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Abstract

We describe an efficient algorithm for decoding canonical Huff-
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1 Introduction

Huffman codes are prefix codes with minimum redundancy. Being a part of
many popular data formats and compression utilities, such as JPEG, MPEG,
PNG, gzip, pkzip, lha, zoo and arj, they are one of the most popular com-
pression techniques in use nowadays.

Table look-up decoding of Huffman codes was considered by Sieminski
[11] and Choueka, Klein, and Perl[2]. Conell[3] describes a special case of
Huffman codes, the canonical Huffman codes. Klein[8] and Moffat and Turpin
[9] describe efficient decoding methods for canonical codes. Iyengar and
Chakrabarty[6] describe a finite-state machine approach to decoding Huffman
codes.

The traditional tree-based decoding of Huffman codes requires sequential
examinations of single bits and is relatively slow. More efficient methods
examine values of bit sequences at each algorithm step (see [9], [11], [2], [8]).

In this paper we describe a new method of decoding canonical Huffman
codes with look-up tables. Besides that, some ideas, concerning the estima-
tion of table size from the code parameters are discussed.

2 Decoding with look-up tables

In a case of decoding with look-up tables we read a number of bits at each step
of decoding process. We look-up the value of read bit sequence in a table and,
if this bit sequence contains a codeword, we output the corresponding symbol.
Otherwise we proceed with the decoding, using the next look-up table or
using some other method. The same principle is used in decoding of fixed-
length codes: we read the codeword, look-up the symbol corresponding to
this codeword and output this symbol. However in case of Huffman decoding
the process is more difficult, as codewords of a Huffman code have variable
length. Supposed the maximum codeword length in a Huffman code is 1,4,
then we will need a table with 2'mar entries, if we want to decode every
codeword in one step. This means high memory requirements, especially for
codes with a large number of codewords. Besides that, the time required for
initialization of such table can be unnecessarily high and may become the
bottleneck of an algorithm in case of a small source file.



2.1 Look-up tables of fixed size

In a method, proposed by Choueka and Klein ([8]) we read bit strings of fixed
length £ at each step of the algorithm. The read bit sequence contains zero or
more decipherable codewords and the “rest” i.e. a prefix of a codeword, that
cannot be decoded yet. We output symbols, corresponding to decipherable
codewords and continue decoding using the next look-up table, corresponding
to the prefix of a not yet decoded codeword, contained in the string. The
number of tables equals to the number of different codeword prefixes, which
in turn equals to the number of internal nodes in the Huffman tree, N — 1.
There are 2* records in each table, that correspond to all possible binary
sequences of length k. and the number of symbols, output at each transition,
is between 0 and k. Thus, the space required is O(28(N — 1)) as for every
internal tree node a table with 2* records must be stored. This approach
results in high speed decompression, provided that N and k are not so large
. This technique can also be used for a bytewise processing of input stream,
in case of Kk = 8 or k£ = 16. In this case bit operations would not be used at
all. Avoiding bit operations can simplify implementation in some high-level
languages and results in faster decoding.

The drawback of this approach is high memory requirement for the large
alphabet sizes N. For instance in case of &k = 8 and N = 2000 the space re-
quired is proportional to 512000 and for storing the tables several Megabytes
would be required. In case of large source alphabets the space requirements
can become prohibitive. Besides that, the time necessary for the initialization
of the tables can essentially increase the overall decoding time.

A similar approach to Huffman decoding is described in [11].

2.2 Canonical Huffman codes

Canonical codes are a subclass of Huffman codes, described by Conell[3] and
Schwartz and Kallick[12]. The canonical Huffman tree can be described by
the following property: if we scan the leaves in pre-order they appear in
non-increasing order of their depth. The canonical codes have a numerical
sequence property, i.e. codewords with the same length are binary represen-
tations of consecutive integers. Further, the first codeword of length ¢ f; can
be computed from the last codeword of length ¢« — 1 d;_; with the formula
fi = 2(d;—1 +1). Due to these properties an explicit structure of the Huffman



tree does not have to be transmitted to the decoder. It is enough if we specify
(1) the length of the longest codeword and (2) the number of codewords for
each length. In addition to providing a compact representation, canonical
codes can also be used for efficient decoding.

A property of canonical Huffman codes essentially simplifies the decoding
process. Once the length of the current codeword is known, it can be de-
coded by several arithmetic operations in the following way. Supposed we
have read the prefix b of the current codeword and all codewords with prefix
b have length [. Indexes of the codewords with prefix b are consecutive inte-
gers and the codewords themselves are binary representations of consecutive
integers.Let [(b) be the length of the prefix b and first; be the index of the
first codeword with length [ and b,, be a value of the next [ — () bits. Then
the index of the current codeword can be computed as b, + first;.

An efficient decoding algorithm for canonical Huffman codes is described
in [9]. Let my, be the value of the smallest code of length [; bit-shifted
lmaz — i bits left. my, will be further called a minimal value of length ;.
Let s; be an integer value of some binary string with length /.., prefix of
which is a codeword with length [. Then m;, < s; < my,, iff I} < < [s.
Therefore, we can read at once [,,,, bits, and then determine the length of
the current codeword by comparisons with minimal values. The index of the
current codeword can be computed as RightShi ft(s), lnae—1)+ first;, where
RigthShift(a,) is a value of a bit-shifted ¢ bits to the right. This approach
also allows to avoid bit-by-bit processing of encoded data and minimize use
of bit operations, thus leading to very fast decoding.

Moffat and Turpin also suggest in [9] a Huffman decoding method with
look-up tables.In this method we use the look-up table to determine or limit
the possible codeword lengths for codewords with prefix b. The look-up table
contains the minimum length [, . of a codeword with prefix b. We start with
reading l,,,,- bits from the input stream, where [,,,,. is the maximum codeword
length. Then we examine the value b of first {;;,., read bits in the look-up
table. If [, ., is not bigger than /s, then the symbol corresponding to the
current codeword is output. Otherwise we determine the codeword length by
comparing the value of current codeword with all the minimal values, starting
from [;,,,,. Once the length of the current codeword is known, we compute
the codeword index as described above. The pseudocode description of the
algorithm is given below. Here and further array minlength[s] contains the
minimum length of a codeword with prefix s, first[l] is the index of the first
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codeword with length 1 and minval[l] is the value of the first codeword with

length 1.

Procedure TableLookUp( )

begin
V:
v:

value of the next l_max bits from the input string;
value of the first 1_first bits of V;
length:=minlength[v];
while (minval[length] <= v)
length:=length+1;
length:=length-1;
index:=first[length]+ RightShift(V-minval[length],l_max - length);

output (symbol[index]);
end;

In [10] we described a modification of the above method. If the codeword
is a prefix of the read bit string, the corresponding symbol is output directly.
Otherwise, we use the prefix of a codeword to determine the codeword length
or limit the range of possible codeword lengths. We read [y, bits and if
the length of the current codeword is less than [, we output the symbol,
corresponding to the current codeword. Otherwise we use the value b of
the first ;5 bits to determine a possible codeword length. If the codeword
length [ can be uniquely determined, i.e. all codewords with prefix v have the
same length, we compute the codeword index and output the corresponding
symbol. If maximum length of codewords with prefix b [, . is less then
ltirst plus a small value (a criteria ly,,,. — {irst < 3 was used) we use an
additional look-up table. We then read next l;,, .. — ;5 bits and output the
symbol, that corresponds to the read bit sequence in the additional table.
Otherwise we read [,,4; — [ 5irs¢ bits and compare their value with the minimal
values until the codeword length is determined. This algorithm is described
in procedure TableLookUpl, table[v].flag indicates what kind of decoding
should be used for the bit string v.The value SHORT_CODE means that



there is a codeword, which is a prefix of v, SAME_LENGTH means that
all codewords with prefix v have the same length, ADD_TABLE indicates,
that a small additional table should be used and LONG_CODE means that
length should be determined as in [9].

Procedure TableLookUpl( )

begin

v:=value of the next 1_first bits;

if (tablel[v].flag= SHORT_CODE)
output (tablel[v].value);

if (tablelv].flag=SAME_LENGTH)
shift:=value of the next table[v].length bits;
output( symbol[table[v].value + shift];

if (table[v].flag=MEDIUM_CODE)
index:=value of the next tablel[v].length bits;
output (secondtable[table[v].value + index];

if (table[v].flag=LONG_CODE)
v:=value of the next tablel[v].length bits;
while (minval[length] < v)
length:=length+1;
length:=length-1;
index:=first[length]+ (v-minval[lengthl);
output (symbol [index]);

end

The methods, described above, are particularly efficient in case of large al-
phabets. In case of small codes, containing codewords with small codewords
length they are less efficient, than method, described in the section 2.1. The
reason for this is, that we can output more than one codeword at each algo-
rithm step.



In the next section we describe decoding method which is efficient for dif-
ferent types of Huffman codes without causing high memory overhead.

3 Look-up tables for multiple codewords

We start decoding by reading [ bits from the input stream. The bit
sequence b contains zero or more codewords and, possibly, a prefix of some
codeword. We output symbols, corresponding to the codewords, contained
in the read bit sequence. If the string contains more than one codeword
and the prefix p of the next codeword, we look whether the length of this
codeword can be determined, read the rest bits of the current codeword and
compute its index, using the property of Huffman codes, described in Section
2. Supposed, f is the index of the first codeword with prefix p and v is the
value of the rest bits of the codeword, then, as codewords with the same
length are consecutive integers and the corresponding symbol indexes are
also consecutive integers, the index of the next codeword equals to f + v.

Otherwise, if no codewords were output and the bit string b is a prefix of a
codeword, we proceed with the decoding in the same way as in [10]. We use
the value b of the first {;;,., bits to determine a possible codeword length. If
the codeword length [ can be uniquely determined, i.e. all codewords with
prefix v have the same length, we compute the codeword index and output
the corresponding symbol. If maximum length of codewords with prefix b
[peo i less then [ plus a small value (a criteria 0., — lfirst < 3 was
used) we use an additional look-up table. We then read next [, .. — lsirst
bits and output the symbol, that corresponds to the read bit sequence in the
additional table. Otherwise we read [, — L5 bits and compare their value
with the minimal values until the codeword length is determined.

Finally, we shift the bit pointer [;,; bits to the right, where [;,; is the total
length of the codewords,processed at this step, and start the decoding from
the beginning.

The decoding process can be described in pseudocode as follows:

Procedure TableLookupModified( )

begin
bitval:=value of the next 1_first bits;



output symbols, corresponding to codewords in bitval;
if ( bitval is a prefix of a codeword)
if (length of current codeword can be
determined from bitval)
read the rest bits of the current codeword;
compute the codeword index and output it;
else
read (1_max - 1_first) bits;
determine the length of the current codeword;
compute the codeword index and output it;
end

As an example consider the following code:

“€177=000; “4677=0110; “€1177=10101;
“€272=0010; €4770=0111; o
“4377=0011; “4877=1000; “2177=11111;
“4477=0100; 4977=1001;

“4577=0101; “€10°7=10100;

Supposed the length [ of an initial look-up string is 8. Consider the
stream of binary codewords 000001010101011100101000... . We read the
first ten bit string 00000101. It contains the codewords 000 and 0010. We
output symbols “1”7 and “2”7, corresponding to these codewords. The next
8-bit string 1s 10101011 and we output “117. The rest of this string, 011 is a
prefix of a 4-bit codeword, therefore we read the next bit 1, and output the
symbol, corresponding to 0111. Then we read the the string 00101000 and
output two symbols “2”7 and “8”, and so on.

For implementation of this method we use a table with 2!/t entries. A
record for string b contains the symbol, corresponding to the codewords,
contained in b, an indication, whether further bits should be read and the
number of bits processed at the step. Table I shows the beginning of the table
for the code, described above in case of {f;. = 8. The String gives a binary
representation of an initial string. Field NUM specifies the number of code-
words, contained in b. Field SYMSTR lists the symbols, corresponding to
codewords in b. Field NextBits specifies the number of additional codewords



to be read. It is used, when the end of b is codeword prefix p, such that the
length of the next codeword can be determined, or when the whole string b is
a prefix of a codeword. If no additional bits should be read NextBits equals
to 0. Otherwise NextBits contains information about the number of bits to
be read and the method to be used for decoding of the current codeword.
If NextBits is less than 40, then all codewords with prefix p have the same
length and the field FirstInd specifies the index of the first codeword with
prefix p. If the value of the next NextBits bits is v, then the index of the next
codeword can be computed as FirstInd + v. If NextBits has value between
40 and 80, then an additional table should be used. In this case FirstInd
specifies the index of this table. The value of NextInd above 80 indicates,
that we should read the next /,,,, — lir5¢ bits and determine the codeword
index by comparisons with the minimal values. The field ProcBits specifies
the number of bits processed at this step. For instance the string 00000000
contains two codewords, corresponding to symbols 1 and 1, the rest of the
string 00 is not enough to determine the length of the next codeword and
the number of bits processed before we proceed to the next initial string is 6.
For string 00000001 again two symbols 1 and 1 will be output. However 01
is sufficient to determine the length 3 of the next codeword. Hence we will
read the next bit v and compute the next symbol as 4 +v. The total number
of processed bits in this case will be 9.

Table 1
Table for modified look-up

String | NUM | SYMSTR | NextBits | FirstInd | ProcBits
00000000 2 1,1 0 - 6
00000001 2 1,1 2 4 9
00000010 2 1,1 0 - 6
10101011 1 11 1 6 9
10101100 1 11 0 - 5

The difference of this method from the method, described in [9] is that we
directly output symbols, corresponding to the codewords, contained in the
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first bit string without any further computations. Besides that, we output
all symbols, contained in the first bit string and not just the first one. It
allows an efficient decompression of codes with short codewords.

3.1 Table Construction

The construction of the look-up table with multiple codewords for a Huff-
man code can itself become a time-consuming problem. However, in case of
canonical Huffman codes, the table can be constructed in linear time in the
number of records. In this subsection we will outline the process of table
construction.

We will call the symbol, corresponding to the zero codeword the first sym-
bol. The first record in the table corresponds to a sequence of zeroes. It
consists of zero or more codewords, corresponding to the first symbol and
the “rest” sequence. We can easily compute the symbol string SYMSTR and
the number of symbols, NUM, for the first record.

Now we will show how we can construct the symbol string for the k& + 1-th
record from the symbol string for k-th record in a constant time. Supposed
the k-th record consists of r codewords and the index and length of the
i-th codeword and the codeword itself are stored in index]i], length[i] and
codeword[i] respectively. First, we will presume that k-th record contains no
“rest” sequence and consists only of r codewords. To construct the symbol
string for the next codeword we simulate incrementing the value of k-th
record in terms of codewords. The additional array maxbitstr[r] stores the
values of 1 << length[r]. We start by incrementing index[r] and codeword]r]
by 1. We check, whether codeword]r] is less then maxbitstr[r]. If this is not
the case, we decrement r by 1 and increment index[r] and codeword]r]. This
process is repeated until maxbitstr[r] is greater than codeword[r]. Then, we
check whether the length of the codeword[r] has changed and fill the rest of
the bit string with first symbols.

The pseudocode description of this process is given below. Function len(i)
computes the length of the codeword with index 1.

begin

while ( (codeword[r]+1) = maxbitstrlr] )
restlen:=restlen+length[r];
length[r] :=firstlen;
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index[r] :=0;
restlen:=restlen + lengthl[r];
index[r] :=index[r]+1;
length[r]=len(index[r]);
if (len(index[r]) > len(index[r] - 1))
codeword[r] :=LeftShift ((codeword[r]+1),length[r]-len(index[r]-1) );
else
codeword[r] :=codeword[r]+1;
restlen:=restlen- lengthl[r];

if (restlen > 0 )
r+=(restlen/firstlen) + (restlenlfirstlen > 0);
end;

Now we will consider the general case, when k-th record consists of r code-
word and the “rest” bit sequence pref. We store the values of the first
codeword with prefix pref, the index of the first codeword with prefix pref
in codeword[r+1] and index[r+1]. In this case codeword[r+1] and index[r+41]
will be incremented by different values.

The pseudocode for the general case is given below. Step is an additional
variable for computing the values of index[r+1] and codeword[r+1] for the
next record. If the value of the variable step is greater than 1, it indicates
that the current record contains the “rest” bit sequence.

begin
if (step > 1)
index[r] :=nextindex(index[r],step);
codeword[r] :=nextcodew(codeword[r],step);
if (codeword[r] == maxbitstrl[r])
r:=r-1;
while ( (codeword[r]+1) = maxbitstrlr] )
restlen:=restlen+length[r];
length[r]:=firstlen;
index[r] :=0;
restlen:=restlen + lengthl[r];
index[r] :=index[r]+1;
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length[r] :=len(index[r]);

if (len(index[r]) > len(index[r] - 1))
codeword[r] :=LeftShift ((codeword[r]+1),length[r]-len(index[r]-1) );
maxbitstr[r]:=LeftShift(l,length[r]);

else
codeword[r] :=codeword[r]+1;

restlen:=restlen - lengthl[r];

if (restlen > 0 )
r:=r + (restlen/firstlen) + (restlenlfirstlen > 0);
if (restlen¥firstlen > 0)
step := LeftShift(l,restlen)firstlen);
else
step:=1;
else
step:= LeftShift(1l,-restlen);

end;

Obviously the values of table fields SYMSTR, NUM, NextBits and FirstInd
can be computed from variables index][], step and r.

The computation of functions nextcodew(c, ), finding the j-th codeword
after the codeword ¢, and nextindex(c, j), finding the index of this codeword
can be time consuming. Using the prefix information is not always the best
option, sometimes it is better to simply shift the bit pointer and restart
the decoding process by reading the new initial string. For this reason, our
algorithm computes the nextcodew( ) function only for long prefix strings.
We use the following criterion. If a record contains more than one codeword
and the length of the end of the last codeword, beginning with pref, does not
exceed 7, the functions nextcodew(c,j) and nextindex(c,j) are computed.
Otherwise, we just increment values of index[r+1] and codeword[r+1] by 1,
without using information, contained in pref.

4 Estimating table size from code parameters

An important issue for the algorithm, described in the previous section is
selection of an appropriate table size. Choosing to construct too big table
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for a small file would mean an unnecessary time and memory space overhead.
On the other hand, choosing to construct a small table for a big file results
in a less efficient decoding.

In many applications the size of decoded file is not known to the decoder.
In case of canonical codes, as was mentioned in section 2, it is sufficient to
transmit the maximal codeword length and number of codewords for each
length.

In this section we will show how the file size can be estimated from the
specification of a canonical Huffman code. The results also describe the
connection between the probability of the least frequent source symbol and
its codeword length in a Huffman code.

In this section the following notation will be used. We presume that a
Huffman code is specified as a tuple < ny,ng,...,n, > where n; is the
number of codewords with length ¢. For symbol a frequency f, is the number
of occurrences of a and f;,; is the total number of occurrences of all symbols,
which is equivalent to the length of the source file. Probability p, is defined
as fa/ftot-

We will also consider the Huffman tree corresponding to the Huffman code.
The weight f, of a leave a equals to the frequency of a corresponding symbol.
The weight of a node equals to the sum of weights of its descendants. We
will say, that node N is on level [, if depth(d) = [. The total weight F' of a
Huffman tree is the weight of its root. The total weight equals to the size
of a source file. The Huffman tree and Huffman code notations will be used
alternatively.

We consider the problem of determining the minimal size of the source for
a given Huffman code. In the further description a property of Huffman tree
will be used extensively.

Property 1 For any two nodes a,b in a Huffman tree.
If depth(a) < depth(b), then p, > py.

Proof: Supposed, that p, < p,. Then we can swap the nodes a and b and get
the tree T, such that the weighted path length of 7" is smaller than weighted
path length of T'. Therefore T" is not a Huffman tree.

In the following lemma we presume that the smallest source symbol has
frequency 1. We will show that a certain frequency distribution for a given
Huffman code corresponds to the smallest source file.
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Lemma 1 A canonical tree < ny,ng, ..., n, > has minimal weight F if :
1) all leaves on level m have weight 1

2) all leaves on level i have weight equal to the weight of the node with maximal
weight on level i+1.

Proof: We will denote the total weight of the above tree F),;,. Supposed,
there is a tree 7" such that the total weight of T” is smaller than total weight
of ', then there is a leave a’ such that for any leave b’ with depth(d') >
depth(a') for = fp and fu < f,. Then f, has weight, smaller than a weight
of some node N, such that depth(N) = depth(a’) 4+ 1. Hence, by property 1,
T’ is not a Huffman tree.

Corollary 1 For a canonical code < ny,ny,...,n, > the minimal size of
the source file is F,.

The above lemmas allow to compute the lower bound on the size of the
source file for a given canonical Huffman code. It can be shown, that the
value of F,,;, can be computed in O(m?), where m is the maximum codeword
length.

Generally speaking, there is no upper bound for the source file size. It
can be demonstrated with an example of a binary source code a, b, such that
fo = 1 and f, = m. Independently of the value of m (and of the source
file size, which equals to m + 1) the Huffman code remains the same (two
codewords with length 1). However we can put an upper bound on the weight
of the nodes with the same depth d in case, when the nodes do not have a
maximum depth and there are more than two nodes with depth d.

Lemma 2 Supposed, that nodes Ny and Ny in a Huffman tree T have the
same length d, and there is at least one another non-leave node on level d.

Then fn, <3 X fn,

Proof: Supposed, that Ny > 2 x N,. There is at least one node N; with
two sons N3 and N;. Without changing the weighted path length of T' we
can reconstruct the T"in such way, that N, and N; have the same father V.
As fn, < fv, and fv, < fn, fo=fo + e vy <3 X fn, < favy. As
depth(No) > depth(Ny) T is not a Huffman tree. Using the lemmas listed
below, we can compute the probability, that the codeword length is not less
than [.
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Lemma 3 [f non-leave nodes Ny and Ny have the same depth, than fn, <
2 X fN2

Proof: Otherwise at least one son of N; would have had weight bigger than
fN2 :

With lemmas 2 and 3 we can put an upper bound on the weights of leaves
on the same level d, if there is more than one non-leave node on level d.

Using the following lemmas we can compute maximum probability of the
fact, that the codeword length is bigger than /.

In the same way as Lemma 1, the following lemma can be proved:

Lemma 4 A canonical tree < ny,ng, ... ,n, >, such that the minimal weight
of a leaf is f has minimal weight F if :

1) all leaves on level m have weight f

2) all leaves on level i have weight equal to the weight of the node with maximal
weight on level i+1.

Corollary 2 For a given canonical tree < ny,ng,...,n, > such that the
minimal leaf weight is f the minimal tree weight is f X Fo .

Proof: The weight of every leaf in the tree of Lemma 2 is f times bigger
than the weight of the corresponding leaf in the tree of Lemma 1.

Corollary 3 For a given canonical code < ny,ng,...,n, >, the mazrimal
probability of the least probable symbol is 1/ F,,;,.

Corollary 4 For a given canonical tree < ny,no, ..., n, > the mazrimal total
probability of leaves on the level m is n,, [ Fom
(1) () (®)

Let an i-truncated tree < ny’,ny’,... ) n;

,n;’ > be a tree constructed from

tree < ny,ng,...,n, > by replacing all nodes on level ¢« with leaves of equal
weight.

Statement 1 For a given canonical tree < ny,ngy,...,n, > the total proba-
bility of leaves with length bigger than or equal to 1 equals to ngl)/F(Z) where

min s

FY s the minimal total weight of an i-truncated tree < n(li), n(;), e ,ngl) >.

min

Statement 1 puts an upper bound on the total probability of codewords with
at least 1 bits.

15



4.1 Algorithm for estimating file size.

The minimal size F,,;, from Lemma 1 can be computed in O(m?), where d is
the depth of Huffman tree. To compute F,;, we set the weights of all leaves
on the deepest level to 1. Then we repeat the following step for all tree levels
k. We find the maximal node weight f,,4z,,, for all non-leave nodes on level
k41 and set the weight of all leaves on level £ to fiaz,,,-

We will say that node N is an i-node, if all leaves, that are descendants of
N have depth 1. We will say that node N is an i-mixed node if all leaves,
that are descendants of N have depth greater than or equal to ¢. Obviously,
all --nodes on the same level k£ have the same weight. In a canonical Huffman
tree there is at most one i-mixed node on any level k. Therefore the nodes
on any tree level k can take on less than 2m different values and the weight
of the heaviest node on level k can be computed in O(m). Hence F,;, can be
computed in O(m?). On each algorithm step at most m values of --nodes and
at most m values of i-mixed nodes have to be stored, therefore the algorithm
requires O(m) space.

However in real life distributions codewords with the same length rarely
have the same frequency. To compensate for this fact and to get a more
realistic size estimate, we set the weights of nodes on level k to ¢ X fiaz,,,,
with ¢ > 1. We can also make ¢ dependent from the number of nodes on
level k. For our experiments we have chosen ¢ = 3 if the number of nodes is
above 30, ¢ = 2 if the number of nodes is above 8 and ¢ = 1 otherwise. The
results of experiments are listed in the table below. We have also compared
our results with the estimates, based on the work of Katona and Nemetz([7]).
As follows from the theorem 2 in [7], the probability of a leave on level £ is
not bigger than Fjy,q, where F; is the i-th Fibonacci number. Therefore, for a
maximum codeword length m the file size estimate will be F,, ;1. In the table
below we list the results of prediction for the files of Calgary compression cor-
pus. The minimal estimate gives much better results than Fibonacci number
estimate. The results for our “realistic” procedure are even more close to
actual file sizes and can be used in real applications (see the next section
for an example of such application). We stress that the data corpus used in
our experiments consists of different file types and no information about the
frequency distribution of symbols or about the frequency of the least frequent
symbol was used in this estimate. The worst estimates (for book2 and progl)
can be explained by the fact, that the frequency of the least frequent symbol
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exceeds 1. Our conclusion is that we can achieve a good estimate of file size,
based on lemma 1, especially if additional information about the frequency
distribution is available.

Table 11
File Size Estimates

File Fibonacci | minimal | “realistic” | Real

numbers | estimate | estimate size
bib 2584 7752 38369 111261
bookl1 17711 66392 270723 768771
book?2 2584 8982 46077 610865
objl 610 2169 46934 21504
obj2 1597 7856 131800 246814
paperl 1597 5142 30718 53161
paper?2 2584 8901 42429 82199
paper3 987 3138 14336 46526
paper4 610 2140 7168 13286
paperb 610 2100 7680 11954
paper6 1597 4834 23039 38105
pic 4181 25471 135056 513216
progc 987 2728 13374 39611
progl 987 3183 15359 71646
progp 1597 6462 25595 49379

5 Experimental results

We have tested algorithm of section 4 on files from Calgary compression cor-
pus (see [1] ). It consists of two books (bookl and book2), six papers (paperl
through paper6), one bibliography (bib) and three programs (progc,progp
and progl). Non-ASCII files are represented by a black-and-white picture
(pic) and two object files (objl and obj2). The source alphabets for all files
consist of single characters, occurring in the corresponding source file.
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The results are listed in Table III. The second column in the table specifies
the size of the source alphabet. As a speed criterion we have used the average
number of decoded symbols per read bit sequence. The results for the look-
up method from [9] and for the modified look-up method from the section
3 are listed in the third and the fourth columns. In both cases the look-up
tables contain 12-bit strings.

We can see that improved look-up method leads to more then twofold
reduction in the number of bit reading operations. For the look-up method
this criterion can not exceed 1. For the improved look-up method number of
symbols per bit string ranges from 1.4 to 6.3. The most impressive advantage
is achieved for the pic file, the Huffman code for which contains several very
short codewords.

In the table IV we have listed the results of decoding with variable table
size. The algorithm from the section 4.1 is used to predict the length of the
source file. We set table size to 256 (8-bit strings), if the predicted file size
does not exceed 10000 Bytes. We use 10-bit strings, if predicted file size does
not exceed 100000 Bytes. Otherwise we set table size to 4096 records. Using
this variation of the algorithm we can reduce memory resources for small
files, with only small reduction in speed. We list the size of decoding table
used in modified look-up method in column 4. In column 2 we list file sizes
in thousands of bytes. Choice of the table size based on code parameters
allows us to spare memory resources and table construction time for small

files.

6 Future work

We have constructed an algorithm for estimating the source file size from the
specifications of canonical Huffman code. This algorithm makes no assump-
tions about the probability distribution of the source symbols. For instance,
probabilities of words in large texts can be approximated by Zipf distribu-
tion p; = 1/(:H,), where H, is the n-th harmonic number (see [13]). In
other cases (for instance, in image compression) symbol probabilities can be
approximated by geometric distribution. Using this information to compute
the coefficient ¢ could further improve our estimates.

In some applications several Huffman codes are used to to encode alternat-
ing symbols. For instance, in gzip compression utility (see [4]) two different
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Table 111

File | Alphabet look-up Modified look-up

size decoded symbols | decoded symbols

per bit sequence | per bit sequence
bib 81 0.9996 1.8480
bookl 82 0.9987 2.1758
book2 96 0.9985 2.0357
objl 256 0.9998 1.4968
obj?2 256 0.9969 1.4347
paperl 95 0.9996 1.9454
paper?2 91 0.9988 2.1578
paper3 84 0.9997 2.1145
paperd 80 0.9993 2.1052
paperb 91 0.9997 1.9552
paper6 93 0.9998 1.9364
pic 159 0.9991 6.3096
progc 92 0.9996 1.8448
progl 87 0.9998 2.0857
progp 89 0.9994 1.9496

codes are used to compress results of LZ77 compression. One code is used for
literals and length components of duplicated string pointers and another one
for distance components of duplicated string pointers. The decoding method,
described above can be easily extended to that situation.
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