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1 IntroductionHu�man codes are pre�x codes with minimum redundancy. Being a part ofmany popular data formats and compression utilities, such as JPEG, MPEG,PNG, gzip, pkzip, lha, zoo and arj, they are one of the most popular com-pression techniques in use nowadays.Table look-up decoding of Hu�man codes was considered by Sieminski[11] and Choueka, Klein, and Perl[2]. Conell[3] describes a special case ofHu�man codes, the canonical Hu�man codes. Klein[8] and Mo�at and Turpin[9] describe e�cient decoding methods for canonical codes. Iyengar andChakrabarty[6] describe a �nite-state machine approach to decoding Hu�mancodes.The traditional tree-based decoding of Hu�man codes requires sequentialexaminations of single bits and is relatively slow. More e�cient methodsexamine values of bit sequences at each algorithm step (see [9], [11], [2], [8]).In this paper we describe a new method of decoding canonical Hu�mancodes with look-up tables. Besides that, some ideas, concerning the estima-tion of table size from the code parameters are discussed.2 Decoding with look-up tablesIn a case of decoding with look-up tables we read a number of bits at each stepof decoding process. We look-up the value of read bit sequence in a table and,if this bit sequence contains a codeword, we output the corresponding symbol.Otherwise we proceed with the decoding, using the next look-up table orusing some other method. The same principle is used in decoding of �xed-length codes: we read the codeword, look-up the symbol corresponding tothis codeword and output this symbol. However in case of Hu�man decodingthe process is more di�cult, as codewords of a Hu�man code have variablelength. Supposed the maximum codeword length in a Hu�man code is lmax,then we will need a table with 2lmax entries, if we want to decode everycodeword in one step. This means high memory requirements, especially forcodes with a large number of codewords. Besides that, the time required forinitialization of such table can be unnecessarily high and may become thebottleneck of an algorithm in case of a small source �le.2



2.1 Look-up tables of �xed sizeIn a method, proposed by Choueka and Klein ([8]) we read bit strings of �xedlength k at each step of the algorithm. The read bit sequence contains zero ormore decipherable codewords and the \rest" i.e. a pre�x of a codeword, thatcannot be decoded yet. We output symbols, corresponding to decipherablecodewords and continue decoding using the next look-up table, correspondingto the pre�x of a not yet decoded codeword, contained in the string. Thenumber of tables equals to the number of di�erent codeword pre�xes, whichin turn equals to the number of internal nodes in the Hu�man tree, N � 1.There are 2k records in each table, that correspond to all possible binarysequences of length k, and the number of symbols, output at each transition,is between 0 and k. Thus, the space required is O(2k(N � 1)) as for everyinternal tree node a table with 2k records must be stored. This approachresults in high speed decompression, provided that N and k are not so large. This technique can also be used for a bytewise processing of input stream,in case of k = 8 or k = 16. In this case bit operations would not be used atall. Avoiding bit operations can simplify implementation in some high-levellanguages and results in faster decoding.The drawback of this approach is high memory requirement for the largealphabet sizes N . For instance in case of k = 8 and N = 2000 the space re-quired is proportional to 512000 and for storing the tables several Megabyteswould be required. In case of large source alphabets the space requirementscan become prohibitive. Besides that, the time necessary for the initializationof the tables can essentially increase the overall decoding time.A similar approach to Hu�man decoding is described in [11].2.2 Canonical Hu�man codesCanonical codes are a subclass of Hu�man codes, described by Conell[3] andSchwartz and Kallick[12]. The canonical Hu�man tree can be described bythe following property: if we scan the leaves in pre-order they appear innon-increasing order of their depth. The canonical codes have a numericalsequence property, i.e. codewords with the same length are binary represen-tations of consecutive integers. Further, the �rst codeword of length i fi canbe computed from the last codeword of length i � 1 di�1 with the formulafi = 2(di�1+1). Due to these properties an explicit structure of the Hu�man3



tree does not have to be transmitted to the decoder. It is enough if we specify(1) the length of the longest codeword and (2) the number of codewords foreach length. In addition to providing a compact representation, canonicalcodes can also be used for e�cient decoding.A property of canonical Hu�man codes essentially simpli�es the decodingprocess. Once the length of the current codeword is known, it can be de-coded by several arithmetic operations in the following way. Supposed wehave read the pre�x b of the current codeword and all codewords with pre�xb have length l. Indexes of the codewords with pre�x b are consecutive inte-gers and the codewords themselves are binary representations of consecutiveintegers.Let l(b) be the length of the pre�x b and firstl be the index of the�rst codeword with length l and bn be a value of the next l� l(b) bits. Thenthe index of the current codeword can be computed as bn + firstl.An e�cient decoding algorithm for canonical Hu�man codes is describedin [9]. Let mli be the value of the smallest code of length li bit-shiftedlmax � li bits left. mli will be further called a minimal value of length li.Let sl be an integer value of some binary string with length lmax, pre�x ofwhich is a codeword with length l. Then ml1 < sl < ml2, i� l1 < l < l2.Therefore, we can read at once lmax bits, and then determine the length ofthe current codeword by comparisons with minimal values. The index of thecurrent codeword can be computed as RightShift(sl; lmax�l)+firstl, whereRigthShift(a; i) is a value of a bit-shifted i bits to the right. This approachalso allows to avoid bit-by-bit processing of encoded data and minimize useof bit operations, thus leading to very fast decoding.Mo�at and Turpin also suggest in [9] a Hu�man decoding method withlook-up tables.In this method we use the look-up table to determine or limitthe possible codeword lengths for codewords with pre�x b. The look-up tablecontains the minimum length lbmin of a codeword with pre�x b . We start withreading lmax bits from the input stream, where lmax is the maximumcodewordlength. Then we examine the value b of �rst lfirst read bits in the look-uptable. If lbmin is not bigger than lfirst, then the symbol corresponding to thecurrent codeword is output. Otherwise we determine the codeword length bycomparing the value of current codeword with all the minimal values, startingfrom lbmin. Once the length of the current codeword is known, we computethe codeword index as described above. The pseudocode description of thealgorithm is given below. Here and further array minlength[s] contains theminimum length of a codeword with pre�x s, �rst[l] is the index of the �rst4



codeword with length l and minval[l] is the value of the �rst codeword withlength l.Procedure TableLookUp( )beginV:= value of the next l_max bits from the input string;v:= value of the first l_first bits of V;length:=minlength[v];while (minval[length] <= v)length:=length+1;length:=length-1;index:=first[length]+ RightShift(V-minval[length],l_max - length);output(symbol[index]);end;In [10] we described a modi�cation of the above method. If the codewordis a pre�x of the read bit string, the corresponding symbol is output directly.Otherwise, we use the pre�x of a codeword to determine the codeword lengthor limit the range of possible codeword lengths. We read lfirst bits and ifthe length of the current codeword is less than lfirst we output the symbol,corresponding to the current codeword. Otherwise we use the value b ofthe �rst lfirst bits to determine a possible codeword length. If the codewordlength l can be uniquely determined, i.e. all codewords with pre�x v have thesame length, we compute the codeword index and output the correspondingsymbol. If maximum length of codewords with pre�x b lbmax is less thenlfirst plus a small value (a criteria lbmax � lfirst � 3 was used) we use anadditional look-up table. We then read next lbmax� lfirst bits and output thesymbol, that corresponds to the read bit sequence in the additional table.Otherwise we read lmax� lfirst bits and compare their value with the minimalvalues until the codeword length is determined. This algorithm is describedin procedure TableLookUp1, table[v].
ag indicates what kind of decodingshould be used for the bit string v.The value SHORT�CODE means that5



there is a codeword, which is a pre�x of v, SAME�LENGTH means thatall codewords with pre�x v have the same length, ADD�TABLE indicates,that a small additional table should be used and LONG�CODE means thatlength should be determined as in [9].Procedure TableLookUp1( )beginv:=value of the next l_first bits;if (table[v].flag= SHORT_CODE)output (table[v].value);if (table[v].flag=SAME_LENGTH)shift:=value of the next table[v].length bits;output( symbol[table[v].value + shift];if (table[v].flag=MEDIUM_CODE)index:=value of the next table[v].length bits;output(secondtable[table[v].value + index];if (table[v].flag=LONG_CODE)v:=value of the next table[v].length bits;while (minval[length] < v)length:=length+1;length:=length-1;index:=first[length]+ (v-minval[length]);output(symbol[index]);endThe methods, described above, are particularly e�cient in case of large al-phabets. In case of small codes, containing codewords with small codewordslength they are less e�cient, than method, described in the section 2.1. Thereason for this is, that we can output more than one codeword at each algo-rithm step. 6



In the next section we describe decoding method which is e�cient for dif-ferent types of Hu�man codes without causing high memory overhead.3 Look-up tables for multiple codewordsWe start decoding by reading lfirst bits from the input stream. The bitsequence b contains zero or more codewords and, possibly, a pre�x of somecodeword. We output symbols, corresponding to the codewords, containedin the read bit sequence. If the string contains more than one codewordand the pre�x p of the next codeword, we look whether the length of thiscodeword can be determined, read the rest bits of the current codeword andcompute its index, using the property of Hu�man codes, described in Section2. Supposed, f is the index of the �rst codeword with pre�x p and v is thevalue of the rest bits of the codeword, then, as codewords with the samelength are consecutive integers and the corresponding symbol indexes arealso consecutive integers, the index of the next codeword equals to f + v.Otherwise, if no codewords were output and the bit string b is a pre�x of acodeword, we proceed with the decoding in the same way as in [10]. We usethe value b of the �rst lfirst bits to determine a possible codeword length. Ifthe codeword length l can be uniquely determined, i.e. all codewords withpre�x v have the same length, we compute the codeword index and outputthe corresponding symbol. If maximum length of codewords with pre�x blbmax is less then lfirst plus a small value (a criteria lbmax � lfirst � 3 wasused) we use an additional look-up table. We then read next lbmax � lfirstbits and output the symbol, that corresponds to the read bit sequence in theadditional table. Otherwise we read lmax� lfirst bits and compare their valuewith the minimal values until the codeword length is determined.Finally, we shift the bit pointer ltot bits to the right, where ltot is the totallength of the codewords,processed at this step, and start the decoding fromthe beginning.The decoding process can be described in pseudocode as follows:Procedure TableLookupModified( )beginbitval:=value of the next l_first bits;7



output symbols, corresponding to codewords in bitval;if ( bitval is a prefix of a codeword)if (length of current codeword can bedetermined from bitval)read the rest bits of the current codeword;compute the codeword index and output it;else read (l_max - l_first) bits;determine the length of the current codeword;compute the codeword index and output it;endAs an example consider the following code:``1''=000; ``6''=0110; ``11''=10101;``2''=0010; ``7''=0111; ...``3''=0011; ``8''=1000; ``21''=11111;``4''=0100; ``9''=1001;``5''=0101; ``10''=10100;Supposed the length lfirst of an initial look-up string is 8. Consider thestream of binary codewords 000001010101011100101000... . We read the�rst ten bit string 00000101. It contains the codewords 000 and 0010. Weoutput symbols \1" and \2", corresponding to these codewords. The next8-bit string is 10101011 and we output \11". The rest of this string, 011 is apre�x of a 4-bit codeword, therefore we read the next bit 1, and output thesymbol, corresponding to 0111. Then we read the the string 00101000 andoutput two symbols \2" and \8", and so on.For implementation of this method we use a table with 2lfirst entries. Arecord for string b contains the symbol, corresponding to the codewords,contained in b, an indication, whether further bits should be read and thenumber of bits processed at the step. Table I shows the beginning of the tablefor the code, described above in case of lfirst = 8. The String gives a binaryrepresentation of an initial string. Field NUM speci�es the number of code-words, contained in b. Field SYMSTR lists the symbols, corresponding tocodewords in b. Field NextBits speci�es the number of additional codewords8



to be read. It is used, when the end of b is codeword pre�x p, such that thelength of the next codeword can be determined, or when the whole string b isa pre�x of a codeword. If no additional bits should be read NextBits equalsto 0. Otherwise NextBits contains information about the number of bits tobe read and the method to be used for decoding of the current codeword.If NextBits is less than 40, then all codewords with pre�x p have the samelength and the �eld FirstInd speci�es the index of the �rst codeword withpre�x p. If the value of the next NextBits bits is v, then the index of the nextcodeword can be computed as FirstInd + v. If NextBits has value between40 and 80, then an additional table should be used. In this case FirstIndspeci�es the index of this table. The value of NextInd above 80 indicates,that we should read the next lmax � lfirst bits and determine the codewordindex by comparisons with the minimal values. The �eld ProcBits speci�esthe number of bits processed at this step. For instance the string 00000000contains two codewords, corresponding to symbols 1 and 1, the rest of thestring 00 is not enough to determine the length of the next codeword andthe number of bits processed before we proceed to the next initial string is 6.For string 00000001 again two symbols 1 and 1 will be output. However 01is su�cient to determine the length 3 of the next codeword. Hence we willread the next bit v and compute the next symbol as 4 +v. The total numberof processed bits in this case will be 9.Table ITable for modi�ed look-upString NUM SYMSTR NextBits FirstInd ProcBits00000000 2 1,1 0 - 600000001 2 1,1 2 4 900000010 2 1,1 0 - 6.....10101011 1 11 1 6 910101100 1 11 0 - 5.....The di�erence of this method from the method, described in [9] is that wedirectly output symbols, corresponding to the codewords, contained in the9



�rst bit string without any further computations. Besides that, we outputall symbols, contained in the �rst bit string and not just the �rst one. Itallows an e�cient decompression of codes with short codewords.3.1 Table ConstructionThe construction of the look-up table with multiple codewords for a Hu�-man code can itself become a time-consuming problem. However, in case ofcanonical Hu�man codes, the table can be constructed in linear time in thenumber of records. In this subsection we will outline the process of tableconstruction.We will call the symbol, corresponding to the zero codeword the �rst sym-bol. The �rst record in the table corresponds to a sequence of zeroes. Itconsists of zero or more codewords, corresponding to the �rst symbol andthe \rest" sequence. We can easily compute the symbol string SYMSTR andthe number of symbols, NUM, for the �rst record.Now we will show how we can construct the symbol string for the k+1-threcord from the symbol string for k-th record in a constant time. Supposedthe k-th record consists of r codewords and the index and length of thei-th codeword and the codeword itself are stored in index[i], length[i] andcodeword[i] respectively. First, we will presume that k-th record contains no\rest" sequence and consists only of r codewords. To construct the symbolstring for the next codeword we simulate incrementing the value of k-threcord in terms of codewords. The additional array maxbitstr[r] stores thevalues of 1 << length[r]. We start by incrementing index[r] and codeword[r]by 1. We check, whether codeword[r] is less then maxbitstr[r]. If this is notthe case, we decrement r by 1 and increment index[r] and codeword[r]. Thisprocess is repeated until maxbitstr[r] is greater than codeword[r]. Then, wecheck whether the length of the codeword[r] has changed and �ll the rest ofthe bit string with �rst symbols.The pseudocode description of this process is given below. Function len(i)computes the length of the codeword with index i.beginwhile ( (codeword[r]+1) = maxbitstr[r] )restlen:=restlen+length[r];length[r]:=firstlen; 10



index[r]:=0;restlen:=restlen + length[r];index[r]:=index[r]+1;length[r]=len(index[r]);if (len(index[r]) > len(index[r] - 1))codeword[r]:=LeftShift((codeword[r]+1),length[r]-len(index[r]-1) );elsecodeword[r]:=codeword[r]+1;restlen:=restlen- length[r];if (restlen > 0 )r+=(restlen/firstlen) + (restlen%firstlen > 0);end;Now we will consider the general case, when k-th record consists of r code-word and the \rest" bit sequence pref . We store the values of the �rstcodeword with pre�x pref , the index of the �rst codeword with pre�x prefin codeword[r+1] and index[r+1]. In this case codeword[r+1] and index[r+1]will be incremented by di�erent values.The pseudocode for the general case is given below. Step is an additionalvariable for computing the values of index[r+1] and codeword[r+1] for thenext record. If the value of the variable step is greater than 1, it indicatesthat the current record contains the \rest" bit sequence.beginif (step > 1)index[r]:=nextindex(index[r],step);codeword[r]:=nextcodew(codeword[r],step);if (codeword[r] == maxbitstr[r])r:=r-1;while ( (codeword[r]+1) = maxbitstr[r] )restlen:=restlen+length[r];length[r]:=firstlen;index[r]:=0;restlen:=restlen + length[r];index[r]:=index[r]+1; 11



length[r]:=len(index[r]);if (len(index[r]) > len(index[r] - 1))codeword[r]:=LeftShift((codeword[r]+1),length[r]-len(index[r]-1) );maxbitstr[r]:=LeftShift(1,length[r]);elsecodeword[r]:=codeword[r]+1;restlen:=restlen - length[r];if (restlen > 0 )r:=r + (restlen/firstlen) + (restlen%firstlen > 0);if (restlen%firstlen > 0)step := LeftShift(1,restlen%firstlen);elsestep:=1;elsestep:= LeftShift(1,-restlen);end;Obviously the values of table �elds SYMSTR, NUM, NextBits and FirstIndcan be computed from variables index[], step and r.The computation of functions nextcodew(c; j), �nding the j-th codewordafter the codeword c, and nextindex(c; j), �nding the index of this codewordcan be time consuming. Using the pre�x information is not always the bestoption, sometimes it is better to simply shift the bit pointer and restartthe decoding process by reading the new initial string. For this reason, ouralgorithm computes the nextcodew( ) function only for long pre�x strings.We use the following criterion. If a record contains more than one codewordand the length of the end of the last codeword, beginning with pref , does notexceed 7, the functions nextcodew(c; j) and nextindex(c; j) are computed.Otherwise, we just increment values of index[r+1] and codeword[r+1] by 1,without using information, contained in pref .4 Estimating table size from code parametersAn important issue for the algorithm, described in the previous section isselection of an appropriate table size. Choosing to construct too big table12



for a small �le would mean an unnecessary time and memory space overhead.On the other hand, choosing to construct a small table for a big �le resultsin a less e�cient decoding.In many applications the size of decoded �le is not known to the decoder.In case of canonical codes, as was mentioned in section 2, it is su�cient totransmit the maximal codeword length and number of codewords for eachlength.In this section we will show how the �le size can be estimated from thespeci�cation of a canonical Hu�man code. The results also describe theconnection between the probability of the least frequent source symbol andits codeword length in a Hu�man code.In this section the following notation will be used. We presume that aHu�man code is speci�ed as a tuple < n1; n2; : : : ; nm > where ni is thenumber of codewords with length i. For symbol a frequency fa is the numberof occurrences of a and ftot is the total number of occurrences of all symbols,which is equivalent to the length of the source �le. Probability pa is de�nedas fa=ftot.We will also consider the Hu�man tree corresponding to the Hu�man code.The weight fa of a leave a equals to the frequency of a corresponding symbol.The weight of a node equals to the sum of weights of its descendants. Wewill say, that node N is on level l, if depth(d) = l. The total weight F of aHu�man tree is the weight of its root. The total weight equals to the sizeof a source �le. The Hu�man tree and Hu�man code notations will be usedalternatively.We consider the problem of determining the minimal size of the source fora given Hu�man code. In the further description a property of Hu�man treewill be used extensively.Property 1 For any two nodes a; b in a Hu�man tree.If depth(a) < depth(b), then pa � pb.Proof: Supposed, that pa < pb. Then we can swap the nodes a and b and getthe tree T 0, such that the weighted path length of T 0 is smaller than weightedpath length of T . Therefore T is not a Hu�man tree.In the following lemma we presume that the smallest source symbol hasfrequency 1. We will show that a certain frequency distribution for a givenHu�man code corresponds to the smallest source �le.13



Lemma 1 A canonical tree < n1; n2; : : : ; nm > has minimal weight F if :1) all leaves on level m have weight 12) all leaves on level i have weight equal to the weight of the node with maximalweight on level i+1.Proof: We will denote the total weight of the above tree Fmin. Supposed,there is a tree T 0 such that the total weight of T 0 is smaller than total weightofT , then there is a leave a0 such that for any leave b0 with depth(b0) >depth(a0) fb0 = fb and fa0 < fa. Then fa0 has weight, smaller than a weightof some node N , such that depth(N) = depth(a0) + 1. Hence, by property 1,T 0 is not a Hu�man tree.Corollary 1 For a canonical code < n1; n2; : : : ; nm > the minimal size ofthe source �le is Fmin.The above lemmas allow to compute the lower bound on the size of thesource �le for a given canonical Hu�man code. It can be shown, that thevalue of Fmin can be computed in O(m2), where m is the maximumcodewordlength.Generally speaking, there is no upper bound for the source �le size. Itcan be demonstrated with an example of a binary source code a; b, such thatfa = 1 and fb = m. Independently of the value of m (and of the source�le size, which equals to m + 1) the Hu�man code remains the same (twocodewords with length 1). However we can put an upper bound on the weightof the nodes with the same depth d in case, when the nodes do not have amaximum depth and there are more than two nodes with depth d.Lemma 2 Supposed, that nodes N1 and N2 in a Hu�man tree T have thesame length d, and there is at least one another non-leave node on level d.Then fN1 � 3� fN2Proof: Supposed, that N1 � 2 �N2. There is at least one node Ns withtwo sons N3 and N4. Without changing the weighted path length of T wecan reconstruct the T in such way, that Ns and N2 have the same father N0.As fN3 � fN2 and fN4 � fN2 f0 = fN2 + fN3 + fN4 � 3 � fN2 < fN1 . Asdepth(N0) > depth(N1) T is not a Hu�man tree. Using the lemmas listedbelow, we can compute the probability, that the codeword length is not lessthan l. 14



Lemma 3 If non-leave nodes N1 and N2 have the same depth, than fN1 �2� fN2Proof: Otherwise at least one son of N1 would have had weight bigger thanfN2.With lemmas 2 and 3 we can put an upper bound on the weights of leaveson the same level d, if there is more than one non-leave node on level d.Using the following lemmas we can compute maximum probability of thefact, that the codeword length is bigger than l.In the same way as Lemma 1, the following lemma can be proved:Lemma 4 A canonical tree < n1; n2; : : : ; nm >, such that the minimal weightof a leaf is f has minimal weight F if :1) all leaves on level m have weight f2) all leaves on level i have weight equal to the weight of the node with maximalweight on level i+1.Corollary 2 For a given canonical tree < n1; n2; : : : ; nm >,such that theminimal leaf weight is f the minimal tree weight is f � Fmin.Proof: The weight of every leaf in the tree of Lemma 2 is f times biggerthan the weight of the corresponding leaf in the tree of Lemma 1.Corollary 3 For a given canonical code < n1; n2; : : : ; nm >, the maximalprobability of the least probable symbol is 1=Fmin.Corollary 4 For a given canonical tree < n1; n2; : : : ; nm > the maximal totalprobability of leaves on the level m is nm=FminLet an i-truncated tree < n(i)1 ; n(i)2 ; : : : ; n(i)i > be a tree constructed fromtree < n1; n2; : : : ; nm > by replacing all nodes on level i with leaves of equalweight.Statement 1 For a given canonical tree < n1; n2; : : : ; nm > the total proba-bility of leaves with length bigger than or equal to i equals to n(i)i =F (i)min, whereF (i)min is the minimal total weight of an i-truncated tree < n(i)1 ; n(i)2 ; : : : ; n(i)i >.Statement 1 puts an upper bound on the total probability of codewords withat least i bits. 15



4.1 Algorithm for estimating �le size.The minimal size Fmin from Lemma 1 can be computed in O(m2), where d isthe depth of Hu�man tree. To compute Fmin we set the weights of all leaveson the deepest level to 1. Then we repeat the following step for all tree levelsk. We �nd the maximal node weight fmaxk+1 for all non-leave nodes on levelk + 1 and set the weight of all leaves on level k to fmaxk+1 .We will say that node N is an i-node, if all leaves, that are descendants ofN have depth i. We will say that node N is an i-mixed node if all leaves,that are descendants of N have depth greater than or equal to i. Obviously,all i-nodes on the same level k have the same weight. In a canonical Hu�mantree there is at most one i-mixed node on any level k. Therefore the nodeson any tree level k can take on less than 2m di�erent values and the weightof the heaviest node on level k can be computed in O(m). Hence Fmin can becomputed in O(m2). On each algorithm step at mostm values of i-nodes andat most m values of i-mixed nodes have to be stored, therefore the algorithmrequires O(m) space.However in real life distributions codewords with the same length rarelyhave the same frequency. To compensate for this fact and to get a morerealistic size estimate, we set the weights of nodes on level k to c � fmaxk+1,with c > 1. We can also make c dependent from the number of nodes onlevel k. For our experiments we have chosen c = 3 if the number of nodes isabove 30, c = 2 if the number of nodes is above 8 and c = 1 otherwise. Theresults of experiments are listed in the table below. We have also comparedour results with the estimates, based on the work of Katona and Nemetz([7]).As follows from the theorem 2 in [7], the probability of a leave on level k isnot bigger than Fk+1, where Fi is the i-th Fibonacci number. Therefore, for amaximumcodeword length m the �le size estimate will be Fm+1. In the tablebelow we list the results of prediction for the �les of Calgary compression cor-pus. The minimal estimate gives much better results than Fibonacci numberestimate. The results for our \realistic" procedure are even more close toactual �le sizes and can be used in real applications (see the next sectionfor an example of such application). We stress that the data corpus used inour experiments consists of di�erent �le types and no information about thefrequency distribution of symbols or about the frequency of the least frequentsymbol was used in this estimate. The worst estimates (for book2 and progl)can be explained by the fact, that the frequency of the least frequent symbol16



exceeds 1. Our conclusion is that we can achieve a good estimate of �le size,based on lemma 1, especially if additional information about the frequencydistribution is available. Table IIFile Size EstimatesFile Fibonacci minimal \realistic" Realnumbers estimate estimate sizebib 2584 7752 38369 111261book1 17711 66392 270723 768771book2 2584 8982 46077 610865obj1 610 2169 46934 21504obj2 1597 7856 131800 246814paper1 1597 5142 30718 53161paper2 2584 8901 42429 82199paper3 987 3138 14336 46526paper4 610 2140 7168 13286paper5 610 2100 7680 11954paper6 1597 4834 23039 38105pic 4181 25471 135056 513216progc 987 2728 13374 39611progl 987 3183 15359 71646progp 1597 6462 25595 493795 Experimental resultsWe have tested algorithm of section 4 on �les from Calgary compression cor-pus (see [1] ). It consists of two books (book1 and book2), six papers (paper1through paper6), one bibliography (bib) and three programs (progc,progpand progl). Non-ASCII �les are represented by a black-and-white picture(pic) and two object �les (obj1 and obj2). The source alphabets for all �lesconsist of single characters, occurring in the corresponding source �le.17



The results are listed in Table III. The second column in the table speci�esthe size of the source alphabet. As a speed criterion we have used the averagenumber of decoded symbols per read bit sequence. The results for the look-up method from [9] and for the modi�ed look-up method from the section3 are listed in the third and the fourth columns. In both cases the look-uptables contain 12-bit strings.We can see that improved look-up method leads to more then twofoldreduction in the number of bit reading operations. For the look-up methodthis criterion can not exceed 1. For the improved look-up method number ofsymbols per bit string ranges from 1.4 to 6.3. The most impressive advantageis achieved for the pic �le, the Hu�man code for which contains several veryshort codewords.In the table IV we have listed the results of decoding with variable tablesize. The algorithm from the section 4.1 is used to predict the length of thesource �le. We set table size to 256 (8-bit strings), if the predicted �le sizedoes not exceed 10000 Bytes. We use 10-bit strings, if predicted �le size doesnot exceed 100000 Bytes. Otherwise we set table size to 4096 records. Usingthis variation of the algorithm we can reduce memory resources for small�les, with only small reduction in speed. We list the size of decoding tableused in modi�ed look-up method in column 4. In column 2 we list �le sizesin thousands of bytes. Choice of the table size based on code parametersallows us to spare memory resources and table construction time for small�les.6 Future workWe have constructed an algorithm for estimating the source �le size from thespeci�cations of canonical Hu�man code. This algorithm makes no assump-tions about the probability distribution of the source symbols. For instance,probabilities of words in large texts can be approximated by Zipf distribu-tion pi = 1=(iHn), where Hn is the n-th harmonic number (see [13]). Inother cases (for instance, in image compression) symbol probabilities can beapproximated by geometric distribution. Using this information to computethe coe�cient c could further improve our estimates.In some applications several Hu�man codes are used to to encode alternat-ing symbols. For instance, in gzip compression utility (see [4]) two di�erent18



Table IIIFile Alphabet look-up Modi�ed look-upsize decoded symbols decoded symbolsper bit sequence per bit sequencebib 81 0.9996 1.8480book1 82 0.9987 2.1758book2 96 0.9985 2.0357obj1 256 0.9998 1.4968obj2 256 0.9969 1.4347paper1 95 0.9996 1.9454paper2 91 0.9988 2.1578paper3 84 0.9997 2.1145paper4 80 0.9993 2.1052paper5 91 0.9997 1.9552paper6 93 0.9998 1.9364pic 159 0.9991 6.3096progc 92 0.9996 1.8448progl 87 0.9998 2.0857progp 89 0.9994 1.9496codes are used to compress results of LZ77 compression. One code is used forliterals and length components of duplicated string pointers and another onefor distance components of duplicated string pointers. The decoding method,described above can be easily extended to that situation.References[1] T.C. Bell, J.G. Cleary, I.H. Witten, \Text Compression", Prentice Hall,Englewood Cli�s, NJ,1990.[2] Y. Choueka, S.T.Klein, Y.Perl, \E�cient variants of Hu�man codes inhigh-level languages", Proc. 8th ACM-SIGIR Conference on InformationRetrieval, Montreal, Canada, ACM, New York, 1985, 122-130.19



Table IVFile File look-up Modi�ed look-upsize decoded symbols table decoded symbolsper bit sequence size per bit sequencebib 111.2 0.9996 1024 1.5223book1 768.7 0.9987 4096 2.1740book2 610.8 0.9985 1024 2.0357obj1 21.5 0.9998 1024 1.2540obj2 246.8 0.9969 4096 1.4347paper1 53.1 0.9996 1024 1.5717paper2 82.2 0.9988 1024 1.7378paper3 46.5 0.9997 1024 1.7076paper4 13.3 0.9993 256 1.2828paper5 11.9 0.9997 256 1.1884paper6 38.1 0.9998 1024 1.5423pic 513.2 0.9991 4096 6.3095progc 39.6 0.9996 1024 1.5152progl 71.6 0.9998 1024 1.6903progp 30.8 0.9994 1024 1.5570[3] Connell J.B., \A Hu�man-Shannon-Fano Code", Proc. of IEEEvol.61,1973, 1046-1047.[4] J.L. Gailly, \Gzip program and documentation", 1993,ftp://prep.ai.mit.edu/pub/gnu/gzip.[5] D.A.Hu�man, \A method for construction of minimum redundancycodes", Proc IRE, vol. 40, 1951,1098-1101.[6] V.Iyengar,K.Chakrabarty, \An e�cient �nite-state machine implemen-tation of Hu�man decoders", Information Processing Letters, vol.64,1997, 271-275.[7] Katona G.H.O., Nemetz T.O.H. Hu�man codes and self-information,IEEE Transactions on Information Theory, vol.22, 1976, 337-340.20



[8] Shmuel T.Klein, \Space- and time- e�cient decoding with canoni-cal Hu�man trees", 8th Annual Symposium on Combinatorial PatternMatching,Aarhus,Denmark,30 June-2 July 1997, Lecture Notes in Com-puter Science,vol. 1264, 65-75.[9] Mo�at A. and Turpin A., " On the Implementation of minimum redun-dancy pre�x codes", IEEE Transactions on Communications, vol. 45,No. 10, 1200 - 1207.[10] Nekrich Y., \On e�cient decoding of Hu�man codes", Technical ReportNo. 85190-CS, Department of Computer Science, Bonn University, April1998.[11] Sieminski A., \Fast decoding of the Hu�man codes", Information Pro-cessing Letters, vol.26, 1988, 237-241.[12] Schwartz E.S. Kallick B., \Generating a canonical pre�x encoding",Communications of the ACM vol.7, 1964, 166-169.[13] Zipf G.K., \The Psycho-Biology of Language", Boston, Houghton, 1935.
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