Byte-oriented Decoding of Canonical Huffman

Codes

Yakov Nekritch *

Abstract

We design an efficient algorithm for decoding canonical Huff-
man codes. The decoding is based on consequential look-up ta-
bles.

We also present a data structure for reading bit sequences
without using bit operations. Our algorithm, combined with this
data structure allows fast byte-oriented decoding without causing
high memory requirements.

*Institut fur Informatik ; Universitat Bonn, Romerstr. 164, D-53117, Bonn, Germany,
email: yasha@cs.uni-bonn.de

1 Introduction

Huffman codes are prefix codes with minimum redundancy. Being a part of
many popular data formats and compression utilities, such as JPEG, MPEG,
PNG, gzip, pkzip, lha, zoo and arj, they are one of the most popular com-
pression techniques in use nowadays.

Table look-up decoding of Huffman codes was considered by Sieminski
[10] and Choueka,Klein, and Perl[2]. Conell[3] describes a special case of
Huffman codes,the canonical Huffman codes. Klein[7] and Moffat and Turpin
[8] describe efficient decoding methods for canonical codes. Iyengar and
Chakrabarty[6] describe a finite-state machine approach to decoding Huffman
codes.

Most Huffman decoding techniques are bit-oriented , i.e. they use bit-
oriented operations, such as bit shifts and bitwise logical operations. The
method, described in [2] is byte-oriented, i.e. no bit-oriented operations
are used. However this method puts high memory requirements for large
alphabets. In this paper an algorithm and a data structure for byte-oriented
decoding of canonical Huffman coding are described. We show, that byte-
oriented decoding of canonical Huffman codes can be achieved without high
memory requirements even in case of large alphabets.

2 Canonical Huffman codes.

Canonical codes are a subclass of Huffman codes, described by Conell[3] and
Schwartz and Kallick[11]. The canonical Huffman tree can be described by
the following property: if we scan the leaves in pre-order they appear in
non-increasing order of their depth. The canonical codes have a numerical
sequence property, i.e. codewords with the same length are binary represen-
tations of consecutive integers. Further, the first codeword of length ¢ f; can
be computed from the last codeword of the length 1 — 1 d;_; with the formula
fi = 2(d;—1 +1). Due to these properties an explicit structure of the Huffman
tree does not have to be transmitted to the decoder. It is enough if we specify
(1) the length of the longest codeword and (2) the number of codewords for
each length. In addition to providing a compact representation, canonical
codes can also be used for efficient decoding.

Once the length of the current codeword is known, it can be decoded by

several arithmetic operations in the following way. Supposed we have read the
prefix b of the current codeword and all codewords with prefix b have length
[. Indexes of the codewords with prefix b are consecutive integers and the
codewords themselves are binary representations of consecutive integers.Let
[(b) be the length of the prefix b and first; be the index of the first codeword
with length [and b, be a value of the next [— [(b) bits. Then the index of
the current codeword can be computed as b, + first;. This idea is used in
the algorithm, described in [7]. Single bits are read from the input stream,
until the codeword length [can be determined, then we read another [— [
bits and compute the codeword index with the above formula. A special data
structure, called an sk-tree is used to check, whether a codeword length can be
determined from the read bits. An sk-tree is traversed like a regular Huffman
tree until a leaf is reached. The leaves correspond to minimal codeword
prefixes, such that all codewords with a given prefix have the same length.
A leaf of the sk-tree contains information about the codeword length.

3 Finite-state machine approach to Huffman
decoding.

We can also regard the nodes of the Huffman tree as states of the finite-
state machine. Decoding starts at the root of the tree and depending on the
input bit, the control is transfered to the state, corresponding to the left or
right son (in the tree) of the current state until the state, corresponding to
the parent of a tree leave is reached. After reading the next bit, we output
symbol, corresponding to the tree leave and transfer control to the “root”
state. The number of states in such a finite-state machine equals to the
number of internal nodes in a Huffman tree, i.e. N — 1.

This approach can be extended to the case of multiple-bit inputs (see [2]).
In this case we read a sequence of k bits at each step of the algorithm. This
sequence contains zero or more decipherable codewords and the “rest” i.e.
a prefix of a codeword, that cannot be decoded yet. We output symbols,
corresponding to decipherable codewords and transfer control to the state,
corresponding to the prefix of a not yet decoded codeword, contained in
the string. The number of states equals to the number of different codeword
prefixes, which in turn equals to the number of internal nodes in the Huffman

tree, N — 1. There are 2* transitions at each state, that correspond to all
possible binary sequences of length k, and the number of symbols, output at
each transition, is between 0 and k. Thus, the space required is proportional
to 2¥(N — 1) as for every internal tree node a table of 2¥ next-state pointers
must be stored. This approach results in high speed decompression, provided
that NV and k are not so large . If & = 8, this technique can also be used
for a bytewise processing of input stream, thus completely avoiding the use
of bit-oriented operations. The drawback of this approach is high memory
requirements for the large alphabet sizes N. A similar approach to Huffman
decoding, which also enables fast byte-oriented decompression and has high
memory requirements is described in [10].

The techniques, used for decoding of canonical Huffman codes, use bit-
oriented operations to manipulate single bits or bit sequences. The tech-
niques, described in [10] and [2] allow for a byte-oriented implementation.
They do not make use of numerical sequence property and can be applied
to any Huffman code. However with alphabet growth space requirements
grow dramatically and may become prohibitive for large alphabets (> 1000
symbols). Thus in algorithm, described by Choueka et al.([2]), the space
requirement is proportional to 1024 * N and for storing the tables for an
alphabet with 2000 symbols several Megabytes would be necessary. In the
next section we will show, that in case of canonical Huffman codes, fast byte-
oriented decoding can be performed under reasonable space requirements.

4 Decoding with sequential look-up tables

In this work we describe a table look-up decoding method. It leads to fast
decoding without causing too high memory requirements. Besides that, com-
bined with a special data structure, it enables memory-efficient decoding
without bit-oriented processing of the input stream.

4.1 Algorithm description

In the rest of this work we will use the following notation. [,,;, will denote
the minimal codeword length, [,,,, will denote maximal codeword length,
ly, .. and [y, .. denote minimal and maximal codeword lengths for codewords
with prefix b.

Instead of reading a fixed number of bits, we use the already read codeword
prefix to determine a possible codeword length. We do not traverse a Huffman
tree bit-by-bit, but read at each stage as many bits as possible. Thus, we
begin with reading [,,;, bits.If the codeword length of the current codeword
equals l,,;,, than the corresponding symbol is output. If the symbol length
can be identified from bits already read, next [, bits are read, otherwise, next
lbmin
This process can be implemented with a series of tables. Every table record
consists of two fields. One field is used to indicate, whether a codeword has
been read or the next table has to be used. The second field contains either
a symbol, corresponding to a codeword or a pointer to the next table. We
look up the value of the first [,,;, bits in the first table. If the bits read so
far constitute a codeword we output the corresponding symbol, otherwise we
read the next bit sequence.

— lnin bits are read. The process is repeated until a symbol is output.

Procedure Read_Next_Symbol()

begin

bitval:=get_next_bits(l_min);

while (table[bitval].length != DIRECT_DECODE)

begin
next_length=table[bitval].length;
table=table[bitval].next_table;
bitval:=get_next_bits(next_length);

end

output table[bitvall.value;
end

As an example consider the following code:

a=000; £=0110; k=10101;
b=0010; g=0111; c
c=0011; h=1000; u=11111;
d=0100; 1=1001;

e=0101; j=10100;

In this case [,,;, = 3. Supposed, we read the sequence 000101000111. We
read 3 first bits and output a.Then we read the next 3 bits. The control is
transferred to the next table, containing suffixes of codewords, starting with
101. We read next 2 bits and output j. Next, we read 3 bits and transfer
control to the table containing suffixes of codewords, starting with 011. We
read the next bit and output g.

4.2 Analysis of the algorithm.

Every Huffman decoding algorithm, independently of the decoding method
employed, should store a table (or a similar data structure) with at least
n records. These records set relation between n codewords of the Huffman
code and the corresponding symbols of the source alphabet. In our algorithm,
more than n records have to be stored. We shall call the table records, not
corresponding to a source symbol additional records.

The number of records in all tables does not exceed the number of nodes
in the Huffman tree, therefore 2n — 1 is an upper bound for the table records
and an upper bound for the additional records is n — 1. Let S be the set
of codeword prefixes b, such that length of b equals to the length of some
codeword in the Huffman code. Let length(b) be the length of b. Then the

number of additional records can be computed as

Z 21bmm—length(b) 4 2[,,”'” - N
besS

Our algorithm can be used for any Huffman code, but it is effective (in
terms of small number of “additional records” and number of table look-
ups) only for canonical codes. The reason for this is that in a canonical code
codewords with identical prefixes tend to have the same length. For instance,
in the example above we have 7 additional records, i.e. records pointing to
further tables, in the first table.

The described algorithm uses essentially less space than classical Huffman
tree approach and allows for faster decompression. In case of the classical
Huffman decoding the number of operations is proportional to an average
code length and required space is proportional to 2N — 1. The estimate
for the number of records in our algorithm was given above. The practical
experiments show, that the total number of records in all tables is between
1.IN and 1.2N.Our algorithm is also faster then the sk — tree decoding,

for we always read groups of bits and not individual bits. For the same
reason the total number of additional records is smaller than the number of
nodes in an sk-tree, as some of the internal nodes in an sk-tree do not have
corresponding records.

Every table record contains an additional field, indicating whether further
tables should be used. This can lead to sufficient overhead in case of large
source alphabets. Instead of this we can “encode” this information in the
first field, but we will have to pay for it with one or two additional operations
at every table look-up.

The suggested algorithm reduces the number of necessary bit manipula-
tions.

4.3 Byte-oriented decoding

Further we suggest a special finite-automaton-based data structure, which
allows reading of up to ¢ bits from the input stream without using bit-oriented
operations. Combined with our algorithm it allows efficient decoding without
bit-oriented operations. This finite automaton has states corresponding to all
binary sequences b with length between 1 and 8. The input alphabet consists
of integers between 1 and ¢, the output alphabet consists of pairs (v, j), where
7 1s an integer between 1 and i. States of the automata correspond to the
“rest” of current byte, that is not yet processed. Input [/ indicates the number
of bits to be read, v is the value of read bits, j is the number of bits that should
be read at the next step. Supposed the FSM is in a state s, corresponding
to the bit sequence of length k and input integer is [. If [> k the automaton
outputs pair (v,l—k), where v is the value of b shifted [— k bits left. If | <k,
the automaton outputs pair v, — k, where v is the value of b shifted k£ — [
bits right. Thus in the output pair (v, 7) the first component v is the value
of “as many as possible” read bits from the current byte and j indicates the
number of bits which should be read from the next bytes.

The initial state of this finite-state machine corresponds to the first byte
in the input stream. Supposed we want to assign the value of next [bits to
variable val. The pseudocode description of this process is given below. The
finite automaton is represented as a two-dimensional array of records with
fields v, j and next_state that correspond to an output pair (v,j) and the
next state of the finite automaton respectively.

Procedure Get_Next_Bits(l)
val:=0;
repeat
val:=val+fsm[b] [1].v;
1:=fsm[b] [1].]
if (1 > 0)
b:=value of the next byte from the input stream;
else
b:=fsm[b] [1] .next_state;
until (1 = 0)

The finite-state automata described above has 512 states. The structure,
required to represent this automaton, requires O((511) *) bytes, where ¢ is
the maximum number of bits, which has to be read from the input stream.
Thus, if we want to read, for instance, up to 8 bits, 3% 511 % 8 = 12264 bytes
are needed.

4.4 Experimental results.

We’ve tested the described method on files from Calgary compression corpus
(see [1]). The Calgary compression corpus consists of two books (bookl
and book2), six papers (paperl through paper6), one bibliography (bib) and
three programs (proge,progp and progl). Non-ASCII files are represented by
a black-and-white picture (pic) and two object files (objl and obj2). As a
source alphabet a sequences of two characters were considered. The results
are presented in the table below. The second column gives the number of
symbols in the source alphabet. The third and fourth column give informa-
tion about the Huffman code: the number of nodes in a Huffman tree and
average number of bits processed. The next three columns contain infor-
mation about the decoding with consequent tables method. The fifth and
sixth columns give the total number of records and the number of additional
records. The seventh column gives an average number of look-ups per sym-
bol.

The results of practical experiments with files from the Calgary compres-
sion corpus (see [1]) are given in the table below. We can see, that, compared
with conventional Huffman tree decoding 40 to 45 percent of memory re-

File | Alphabet conventional tree Consequent tables

size Tree | Number of bit | Total number | Additional | Number

size | manipulations of records records of table

per symbol look-ups

per symbol

bib 1323 2645 8.58 1586 263 2.10
bookl 1634 3267 8.14 1916 282 2.06
book2 2739 5477 8.56 3128 389 2.11
objl 3064 6127 9.17 3562 498 2.53
obj?2 6170 12339 8.93 6988 818 2.24
paperl 1353 2705 8.64 1660 307 2.13
paper2 1122 2243 8.13 1418 296 2.09
paper3 1011 2021 8.23 1270 259 2.09
paperd 705 1409 8.13 928 223 2.12
paperb 812 1623 8.43 958 146 1.92
papert 1218 2435 8.61 1592 374 2.10
pic 2321 4641 2.39 2794 473 1.37
progc 1443 2885 8.80 1774 331 2.12
progl 1032 2063 8.00 1242 210 2.23
progp 1254 2507 8.06 1524 270 2.34

sources can be saved, and essentially less operations are used. The algorithm

and data structure described in this work allow fast decoding of Huffman

codes, that can be efficiently implemented without using bit operations.

References

[1] T.C. Bell, J.G. Cleary, I.H. Witten, “Text Compression”, Prentice Hall,
Englewood Cliffs, N.J,1990.

[2] Y. Choueka, S.T.Klein, Y.Perl, “Efficient variants of Huffman codes in
high-level languages”, Proc. 8th ACM-SIGIR Conference on Information
Retrieval, Montreal, Canada, ACM, New York, 1985, 122-130.

[3] Connell J.B.,
61,7(July),1973, 1046-1047.

“A Huffman-Shannon-Fano Code”,

Proc.

of IEEE

[4]

J.L. Gailly, “Gzip program and documentation”, 1993,
ftp://prep.ai.mit.edu/pub/gnu/gzip.

D.A.Huffman, “A method for construction of minimum redundancy

codes”, Proc IRE,40(1951),1098-1101.

V.Iyengar,K.Chakrabarty, “An efficient finite-state machine imple-
mentation of Huffman decoders”, Information Processing Letters,

64(6),1997, 271-275.

Shmuel T.Klein, “Space- and time- efficient decoding with canoni-
cal Huffman trees”, 8th Annual Symposium on Combinatorial Pattern
Matching,Aarhus,Denmark,30 June-2 July 1997, Lecture Notes in Com-
puter Science,vol. 1264, 65-75.

Moftat A. and Turpin A.,” On the Implementation of minimum redun-
dancy prefix codes”, IEEE Transactions on Communications, vol. 45 No.

10, 1200 - 1207.

Nekrich Y., “On efficient decoding of Huffman codes”, Technical Report
No. 85190-CS, Department of Computer Science, Bonn University, April
1998.

Sieminski A., “Fast decoding of the Huffman codes”, Information Pro-

cessing Letters, 26(1988), 237-241.

Schwartz E.S. Kallick B., “Generating a canonical prefix encoding”,

Communications of the ACM 7(1964), 166-169.

10

