
Byte-oriented Decoding of Canonical Hu�manCodesYakov Nekritch �AbstractWe design an e�cient algorithm for decoding canonical Hu�-man codes. The decoding is based on consequential look-up ta-bles.We also present a data structure for reading bit sequenceswithout using bit operations. Our algorithm, combined with thisdata structure allows fast byte-oriented decoding without causinghigh memory requirements.
�Institut f�ur Informatik , Universit�at Bonn, R�omerstr. 164, D-53117, Bonn, Germany,email: yasha@cs.uni-bonn.de 1

1 IntroductionHu�man codes are pre�x codes with minimum redundancy. Being a part ofmany popular data formats and compression utilities, such as JPEG, MPEG,PNG, gzip, pkzip, lha, zoo and arj, they are one of the most popular com-pression techniques in use nowadays.Table look-up decoding of Hu�man codes was considered by Sieminski[10] and Choueka,Klein, and Perl[2]. Conell[3] describes a special case ofHu�man codes,the canonical Hu�man codes. Klein[7] and Mo�at and Turpin[8] describe e�cient decoding methods for canonical codes. Iyengar andChakrabarty[6] describe a �nite-state machine approach to decoding Hu�mancodes.Most Hu�man decoding techniques are bit-oriented , i.e. they use bit-oriented operations, such as bit shifts and bitwise logical operations. Themethod, described in [2] is byte-oriented, i.e. no bit-oriented operationsare used. However this method puts high memory requirements for largealphabets. In this paper an algorithm and a data structure for byte-orienteddecoding of canonical Hu�man coding are described. We show, that byte-oriented decoding of canonical Hu�man codes can be achieved without highmemory requirements even in case of large alphabets.2 Canonical Hu�man codes.Canonical codes are a subclass of Hu�man codes, described by Conell[3] andSchwartz and Kallick[11]. The canonical Hu�man tree can be described bythe following property: if we scan the leaves in pre-order they appear innon-increasing order of their depth. The canonical codes have a numericalsequence property, i.e. codewords with the same length are binary represen-tations of consecutive integers. Further, the �rst codeword of length i fi canbe computed from the last codeword of the length i�1 di�1 with the formulafi = 2(di�1+1). Due to these properties an explicit structure of the Hu�mantree does not have to be transmitted to the decoder. It is enough if we specify(1) the length of the longest codeword and (2) the number of codewords foreach length. In addition to providing a compact representation, canonicalcodes can also be used for e�cient decoding.Once the length of the current codeword is known, it can be decoded by2

several arithmetic operations in the following way. Supposed we have read thepre�x b of the current codeword and all codewords with pre�x b have lengthl. Indexes of the codewords with pre�x b are consecutive integers and thecodewords themselves are binary representations of consecutive integers.Letl(b) be the length of the pre�x b and firstl be the index of the �rst codewordwith length l and bn be a value of the next l � l(b) bits. Then the index ofthe current codeword can be computed as bn + firstl. This idea is used inthe algorithm, described in [7]. Single bits are read from the input stream,until the codeword length l can be determined, then we read another l � lbbits and compute the codeword index with the above formula. A special datastructure, called an sk-tree is used to check, whether a codeword length can bedetermined from the read bits. An sk-tree is traversed like a regular Hu�mantree until a leaf is reached. The leaves correspond to minimal codewordpre�xes, such that all codewords with a given pre�x have the same length.A leaf of the sk-tree contains information about the codeword length.3 Finite-state machine approach to Hu�mandecoding.We can also regard the nodes of the Hu�man tree as states of the �nite-state machine. Decoding starts at the root of the tree and depending on theinput bit, the control is transfered to the state, corresponding to the left orright son (in the tree) of the current state until the state, corresponding tothe parent of a tree leave is reached. After reading the next bit, we outputsymbol, corresponding to the tree leave and transfer control to the \root"state. The number of states in such a �nite-state machine equals to thenumber of internal nodes in a Hu�man tree, i.e. N � 1.This approach can be extended to the case of multiple-bit inputs (see [2]).In this case we read a sequence of k bits at each step of the algorithm. Thissequence contains zero or more decipherable codewords and the \rest" i.e.a pre�x of a codeword, that cannot be decoded yet. We output symbols,corresponding to decipherable codewords and transfer control to the state,corresponding to the pre�x of a not yet decoded codeword, contained inthe string. The number of states equals to the number of di�erent codewordpre�xes, which in turn equals to the number of internal nodes in the Hu�man3

tree, N � 1. There are 2k transitions at each state, that correspond to allpossible binary sequences of length k, and the number of symbols, output ateach transition, is between 0 and k. Thus, the space required is proportionalto 2k(N � 1) as for every internal tree node a table of 2k next-state pointersmust be stored. This approach results in high speed decompression, providedthat N and k are not so large . If k = 8, this technique can also be usedfor a bytewise processing of input stream, thus completely avoiding the useof bit-oriented operations. The drawback of this approach is high memoryrequirements for the large alphabet sizes N . A similar approach to Hu�mandecoding, which also enables fast byte-oriented decompression and has highmemory requirements is described in [10].The techniques, used for decoding of canonical Hu�man codes, use bit-oriented operations to manipulate single bits or bit sequences. The tech-niques, described in [10] and [2] allow for a byte-oriented implementation.They do not make use of numerical sequence property and can be appliedto any Hu�man code. However with alphabet growth space requirementsgrow dramatically and may become prohibitive for large alphabets (> 1000symbols). Thus in algorithm, described by Choueka et al.([2]), the spacerequirement is proportional to 1024 � N and for storing the tables for analphabet with 2000 symbols several Megabytes would be necessary. In thenext section we will show, that in case of canonical Hu�man codes, fast byte-oriented decoding can be performed under reasonable space requirements.4 Decoding with sequential look-up tablesIn this work we describe a table look-up decoding method. It leads to fastdecoding without causing too high memory requirements. Besides that, com-bined with a special data structure, it enables memory-e�cient decodingwithout bit-oriented processing of the input stream.4.1 Algorithm descriptionIn the rest of this work we will use the following notation. lmin will denotethe minimal codeword length, lmax will denote maximal codeword length,lbmin and lbmax denote minimal and maximal codeword lengths for codewordswith pre�x b. 4

Instead of reading a �xed number of bits, we use the already read codewordpre�x to determine a possible codeword length. We do not traverse a Hu�mantree bit-by-bit, but read at each stage as many bits as possible. Thus, webegin with reading lmin bits.If the codeword length of the current codewordequals lmin, than the corresponding symbol is output. If the symbol lengthcan be identi�ed from bits already read, next lb bits are read, otherwise, nextlbmin � lmin bits are read. The process is repeated until a symbol is output.This process can be implemented with a series of tables. Every table recordconsists of two �elds. One �eld is used to indicate, whether a codeword hasbeen read or the next table has to be used. The second �eld contains eithera symbol, corresponding to a codeword or a pointer to the next table. Welook up the value of the �rst lmin bits in the �rst table. If the bits read sofar constitute a codeword we output the corresponding symbol, otherwise weread the next bit sequence.Procedure Read_Next_Symbol()beginbitval:=get_next_bits(l_min);while (table[bitval].length != DIRECT_DECODE)beginnext_length=table[bitval].length;table=table[bitval].next_table;bitval:=get_next_bits(next_length);endoutput table[bitval].value;endAs an example consider the following code:a=000; f=0110; k=10101;b=0010; g=0111; ...c=0011; h=1000; u=11111;d=0100; i=1001;e=0101; j=10100; 5

In this case lmin = 3. Supposed, we read the sequence 000101000111. Weread 3 �rst bits and output a.Then we read the next 3 bits. The control istransferred to the next table, containing su�xes of codewords, starting with101. We read next 2 bits and output j. Next, we read 3 bits and transfercontrol to the table containing su�xes of codewords, starting with 011. Weread the next bit and output g.4.2 Analysis of the algorithm.Every Hu�man decoding algorithm, independently of the decoding methodemployed, should store a table (or a similar data structure) with at leastn records. These records set relation between n codewords of the Hu�mancode and the corresponding symbols of the source alphabet. In our algorithm,more than n records have to be stored. We shall call the table records, notcorresponding to a source symbol additional records.The number of records in all tables does not exceed the number of nodesin the Hu�man tree, therefore 2n�1 is an upper bound for the table recordsand an upper bound for the additional records is n � 1. Let S be the setof codeword pre�xes b, such that length of b equals to the length of somecodeword in the Hu�man code. Let length(b) be the length of b. Then thenumber of additional records can be computed asXb2S 2lbmin�length(b) + 2lmin �NOur algorithm can be used for any Hu�man code, but it is e�ective (interms of small number of \additional records" and number of table look-ups) only for canonical codes. The reason for this is that in a canonical codecodewords with identical pre�xes tend to have the same length. For instance,in the example above we have 7 additional records, i.e. records pointing tofurther tables, in the �rst table.The described algorithm uses essentially less space than classical Hu�mantree approach and allows for faster decompression. In case of the classicalHu�man decoding the number of operations is proportional to an averagecode length and required space is proportional to 2N � 1. The estimatefor the number of records in our algorithm was given above. The practicalexperiments show, that the total number of records in all tables is between1:1N and 1:2N .Our algorithm is also faster then the sk � tree decoding,6

for we always read groups of bits and not individual bits. For the samereason the total number of additional records is smaller than the number ofnodes in an sk-tree, as some of the internal nodes in an sk-tree do not havecorresponding records.Every table record contains an additional �eld, indicating whether furthertables should be used. This can lead to su�cient overhead in case of largesource alphabets. Instead of this we can \encode" this information in the�rst �eld, but we will have to pay for it with one or two additional operationsat every table look-up.The suggested algorithm reduces the number of necessary bit manipula-tions.4.3 Byte-oriented decodingFurther we suggest a special �nite-automaton-based data structure, whichallows reading of up to i bits from the input stream without using bit-orientedoperations. Combined with our algorithm it allows e�cient decoding withoutbit-oriented operations. This �nite automaton has states corresponding to allbinary sequences b with length between 1 and 8. The input alphabet consistsof integers between 1 and i, the output alphabet consists of pairs (v; j), wherej is an integer between 1 and i. States of the automata correspond to the\rest" of current byte, that is not yet processed. Input l indicates the numberof bits to be read, v is the value of read bits, j is the number of bits that shouldbe read at the next step. Supposed the FSM is in a state s, correspondingto the bit sequence of length k and input integer is l. If l > k the automatonoutputs pair (v; l�k), where v is the value of b shifted l�k bits left. If l � k,the automaton outputs pair v; l � k, where v is the value of b shifted k � lbits right. Thus in the output pair (v; j) the �rst component v is the valueof \as many as possible" read bits from the current byte and j indicates thenumber of bits which should be read from the next bytes.The initial state of this �nite-state machine corresponds to the �rst bytein the input stream. Supposed we want to assign the value of next l bits tovariable val. The pseudocode description of this process is given below. The�nite automaton is represented as a two-dimensional array of records with�elds v, j and next�state that correspond to an output pair (v; j) and thenext state of the �nite automaton respectively.7

Procedure Get_Next_Bits(l)val:=0;repeatval:=val+fsm[b][l].v;l:=fsm[b][l].jif (l > 0)b:=value of the next byte from the input stream;elseb:=fsm[b][l].next_state;until (l = 0)The �nite-state automata described above has 512 states. The structure,required to represent this automaton, requires O((511) � i) bytes, where i isthe maximum number of bits, which has to be read from the input stream.Thus, if we want to read, for instance, up to 8 bits, 3 � 511 � 8 = 12264 bytesare needed.4.4 Experimental results.We've tested the described method on �les from Calgary compression corpus(see [1]). The Calgary compression corpus consists of two books (book1and book2), six papers (paper1 through paper6), one bibliography (bib) andthree programs (progc,progp and progl). Non-ASCII �les are represented bya black-and-white picture (pic) and two object �les (obj1 and obj2). As asource alphabet a sequences of two characters were considered. The resultsare presented in the table below. The second column gives the number ofsymbols in the source alphabet. The third and fourth column give informa-tion about the Hu�man code: the number of nodes in a Hu�man tree andaverage number of bits processed. The next three columns contain infor-mation about the decoding with consequent tables method. The �fth andsixth columns give the total number of records and the number of additionalrecords. The seventh column gives an average number of look-ups per sym-bol.The results of practical experiments with �les from the Calgary compres-sion corpus (see [1]) are given in the table below. We can see, that, comparedwith conventional Hu�man tree decoding 40 to 45 percent of memory re-8

File Alphabet conventional tree Consequent tablessize Tree Number of bit Total number Additional Numbersize manipulations of records records of tableper symbol look-upsper symbolbib 1323 2645 8.58 1586 263 2.10book1 1634 3267 8.14 1916 282 2.06book2 2739 5477 8.56 3128 389 2.11obj1 3064 6127 9.17 3562 498 2.53obj2 6170 12339 8.93 6988 818 2.24paper1 1353 2705 8.64 1660 307 2.13paper2 1122 2243 8.13 1418 296 2.09paper3 1011 2021 8.23 1270 259 2.09paper4 705 1409 8.13 928 223 2.12paper5 812 1623 8.43 958 146 1.92paper6 1218 2435 8.61 1592 374 2.10pic 2321 4641 2.39 2794 473 1.37progc 1443 2885 8.80 1774 331 2.12progl 1032 2063 8.00 1242 210 2.23progp 1254 2507 8.06 1524 270 2.34sources can be saved, and essentially less operations are used. The algorithmand data structure described in this work allow fast decoding of Hu�mancodes, that can be e�ciently implemented without using bit operations.References[1] T.C. Bell, J.G. Cleary, I.H. Witten, \Text Compression", Prentice Hall,Englewood Cli�s, NJ,1990.[2] Y. Choueka, S.T.Klein, Y.Perl, \E�cient variants of Hu�man codes inhigh-level languages", Proc. 8th ACM-SIGIR Conference on InformationRetrieval, Montreal, Canada, ACM, New York, 1985, 122-130.[3] Connell J.B., \A Hu�man-Shannon-Fano Code", Proc. of IEEE61,7(July),1973, 1046-1047. 9

[4] J.L. Gailly, \Gzip program and documentation", 1993,ftp://prep.ai.mit.edu/pub/gnu/gzip.[5] D.A.Hu�man, \A method for construction of minimum redundancycodes", Proc IRE,40(1951),1098-1101.[6] V.Iyengar,K.Chakrabarty, \An e�cient �nite-state machine imple-mentation of Hu�man decoders", Information Processing Letters,64(6),1997, 271-275.[7] Shmuel T.Klein, \Space- and time- e�cient decoding with canoni-cal Hu�man trees", 8th Annual Symposium on Combinatorial PatternMatching,Aarhus,Denmark,30 June-2 July 1997, Lecture Notes in Com-puter Science,vol. 1264, 65-75.[8] Mo�at A. and Turpin A., " On the Implementation of minimum redun-dancy pre�x codes", IEEE Transactions on Communications, vol. 45 No.10, 1200 - 1207.[9] Nekrich Y., \On e�cient decoding of Hu�man codes", Technical ReportNo. 85190-CS, Department of Computer Science, Bonn University, April1998.[10] Sieminski A., \Fast decoding of the Hu�man codes", Information Pro-cessing Letters, 26(1988), 237-241.[11] Schwartz E.S. Kallick B., \Generating a canonical pre�x encoding",Communications of the ACM 7(1964), 166-169.
10

