (u + o +uf + o)
Q 4k‘|‘1 7 7 7 7 .

So, the value v* +o < ﬁ(uf—l—v?—l—ﬂf—l—ﬁgx) and thus uX > 2kv¥ and @ > 2kv.

The size of the multi-set of neighbors of z; that make part (in an optimum solution) of
a clause that is satisfied is at least uX — kvX > ﬁ(ugx + v +aX +07). So, the number
of clauses that contain 2; and are satisfied is at least ﬁ(uf + v +u¥ +05). The value
uX + v} +ar + 90X > (k- 1)én*~!. So, the number of clauses that contain x; and are
satisfied is at least fk_—+115nk_1. Also, there are at least fk;_:l(Snk_l clauses that contain z;
and are satisfied.

So, opt(F) > |U|dn*—1 (4Z;})k since we could count a clause at most k times. O

Lemma 16 [f opt(l') < an® then with high probability the number of clauses satisfied by
the assignment given by the second algorithm is at most (1 + ¢)opt(F).

14

Proof: Let v(V) be the number of clauses of I with all the literals in V;.
The number of clauses satisfied by the solution given by the second algorithm is

m(F, sol) =v(V) + ibiasi(U) +o(U).

k

The function v(U) <
0

) < |U]* and the variables are placed in U such that

Z bias;(U) < Z bias;(Ugpt).
1=t 1=k

So,
m(F, sol) <v(V)+ Zbiasi(Uopt) + v (Uppt) + v(U) — v(Uppt) <

1=t

< opt(F) + o(U) < opt(F) +|U|* < opt(F)(1 +¢)

4.4 MIN kCSP(EDNF)
Theorem 17 Dense MIN kCSP(EDNEF') has a PTAS.

Let F' be an input d-dense of MIN ECSP(EDNF) on n variables with m constraints
fi,--y [in DNF each function depending of at most k variables and the clauses of
the functions of I have the size exactly £, 1 < £ < k. Let ¢ be the allowed error and
a = g(k,e,0,0) a certain function depending of k,e,d, ¢ that will be determinated in the
following. We run two distinct algorithms and select the solution with the smallest value.
The first algorithm gives a good solution for the instances whose minimum value is at least

an® and the second for the instances whose minimum value is less than an®.

1. First algorithm (Algorithm for the case of ‘large” instances)

This problem can be written as a degree k smooth IP. We introduce n binary variables
Yiy...,Yn. For an assignment of zq,...,x; for which f; has the value 1 we define a degree
k polynomial as following: if the variable x; has the value 0 then we replace it by 1 — y;
and it has the value 1 we replace it by y;. After we multiply these degree 1 polynomials
obtaining a degree £ polynomial. The degree £ polynomial associated to f;, ¢;, is the sum
of these degree k polynomials corresponding to the assignments of z1,..., 2z for which f;
takes the value 1.

So, MIN kCSP(EDNVF) can be written as a degree k smooth IP as following :

min YT i (Yny ey Yn)
i € {0,11 Vi, 1< i< n.

Using the algorithm of [AKK95] we can find a polynomial time (1 + ¢)-approximation
for it.

2. Second algorithm (Algorithm for the case of ‘small” instances)

15

Figure 2: The graph G(F) when k =4,0 =3 and F' = (21 A 23 AZ4) V (T2 A 23 A\ T4)

Given a set S of variables and an assignment of these variables denote by Sy (Sp) the
set of literals of S that are true (false). Let X;(Xo) be the set of literals that are true(false)
in an optimum solution of F.

We define Lit(f;) the set of the literals of the function f;.

We define a multi-graph associated to the collection of functions F as following: The
vertex set is the set of the 2n literals. For each clause C'; ; of the function f; = C; V.. .\/Cﬁ]
of F' we add in G/(F) the edges of a complete graph where the vertices are the literals of
Ci.

In the following by the neighbors of a literal we understand the neighbors of the corre-
sponding vertex in G/(F).

Let S be a set of O((logn)/é) variables picked randomly. For each possible assignment
S1, 50 of the variables of .S and for a variable z; we define by:

e u? is the size of the multi-set of neighbors of ; in 57,
u? = [{neighbours of x; in Si}|

e v is the size of the multi-set of neighbors of z; in S,
v? = |{neighbours of x; in Sp}|

° ﬂf

is the size of the multi-set of neighbors of z; in Sy,
u? = [{neighbours of T; in Si}|
e 7 is the size of the multi-set of neighbors of z; in So,

o2 = |{neighbours of Z; in So}|.

1. Let Vi = .51 and V;, = .Sp be the current assignment of the literals.

Let
Ti={ei ¢ 50 < g (0l + o7 + 07 +07))
{
_S S S =S =S
— I a0l < : ! : Sy
T2 {$2¢S u2_4€_|_1(u2 —I_Uz —I_uz —I_Uz)}

16

For each @; € T} we assign the value true at z; and we introduce z; in V; and &; in
Vo. For each z; € Ty we assign the value false at z; and we introduce z; in V; and &;

in Vl.

2. Let U be the set of variables that have no value after the first step of the algorithm
and let Uy = Uy = (. Suppose that U = {ay,...,2,}.

For ¢ =t to n we define :

e wval; is the size of the collection of functions of F’ that contains only literals with
a truth value and z;, z; and that are satisfied if z; is true,

valy = {f; - Lit(f;) CVUUU{x;, 2.}, f; satisfied if x; = true}|

e wval; is the size of the collection of F' that contains only literals with a truth value
and z;, z; and that are satisfied if x; is false,

valy = {f; 1 Lit(f;) CVUUU{z;, 2;}, f; satisfied if x; = false}|
If val; < val; then assign to x; the value true and put z; in Uy and &; in Uy and let
bias;(U) = val;

otherwise assign to z; the value false and put z; in Uy and z; in Uy and let bias;(U) =
val;.

Let us sketch now a proof of correctness of the second algorithm. We denote by opt(F)
the value of an optimum solution of F' by m(F, sol) the value of the solution given by the
second algorithm.

Lemma 18 With high probability,

1. Ty contains each variable x; with the property that in an optimum solution

20
X X X ~X =X
u, < Y 1 (UZ + v; + u; + v;)

2. Ty contains each variable x; with the property that in an optimum solution

20
(" 4ol +u +07).

Also with high probability, each variable in the set Ty U Ty is placed as in the optimum
solution.

Proof: Similar with the proof of Lemma 6. O

Lemma 19 With high probability, |U| < ¢(k,§, () Oflf(j), where ¢ is a constant.

Proof: If a variable x; has no truth value after the first step of the algorithm then with
high probability
¥ 20

uX > 4E+1(u§+v§+a§+@§)

17

and

a; X > 4£—|—1(+of +af + o).
So, the value v + 0% < (—%)(uf{—l—vgx +uX 407) and thus u? > 20v® and @ > 200
The size of the multi-set of neighbors of z; that make part (in an optlmum solutlon)
of a clause that is satisfied is at least u - KU 4Zﬂ_l(u —|— v + u + v) So, the

number of clauses that contain x; and are satisfied is at least 4“_1 (u —I—v —|—u + v;)/K =
4Z-|—1(‘ ‘|'Uz —I_uz —I_Uz).

The value uX + UX + TLX + TJX > (0 —)5nk_1 Since in the worst Case the clauses that
contain ; and are satisfied are in the same function there are at least (€ — 1)énh=1/2k

(0 — 1)dnk=1 /2K

4Z—|—1

functions that contain z; and are satisfied. Also, there are at least 4“_1
functions that contain #; and are satisfied.

So, opt(F') > |U|5nk_1w_f;ﬁ since we could count a function at most k times (one
time for each variable that it depends). O

Lemma 20 If opt(F) < an® then with high probability the number of functions satisfied by
the assignment given by the second algorithm is at most (1 + ¢)opt(F).

Proof: Let f(V) be the number of constraints f; with Lit(f;) C V and that are satisfied.
The number of constraints satisfied by the solution given by the second algorithm is

m(F, sol))+ Z bias;(U) + f(U).

k
U]

functions on a fixed set of k variables. Also, the variables are placed in U such that

Z bias;(U) < Z bias;(Ugpt).
1=t 1=t

The function f(U) < h(k,) < |U|*h(k, £) where h(k, () is the number of (DNF

So,
(F SOl) < f ‘|‘ Z b’L(ZSZ opt) + f(opt) + f() f(UOpt) S

1=t

< opt(F) + f(U) < opt(F) + [U[h(k,€) < opt(F)(1 +¢)

4.5 MiIN ECSP(ESAT)

Theorem 21 Dense MIN kCSP(ESAT) has a PTAS.
Let F' be an input d-dense of MIN £CSP(ESAT) on n variables with m constraints
fi,--y [in CNF each function depending of at most k variables and the clauses of

the functions of I have the size exactly £, 1 < £ < k. Let ¢ be the allowed error and
a = g(k,e,0,0) a certain function depending of k,e,d, ¢ that will be determinated in the

18

following. We run two distinct algorithms and select the solution with the smallest value.

The first algorithm gives a good solution for the instances whose minimum value is at least

an® and the second for the instances whose minimum value is less than an”.

1. First algorithm (Algorithm for the case of ‘large” instances)
The same as in the case of MIN kCSP(EDNEF).
2. Second algorithm (Algorithm for the case of ‘small” instances)

Given a set S of variables and an assignment of these variables denote by Sy (Sp) the
set of literals of S that are true (false). Let X;(Xo) be the set of literals that are true(false)
in an optimum solution of F.

We define Lit(f;) the set of the literals of the function f;.

We define a multi-graph associated to the collection of functions F' as in the case of
MiN kCSP(EDNF).

Let S be a set of O((logn)/é) variables picked randomly. For each possible assignment
S1, 50 of the variables of .S and for a variable z; we define by:

e u? is the size of the multi-set of neighbors of ; in 57,

uf = |{neighbours of xz; in Sy}|

e v is the size of the multi-set of neighbors of z; in S,

UZS = |{neighbours of x; in Sp}|

e @7 is the size of the multi-set of neighbors of z; in 57,
u? = [{neighbours of T; in Si}|

e v is the size of the multi-set of neighbors of Z; in S,

1?25 = |{neighbours of z; in Sp}|

1. Let Vi = .51 and V;, = .Sp be the current assignment of the literals.

Let
ok=2¢

2k0 + 1

Ty={ei¢ S:ul< (uf +vf +] +07)}

2k—2

Ty={2;¢5:a° <

; _W(U§+U§§+ﬂf+@§)}-

For each @; € T} we assign the value true at z; and we introduce z; in V; and &; in
Vo. For each z; € Ty we assign the value false at z; and we introduce z; in V; and &;

in Vﬁ.

2. Let U be the set of variables that have no value after the first step of the algorithm
and let Uy = Uy = (. Suppose that U = {ay,...,2,}.

For ¢ =t to n we define :

19

e wval; is the size of the collection of functions of F’ that contains only literals with
a truth value and z;, z; and that are satisfied if z; is true,

valy = {f; - Lit(f;) CVUUU{x;, 2.}, f; satisfied if x; = true}|

e wval; is the size of the collection of functions of F’ that contains only literals with
a truth value and z;, z; and that are satisfied if x; is false,

valy = {f; 1 Lit(f;) CVUUU{z;, 2;}, f; satisfied if x; = false}|
If val; < val; then assign to x; the value true and put z; in Uy and &; in Uy and let
bias;(U) = val;

otherwise assign to z; the value false and put z; in Uy and z; in Uy and let bias;(U) =
val;.

Let us sketch now a proof of correctness of the second algorithm. We denote by opt(F)
the value of an optimum solution of F' by m(F, sol) the value of the solution given by the
second algorithm.

Lemma 22 With high probability,

1. Ty contains each variable x; with the property that in an optimum solution

2k=1p
uX

<
L= 9kp 4

(" +of +uf +07).

2. Ty contains each variable x; with the property that in an optimum solution

X < (uX + v +uX + o).

Also with high probability, each variable in the set Ty U Ty is placed as in the optimum
solution.

Lemma 23 With high probability, |U| < ¢(k,§,{) o' E) where ¢ is a constant.

Snk—1

Proof: If a variable z; has no value after the first step of the algorithm then with high
probability
x 2k—1£ x

X ~X ~X
>W(ui +oi +up +07)
and .
o
w X > 2k€+1(u§+v§+a§+@§).
So, the value v} + 0 < (1 — 25) (wX + 0} +aX + %) = Zrbg (uX + X + ¥ +v)).

1

2k04+1
1

2k0+41

So, in an optimum solution at most (u;X + UZ‘X + ﬂ;X + TJZX) clauses of size ¢ containing

x; are not satisfied and also at most
Z; are not satisfied.

(uX +vX +uX +0X) clauses of size £ containing

In the worst case these clauses are placed in different functions, and thus at most

zkl}T(u;X + vX + u¥ + o) functions of F containing z; are not satisfied and at most

20

(uX +0X +uX +0) functions of F' containing z; are not satisfied. So, in an optimum
1
2k0+1
Since the literals #; and #; could appear in the 2* clauses of a function, there are at least

m(ugx + v¥ 4+ u +) functions that contain the literals z; or ;.

_1
2k04+1
solution at most

(uX 4+ v¥ 4+ aX + o) functions containing x; or Z; are not satisfied.

So there are at least

1 1 1
et +ol +al 407 - g a4 of 1@ +07) = e (el ol a0l

functions containing z; and z; and are satisfied.

The value u 4+ vX + uX + 0¥ > (¢ — 1)dn*~1. So, opt(F) > |U|5nk_1(2k2—_|_11)k since we

could count a function at most k times (ones for each variable that it depends). O

Lemma 24 If opt(F) < an® then with high probability the number of functions satisfied by
the assignment given by the second algorithm is at most (1 + ¢)opt(F).

Proof: Let f(V) be the number of constraints f; with Lit(f;) C V and that are satisfied.
The number of constraints satisfied by the solution given by the second algorithm is

m(F, sol) = f(V) + Zn:biasi(U) + f(U).

The function f(U) < (|(k]|) h(k,0) < |U|%h(k, () where h(k, () is the number of (CNF

functions on a fixed set of k variables and the variables are placed in U such that
Z bias;(U) < Z bias;(Ugpt).
1=t 1=t

So,
m(F, sol) < f(V) + Z biasi(Uopt) + f(Uopt) + f(U) = f(Uspt) <
1=t

< opt(F) + f(U) < opt(F) + [U*h(k, €) < opt(F)(1 +¢)

5 Conclusions

We observe that all the problems considered in this paper are hard to approximate for the
case of average density. More exactly, MIN X<; Average Dense MIN X for all Xe{EkSarT,
EEDNF, kCSP(ESaT), kCSP(EDNF)}. We remark also that Average Dense Max kCSP
does have PTAS (cf. [AKK95]) for all k.

Our results imply existence of PTASs for dense instances of several minimization prob-
lems that are very hard to approximate on general instances.

Min HiTTING SET and MIN IMPLICATIVE HITTING SET restricted to sets of bounded
size are constant approximable and MAX SNP-hard [H96]. MiNn 2CNF DELETION is MAX
SNP-hard [KPRT97] and it is O(lognloglogn)-approximable. MiN UNCuT is proved

21

O(log n)-approximable and MAX SNP-hard [GVY93]. Tight lower bounds for Max Ek
LIN2 were given in [H97]. The minimization version MIN Ek LIN2 is also hard to approx-
imate since a special case of MIN E3 LiN2, NEAREST CODEWORD, was proven [ABSS93]
to be hard to approximate within a factor of 28!~ n for any € > 0 unless NP C QP. MIN
HorN DELETION is a problem that is as hard to approximate as NEAREST CODEWORD.

Remark that all the above problems are included in the class MIN CSP defined by
[KST97]. What happens with dense instances of problems from MIN ONES? MIN VER-
TEX COVER belong to MIN ONES and since Dense MIN VERTEX COVER has no PTAS
([CT96],[KZ97]) the class Dense MIN ONES has no PTAS also.

References

[ABSS93] S. Arora, L. Babai, J. Stern and Z. Sweedyk, The hardness of approximate
optima in lattice, codes, and systems of linear equations, Proc. of 34th IEEE

FOCS, 1993, 724-733.

[AFK96] S. Arora, A. Frieze and H. Kaplan, A new rounding procedure for the assignment
problem with applications to dense graph arrangements, Proc. of 37th IEEE
FOCS, 1996, 21-30.

[AKK95] S. Arora, D. Karger and M. Karpinski, Polynomial time approximation schemes
Jfor dense instances of N P-hard problems, Proc. of 27th ACM STOC, 1995, 284~
293. The full paper will appear in Journal of Computer and System Sciences,
1999.

[BFdV99] C. Bazgan and W. Fernandez de la Vega, A Polynomial Time Approzimation
Scheme for Dense MIN 25AT, Fundamentals of Computation Theory, LNCS
1684, Springer, 1999, 91-99.

[BTV96] D. Bertsimas, C-P. Teo and R. Vohra, On dependent randomized rounding algo-
rithms, Conference on Integer Programming and Combinatorial Optimization,
LNCS 1084, Springer, 1996, 330-344.

[CT96] A.E.F. Clementi and L. Trevisan, Improved non-approximability results for ver-
tex cover with density constraints, Proc. of 2nd Conference on Computing and
Combinatorics, COCOON’96, Springer, 1996, 333-342.

[CI5] N. Creignou, A dichotomy theorem for mazimimum generalized satisfiability
problems, Journal of Computer and System Sciences 51 (1995), 511-522.

[FAdV96] W. Fernandez de la Vega, Max-Cut has a Randomized Approximations Scheme
in Dense Graphs, Random Structures and Algorithms, 8(3) (1996), 187-198.

[FAVK99] W. Fernandez de la Vega and M. Karpinski, On approzimation hardness of dense
TSP and other path problem, Information Proccesing Letters 70 (1999), 53-55.

[FK96] A. Frieze and R. Kannan, The Regularity Lemma and approximation schemes
for dense problems |, Proc. of 37th IEEE FOCS, 1996, 12-20.

[FK99] A. Frieze and R. Kannan, Quick Approzimation to Matrices and Applications,
Combinatorica 19 (1999), 175-220.

22

[GVY93]

[GGRO6]

[H96]

[H97]

[K97]

[KZ97]

[KWZ97]

[KSW97]

[KST97]

[KPRT97]

[KKMO4]

[KT94]

[PY91]

S78]

N. Garg, V. Vazirani and M. Yannakakis Approzimate maz-flow min-(multi)cut
theorems and theirs applications, SIAM Journal of Computing 25(1996), 235
251.

0. Goldreich, S. Goldwasser and D. Ron, Property Testing and its Connection
to Learning and Approximation, Proc. of 37th IEEE FOCS, 1996, 339-348. The
full paper has appeared in Journal of the ACM, 45 (4) (1998), 653-750.

M. M. Halldérsson, Approzimating kset cover and complementary graph color-
ing, Proc. 5th International Conference on Integer Programming and Combina-
torial Optimization, LNCS 1084, Springer, 1996, 118-131.

J. Hastad, Some optimal inapproxzimability results, Proc. of 29th ACM STOC,
1997, 1-10.

M. Karpinski, Polynomial Time Approzimation Schemes for Some Dense In-
stances of N P-Hard Optimization Problems, Randomization and Approxima-
tion Techniques in Computer Science, LNCS 1269, Springer, 1997, 1-14.

M. Karpinski and A. Zelikovsky, Approzimating Dense Cases of Covering Prob-
lems, ECCC Technical Report TR 97-004, 1997, appeared also in DIMACS Se-
ries in Discrete Mathematics and Theoretical Computer Science, vol. 40, 1998,
169-178.

M. Karpinski, J. Wirtgen and A. Zelikovsky, An approximation algorithm for
the BANDWIDTH problem on dense graphs , ECCC Technical Report TR 97-017,
1997.

S. Khanna, M. Sudan and D. Williamson, A complete classification of the approz-
imability of mazimization problems derived from boolean constraint satisfaction,

Proc. of 29th ACM STOC, 1997, 11-20.

S. Khanna, M. Sudan and L. Trevisan, Constraint Satisfaction: the approzima-
bility of minimization problems, Proc. of 12th IEEE Computational Complexity,
1997, 282-296.

P. Klein, S. Plotkin, S. Rao and E. Tardos, Approzimation algorithms for steiner
and directed multicuts, Journal of Algorithms 22(1997), 241-269.

R. Kohli, R. Krishnamurti and P. Mirchandani, The Minimum Satisfiability
Problem, SIAM Journal on Discrete Mathematics 7(1994), 275-283.

P.G. Kolaitis and M.N. Thakur, Logical definability of NP optimization problems,
Information and Computation 115 (1994), 321-353.

C. Papadimitriou and M. Yannakakis, Optimization, Approximation and Com-
plexity Classes, Journal of Computer and System Science 43 (1991), 425-440.

T. Schaefer, The complexity of satisfiability problems, Proc. of 10th ACM STOC,
1978, 216-226.

23

