
Quantum Finite Multitape AutomataAndris Ambainis (Berkeley)�Richard Bonner (M�alardalens)y R�usi�n�s Freivalds (Latvia)zMarats Golovkins(Latvia)x and Marek Karpinski Bonn){AbstractQuantum �nite automata were introduced by C. Moore, J. P.Crutch�eld [MC 97], and by A. Kondacs and J. Watrous [KW 97].This notion is not a generalization of the deterministic �nite automata.Moreover, in [KW 97] it was proved that not all regular languagescan be recognized by quantum �nite automata. A. Ambainis andR. Freivalds [AF 98] proved that for some languages quantum �niteautomata may be exponentially more concise rather than both deter-ministic and probabilistic �nite automata. In this paper we introducethe notion of quantum �nite multitape automata and prove that thereis a language recognized by a quantum �nite automaton but not bydeterministic or probabilistic �nite automata. This is the �rst resulton a problem which can be solved by a quantum computer but notby a deterministic or probabilistic computer. Additionally we discoverunexpected probabilistic automata recognizing complicated languages.�Computer Science Division, University of California, Berkeley, CA 94720-2320. Sup-ported by Berkeley Fellowship for Graduate Studies. Email: ambainis@cs.berkeley.eduyDepartment of Mathematics and Physics, M�alardalens University. Email:richard.bonner@mdh.sezInstitute of Mathematics and Computer Science, University of Latvia, Rai�na bulv.29, Riga, Latvia. Research supported by Grant No.96.0282 from the Latvian Council ofScience. Email: rusins@cclu.lvxInstitute of Mathematics and Computer Science, University of Latvia, Rai�na bulv.29, Riga, Latvia. Research supported by Grant No.96.0282 from the atvian Council ofScience. Email: marats@cclu.lv{Department of Computer Science, University of Bonn, 53117, Bonn, Germany. Re-search partially supported by the International Computer Science Institute, Berkeley, Cali-fornia, by the DFG grant KA 673/4-1, and by the ESPRIT BR Grants 7079 and ECUS030.Email: marek@cs.bonn.edu 1



1 IntroductionRecently a new type of algorithms has appeared, namely, quantum algo-rithms. Nobel prize winner physicist Richard Feynman asked in [Fe 82] whate�ects can have the principles of quantum mechanics, especially, the prin-ciple of superposition on computation. He gave arguments showing thatit might be computationally expensive to simulate quantum mechanics onclassical computers. This observation immediately lead to a conjecture pre-dicting enormous advantages to quantum computers versus classical ones.D. Deutsch [De 89] introduced the commonly used notion of the quantumTuring machine and proved that quantum Turing machines compute exactlythe same recursive functions as ordinary deterministic Turing machines do.When Peter Shor [Sh 94] proved that quantum algorithms can factorize largeintegers and compute discrete logarithms in a polynomial time practical con-struction of quantum computers became a problem that involvesmany peopleand huge funding. Indeed, building a quantum computer would be equiva-lent to building a universal code-breaking machine since the intractability ofthe above-mentioned problems is the fundamental of the public-key cryptog-raphy.Quantum mechanics di�ers from the classical physics very much. It suf-�ces to mention Heisenberg's uncertainty principle asserting that one can-not measure both the position and the impulse of a particle simultaneouslyprecisely. There is a certain trade-o� between the accuracy of the two mea-surements. Another well-known distinction of quantum mechanics from theclassical physics is the impossibility to measure any object without changingthe object.The fundamental atom of information is the quantum bit, henceforthabbreviated by the term `qbit'.Classical information theory is based on the classical bit as fundamentalatom. This classical bit, henceforth called cbit, is in one of two classicalstates t (often interpreted as \true") and f (often interpreted as \false").In quantum information theory the most elementary unit of information isthe quantum bit, henceforth called qbit. To explain it, we �rst discuss aprobabilistic counterpart of the classical bit, which we call here pbit. It canbe t with a probability � and f with probability �, where �+ � = 1. A qbitis very much like to pbit with the following distinction. For a qbit � and �are not real but complex numbers with the property k�k2 + k�k2 = 1.Every computation done on qbit s is performed by means of unitary2



operators. One of the simplest properties of these operators shows thatsuch a computation is reversible. The result always determines the inputuniquely. It may seem to be a very strong limitation for such computations.Luckily this is not so. It is possible to embed any irreversible computationin an appropriate environment which makes it reversible. For instance, thecomputing agent could keep the inputs of previous calculations in successiveorder.The following features of quantum computers are important (but far fromthe only characteristic features of them).� Input, output, program and memory are represented by qbits.� Any computation (step) can be represented by a unitary transformationof the computer as a whole.� Any computation is reversible. Because of the unitarity of the quantumevolution operator, a deterministic computation can be performed bya quantum computer if and only if it is reversible.� No qbit can be copied. After the qbit is processed, the original form ofit is no more available.� Measurements may be carried out on any qbit at any stage of the com-putation. However any measurement destroys the information. Moreprecisely, the measurement turns a qbit into a classical bit with prob-abilities dependent on the qbit.� Quantum parallelism: during a computation, a quantum computer pro-ceeds down all coherent paths at once.Quantum �nite automata were introduced twice. First this was doneby C. Moore and J.P.Crutch�eld [MC 97]. Later in a di�erent and non-equivalent way these automata were introduced by A. Kondacs and J. Wa-trous [KW 97].The �rst de�nition just mimics the de�nition of 1-way �nite probabilis-tic only substituting stochastic matrices by unitary ones. We use a moreelaborated de�nition [KW 97].QFA is a tuple M = (Q; �; �; q0;Qacc;Qrej) where Q is a �nite set ofstates, � is an input alphabet, � is a transition function, q0 2 Q is a startingstate, and Qacc � Q and Qrej � Q are sets of accepting and rejecting states.3



The states in Qacc and Qrej are called halting states and the states in Qnon =Q � (Qacc [ Qrej) are called non halting states. � and $ are symbols thatdo not belong to �. We use � and $ as the left and the right endmarker,respectively. The working alphabet of M is � = � [ f�; $g.A superposition ofM is any element of l2(Q) (the space of mappings fromQ to C with l2 norm). For q 2 Q, jqi denotes the unit vector which takesvalue 1 at q and 0 elsewhere. All elements of l2(Q) can be expressed as linearcombinations of vectors jqi. We will use  to denote elements of l2(Q).The transition function � maps Q � � � Q to C. The value �(q1; a; q2)is the amplitude of jq2i in the superposition of states to which M goes fromjq1i after reading a. For a 2 �, Va is a linear transformation on l2(Q) de�nedby Va(jq1i) = Xq22Q �(q1; a; q2)jq2i:We require all Va to be unitary.The computation of a QFA starts in the superposition jq0i. Then transfor-mations corresponding to the left endmarker �, the letters of the input wordx and the right endmarker $ are applied. The transformation correspondingto a 2 � consists of two steps.1. First, Va is applied. The new superposition  0 is Va( ) where  is thesuperposition before this step.2. Then,  0 is observed with respect to the observable Eacc�Erej �Enonwhere Eacc = spanfjqi : q 2 Qaccg, Erej = spanfjqi : q 2 Qrejg, Enon =spanfjqi : q 2 Qnong. This observation gives x 2 Ei with the probabilityequal to the amplitude of the projection of  0. After that, the superpositioncollapses to this projection.If we get  0 2 Eacc, the input is accepted. If we get  0 2 Erej , the inputis rejected. If we get  0 2 Enon, the next transformation is applied.We regard these two transformations as reading a letter a.For probabilistic computation, the property that the probability of correctanswer can be increased arbitrarily is considered evident. Hence, it is notsurprising that [KW 97] wrote "with error probability bounded away from1=2", thinking that all such probabilities are equivalent. However, mixingreversible (quantum computation) and non-reversible (measurements aftereach step) components in one model makes it impossible. This problem was4



�rst considered in the paper [AF 98] by A. Ambainis and R. Freivalds. Thefollowing theorems were proved there:Let p be a prime. We consider the language Lp = faiji is divisible by pg.It is easy to see that any deterministic 1-way �nite automaton recognizingLp has at least p states.Theorem 1.1 For any � > 0, there is a QFA with O(log p) states recognizingLp with probability 1� �.Theorem 1.2 Any 1-way probabilistic �nite automaton recognizing Lp withprobability 1=2 + �, for a �xed � > 0, has at least p states.Theorem 1.3 There is a language that can be recognized by a 1-QFA withprobability 0:68::: but not with probability 7=9 + �.We consider only multitape �nite automata in this paper. A quantumautomaton is de�ned in the natural way, demanding that the transformation( the state, the information on the �rst head having or not having moved, theinformation on the second head having or not having moved, ... ,! the state,the information on the �rst head having or not having moved, the informationon the second head having or not having moved, ... ) is unitary for arbitrarytuple (the symbol observed by the �rst head, the symbol observed by the�rst head,...).De�nition 1.1 A quantum �nite multitape automaton (QFMA)A = (Q; �; �; q0;Qacc;Qrej) is speci�ed by the �nite input alphabet �, the�nite set of states Q, the initial state q0 2 Q, the sets Qacc � Q, Qrej � Qof accepting and rejecting states, respectively, with Qacc \ Qrej = ;, and thetransition function � : Q� �m � f#;!gm �! C[0;1];where m is the number of input tapes, � = � [ f�; $g is the tape alphabet ofA and �,$ are endmarkers not in �, which satis�es the following conditions(of well-formedness):1. Local probability condition8(q1; �) 2 Q� �m X(q;d)2Q�f#;!gm j�(q1; �; q; d)j = 1:5



2. Orthogonality of column vectors condition.8q1; q2 2 Q; q1 6= q2;8� 2 �m X(q;d)2Q�f#;!gm ��(q1; �; q; d)�(q2; �; q; d) = 0:3. Separability condition.M =def f1; 2; : : : ;mg: The k-th component of an arbitrary vector s will bede�ned as sk. We shall understand by I an arbitrary element from the setP (M) � f;g.RI =def A1 �A2 � : : :�Am; whereAi = � f#;!g; if i =2 If"nothing"g; if i 2 I:TI =def B1 �B2 � : : :�Bm; where Bi = � f#;!g; if i 2 If"nothing"g; if i =2 I:The function Ri � Ti dI�! f#;!gm is de�ned as follows:diI(r; t) =def � ri; if i =2 Iti; if i 2 I:dI (r; t) =def (d1I (r; t); d2I(r; t); : : : ; dmI (r; t)):8I 2 P (M) � f;g 8�1�2 2 �m 8q1; q2 2 Q 8t1; t2 2 TI ;if 8i =2 I �i1 = �i2; 8j 2 I tj1 6= tj2 thenX(q;r)2Q�RI ��(q1; �1; q; dI(r; t1))�(q2; �2; q; dI(r; t2)) = 0:States from Qacc [ Qrej are called halting states and states from Qnon =Q� (Qacc [ Qrej) are called non halting states.To process an input word vector x 2 (��)m by A it is assumed that theinput is written on every tape k with the endmarkers in the form wkx = �xk$and that every such a tape, of length jxkj + 2, is circular, i. e., the symbolto the right of $ is �.For the �xed input word vector x we can de�ne n to be an integer vectorwhich determines the length of input word on every tape. So for every n wecan de�ne Cn to be the set of all possible con�gurations of A where jxij = ni.jCnj = jQj mQi=1(ni + 2). Every such a con�guration is uniquely determined by6



a pair jq; si, where q 2 Q and 0 � si � jxij+ 1 speci�es the position of headon the i-th tape.Every computation of A on an input x, jxij = ni, is speci�ed by a unitaryevolution in the Hilbert space HA;n = l2(Cn). Each con�guration c 2 Cncorresponds to the basis vector in HA;n. Therefore a global state of A in thespace HA;n has a form Pc2Cn �cjci, where Pc2Cn j�cj2 = 1. If the input wordvector is x and the automaton A is in its global state j i = Pc2Cn �cjci, thenits further step is equivalent to the application of a linear operator U �x overHilbert space l2(Cn).De�nition 1.2 U �xj i = Xc2Cn �cU �xjci:If a con�guration c = jq0; si, then U �xjci = P(q;d)2Q�f#;!gm �(q0; �(s); q; d)jq; � (s; d)i,where �(s) = (�1(s); : : : ; �m(s)), �i(s) speci�es the si-th symbol on the i-thtape, and� (s; d) = (� 1(s; d); : : : ; �m(s; d)); � i(s; d) = � (si + 1) mod (ni + 2); if di =0!0si; if di =0#0 :Lemma 1.1 The well-formedness conditions are satis�ed i� for any input xthe mapping U �x is unitary.De�nition 1.3 A QFMA A = (Q; �; �; q0;Qacc;Qrej) is simple if for each� 2 �m there is a linear unitary operator V� over the inner-product spacel2(Q) and a function D : Q �! f#;!gm, such that8q1 2 Q 8� 2 �m �(q1; �; q; d) = � hqjV�jq1i; if D(q) = d0; otherwise:Lemma 1.2 If the automaton A is simple, then conditions of well-formednessare satis�ed i� for every � V� is unitary.As in the case of single-tape quantum �nite automata it is presumed thatall the states are divided into halting and nonhalting, and whenever, theautomaton comes into a halting state, the automaton stops, and accepts orrejects the input with a probability equal to the square of the modulo of theamplitude. 7



2 Reversible automataA 1-way reversible �nite automaton (RFA) is a QFA with �(q1; a; q2) 2 f0; 1gfor all q1; a; q2. Alternatively, RFA can be de�ned as a deterministic automa-ton where, for any q2; a, there is at most one state q1 such that reading ain q1 leads to q2. We use the same de�nitions of acceptance and rejection.States are partitioned into accepting, rejecting and non-halting states and aword is accepted (rejected) whenever the RFA enters an accepting (reject-ing) state. After that, the computation is terminated. Similarly to quantumcase, endmarkers are added to the input word. The starting state is one,accepting (rejecting) states can be multiple. This makes our model di�erentfrom both [An 82] (where only one accepting state was allowed) and [Pi 92](where multiple starting states with a non-deterministic choice between themat the beginning were allowed). We de�ne our model so because we want itto be as close to our model of QFAs as possible.Generally, it's hard to introduce probabilism into �nite automata with-out losing reversibility. However, there are some types of probabilistic choicesthat are consistent with reversibility. For example, it was proved by A. Am-bainis and R. Freivalds that for the language L = fa2n+3jn 2g not recog-nizable by a 1-way RFA, there are 3 1-way RFAs such that each word inthe language is accepted by 2 of them and each word not in the language isrejected by 2 out of 3.3 Quantum vs. probabilistic automataDe�nition 3.1 We say that a language L is [m,n]-deterministically recog-nizable if there are n deterministic automata A1, A2, An such that:a) if the input is in the language L, then all n automata A1, . . . , An acceptthe input;b) if the input is not in the language L, then at most m of the automata A1,. . . , An accept the input.De�nition 3.2 We say that a language L is [m,n]-reversibly recognizable ifthere are n deterministic reversible automata A1, A2, An such that:a) if the input is in the language L, then all n automata A1, . . . , An acceptthe input;b) if the input is not in the language L, then at most m of the automata A1,. . . , An accept the input. 8



Lemma 3.1 If a language L is [1,n]-deterministically recognizable by 2-tape�nite automata, then L is recognizable by a probabilistic 2-tape �nite automa-ton with probability nn+1 .Proof. The probabilistic automaton starts by choosing a random integer1 � r � (n+1). After that , if r � n, then the automaton goes on simulatingthe deterministic automaton Ar, and, if r = n+1, then the automaton rejectsthe input. The inputs in L are accepted with probability nn+1 , and the inputsnot in the language are rejected with a probability no less than nn+1 . 2Lemma 3.2 If a language L is [1,n]-reversibly recognizable by 2-tape �niteautomata, then L is recognizable by a quantum 2-tape �nite automaton withprobability nn+1 .Proof. In essence the algorithm is the same as in Lemma 3.1. Theautomaton starts by choosing a random integer 1 � r � (n + 1). This isdone by taking 3 di�erent actions with amplitudes 1p3 (the possibility tomake such a choice is asserted in Lemma 4.6). After that , if r � n, thenthe automaton goes on simulating the deterministic automaton Ar, and, ifr = n + 1, then the automaton rejects the input. Acceptance and rejectingare made by entering the states where measurement is made immediately.(Hence the probabilities are totaled, not the amplitudes.) 2First, we discuss the following 2-tape languageL1 = f(x1rx2; y)kx1 = x2 = yg;where the words x1; x2; y are unary.Lemma 3.3 For arbitrary natural n, the language L1 is [1,n]-deterministicallyrecognizable.Proof. See Appendix.R. Freivalds [Fr 79] provedTheorem 3.1 The language L1 can be recognized with arbitrary probability1 � � by a probabilistic 2-tape �nite automaton but this language cannot berecognized by a deterministic 2-tape �nite automaton.Proof. By Lemma 5.1 L is [1,n]-deterministically recognizable for arbi-trary n.By Lemma 3.1, the language is recognizable with probability nn+1 .2 9



Theorem 3.2 The language L1 can be recognized with arbitrary probability1� � by a quantum 2-tape �nite automaton.Proof. By Lemma 3.2. 2We wish to prove a quantum counterpart of Theorem 3.1. We need somelemmas to this goal.In an attempt to construct a 2-tape language recognizable by a quantum2-tape �nite automaton but not by probabilistic 2-tape �nite automata weconsider a similar languageL2 = f(x1rx2rx3; y)kthere are exactly 2 values ofx1; x2; x3such that they equalyg;where the words x1; x2; x3; y are unary.Theorem 3.3 A quantum automaton exists which recognizes the languageL2 with a probability 35 � � for arbitrary positive �.Proof. This automaton with amplitudes:a) 1p5 � 1b) 1p5 � (cos2�3 + i sin 2�3 )c) 1p5 � (cos4�3 + i sin 4�3 )d) q25takes actions:a) compare x1 = x2 = y,b) compare x2 = x3 = y,c) compare x1 = x3 = y,d) says "accept".If y equals all 3 words x1; x2; x3, then the input is accepted with probability25 (since the amplitudes of the actions a), b), c) total to 0). If y equals 2out of 3 words x1; x2; x3, then the input is accepted with probability 35. If yequals at most one of the words x1; x2; x3, then the input is accepted withprobability 25 (only if the action d) is taken). 2Unfortunately, the following theorem holds.Theorem 3.4 A probabilistic automaton exists which recognizes the lan-guage L2 with a probability 2140 10



Proof. The probabilistic automaton with probability 12 takes an actionA or B:A) Choose a random j and compare xj = y. If yes, accept with probability1920. If no, accept with probability 120.B) Choose a random pair j; k and compare xj = xk = y. If yes, reject. Ifno, accept with probability 1220.If y equals all 3 words x1; x2; x3 and the action A is taken, then the inputis accepted with relative probability 1920. If y equals all 3 words x1; x2; x3, thenand the action A is taken, then the input is accepted with relative probability0. This gives the acceptance probability in the case if y equals all 3 wordsx1; x2; x3, to be 1940 and the probability of the correct result "no" to be 2140.If y equals 2 words out of x1; x2; x3 and the action A is taken, then theinput is accepted with relative probability 1320 . If y equals 2 words out ofx1; x2; x3 and the action B is taken, then the input is accepted with relativeprobability 820 . This gives the acceptance probability in the case if y equals2 words out of x1; x2; x3, to be 2140 .If y equals only 1 word out of x1; x2; x3 and the action A is taken, thenthe input is accepted with relative probability 720. If y equals only 1 wordout of x1; x2; x3 and the action B is taken, then the input is accepted withrelative probability 1220. This gives the acceptance probability in the case ify equals only 1 word out of x1; x2; x3, to be 1940 and the probability of thecorrect result "no" to be 2140.If y equals no word of x1; x2; x3 and the action A is taken, then the inputis accepted with relative probability 120. If y equals no word of x1; x2; x3 andthe action B is taken, then the input is accepted with relative probability1220. This gives the acceptance probability in the case if y equals no word ofx1; x2; x3, to be 1340 and the probability of the correct result "no" to be 2740 . 2Now we consider a modi�cation of the language L2 which might be moredi�cult for a probabilistic recognition:L3 = f(x1rx2rx3; y1ry2)kthere is exactly one valueksuch that there are exactly two valuesjsuch thatxj = yk:gTheorem 3.5 A quantum �nite 2-tape automaton exists which recognizesthe language L3 with a probability 611 � � for arbitrary positive �.Proof is moved to Appendix. It is provided for the referees only, and itwill not be included in the �nal text.11



However this language also can be recognized by a probabilistic 2-tape�nite automaton.Theorem 3.6 A probabilistic �nite 2-tape automaton exists which recognizesthe language L3 with a probability 1325 � � for arbitrary positive �.Proof. The probabilistic automaton with probability 625 takes action Aor B or C or with probability 725 takes action D:A) Choose a random k and two values of j. Then compare xj = yk. If yes,accept. If no, reject.B) Chose a random k and compare x1 = x2 = x3 = yk. If yes, reject. If no,accept. C) Choose two values j and m. Then compare xj = xm = y1 = y2.If yes, reject. If no, accept.D) Says "reject".Notice that the actions A;B;C are probabilistic, and they can be per-formed only with probability 1 � � (actions A and B are described in theproof of Theorem 3.1 and action C is similar).The acceptance probabilities equal:A B C totalno yk equals 2 or 3 xj 0 1 1 1225one yk equals 2 xj 16 1 1 1325one yk equals 3 xj 12 12 1 1225two yk equal 2 xj 13 1 23 1225all yk equal all xj 1 0 0 6252Finally we consider a modi�cation of the languages above which indeedis di�cult for a probabilistic recognition:L4 = f(x1rx2; y)kthere is exactly one value j such thatxj = y:gwhere the words x1; x2; y are binary.Theorem 3.7 A quantum �nite 2-tape automaton exists which recognizesthe language L4 with a probability 23 � � for arbitrary positive �.Idea of the proof. The computations corresponding to the checkswhether or not x1 = y and x2 = y, are performed with opposite amplitudes.If these two computations are successful, the amplitudes annihilate.12
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Appendix4 Unitary matricesLemma 4.1 For arbitrary real values �; ; �, the matrix� cos �(cos � + i sin �) sin�(cos � + i sin �)sin�(cos + i sin ) � cos �(cos + i sin ) �is unitary.Corollary 4.1 The matrix  1p2 1p21p2 � 1p2 ! is unitary.Corollary 4.2 The matrix � cos� i sin�i sin� cos � � is unitary.Corollary 4.3 The matrix � cos � sin�sin� � cos � � is unitary.This corollary is crucially important for the sequel. We will use it toprove that quantum automata (in contrast with deterministic or probabilisticautomata) can do the counting modulo arbitrarily large prime numbers usingonly two states.Lemma 4.2 For arbitrary real values �; , the matrix0BB@ cos � cos i sin� cos i cos� sin � sin� sin i sin� cos cos� cos � sin� sin i cos � sin i cos� sin � sin� sin cos � cos i sin � cos � sin� sin i cos � sin i sin� cos cos � cos 1CCAis unitary.Corollary 4.4 The matrix0BB@ 12 i2 i2 �12i2 12 �12 i2i2 �12 12 i2�12 i2 i2 12 1CCAis unitary. 14



De�nition 4.1 We call the matrixC = 0BB@ c11 c12 : : : c1 knc21 c22 : : : c2 kn: : : : : : : : : : : :ckn 1 ckn 2 : : : ckn kn 1CCAa block-product of the matrices A = 0BB@ a11 a12 : : : a1ka21 a22 : : : a2k: : : : : : : : : : : :ak 1 ak 2 : : : ak k 1CCA and B = 0BB@ b11 b12 : : : b1nb21 b22 : : : b2n: : : : : : : : : : : :bn 1 bn 2 : : : bn k 1CCAif C(m�1)k+i (l�1)k+j = ai jbml:Lemma 4.3 If the matrices A and B are unitary, then their block-productis also a unitary matrix.Lemma 4.4 For arbitrary prime p, the matrix0BBBBBBBBBBBBBBB@ 1pp (e0) 1pp (e0) 1pp (e0) : : : 1pp (e0)1pp (e2p�p ) 1pp (e2(p�1)�p ) 1pp (e 2(p�2)�p ) : : : 1pp (e2�p )1pp (e4p�p ) 1pp (e4(p�1)�p ) 1pp (e 4(p�2)�p ) : : : 1pp (e4�p )1pp (e6p�p ) 1pp (e6(p�1)�p ) 1pp (e 6(p�2)�p ) : : : 1pp (e6�p ): : : : : : : : : : : : : : :1pp (e (p�1)p�p ) 1pp (e (p�1)(p�1)�p ) 1pp (e (p�1)(p�2)�p ) : : : 1pp (e (p�1)�p ) 1CCCCCCCCCCCCCCCAis unitary.Corollary 4.5 For arbitrary prime p, there is a unitary matrix Cp of sizep� p such that all the elements c1j of this matrix equal 1pp .Corollary 4.6 For arbitrary natural number n, there is a unitary matrix Cnof size n� n such that all the elements c1j of this matrix equal 1pn .Corollary 4.7 For arbitrary natural number n, there is a unitary matrix Cnof size n� n such that all the elements ci1 of this matrix equal 1pn .These corollaries are used as a tool to perform an equiprobable choiceamong a �nite number of possibilities.15



5 Proof of Lemma 3.3Lemma 5.1 For arbitrary natural n, the language L1 is [1,n]-deterministicallyrecognizable.The language L can be recognized by the following team of deterministic1-way 2-tape �nite automata fA1; A2; � � � ; Ang.The automaton Ar performs cycles, each one consisting in reading n+ 1digits from x1 and r digits from y. When the symbol r is met, the automa-ton memorizes the remainder of x1 modulo n and goes on (in cycles) readingn + 1 digits from x2 and n + 1 � r digits from y. If the input pair of wordsis in the language, the processing of the two tapes takes the same time. Inthis case the automaton accepts the pair, otherwise the automaton rejects it.This way, the automaton accepts the pair of words if and only if there arenonnegative integers u; v such that:(n+ 1)u � x1(n+ 1)(u+ 1) > x1(n+ 1)v � x2(n+ 1)(v + 1) > x2x1 � (n+ 1)u = x2 � (n+ 1)v = y � ru� (n+ 1 � r)vIf x1 = x2, then the number �ru � (n + 1 � r)v does not depend on thechoice of r. Either all xi match the y, or no one does. If x1 6= x2, then thenumbers �ru� (n+ 1� r)v are all di�erent for di�erent values of r. Henceat most one of them can match y. 26 Proof of Theorem 3.5Theorem 3.5. A quantum �nite 2-tape automaton exists which recognizesthe language L3 with a probability 35 � � for arbitrary positive �.This automaton takes the following actions with the following amplitudes:a) With amplitude 1p11 � (cos0�6 + i sin0�6 ) compares whether x1 = x2 = y1;b) With amplitude 1p11 � (cos4�6 + i sin4�6 ) compares whether x2 = x3 = y1;c) With amplitude 1p11 � (cos8�6 + i sin8�6 ) compares whether x1 = x3 = y1;d) With amplitude 1p11 � (cos6�6 + i sin6�6 ) compares whether x1 = x2 = y2;16



e) With amplitude 1p11 � (cos10�6 + i sin10�6 ) compares whether x2 = x3 = y2;f) With amplitude 1p11 � (cos2�6 + i sin2�6 ) compares whether x1 = x3 = y2.g) With amplitudeq 511 says "accept".These comparisons are probabilistic actions (as in Theorem 3.1; recall thatthe words xj; yk are unary) but they are simulated by a quantum automaton.This way, every action is replaced by several actions the number of whichdepends on �. For instance, if � = 1n then the action a) is replaced by nactions:a1) With amplitude 1p11n � (cos0�6 + i sin0�6 ) compares whether there arenonnegative integers u; v such that:(n+ 1)u � x1(n+ 1)(u+ 1) > x1(n+ 1)v � x2(n+ 1)(v + 1) > x2x1 � (n+ 1)u = x2 � (n+ 1)v = y1 � u� nva2) With amplitude 1p11n � (cos0�6 + i sin0�6 ) compares whether there arenonnegative integers u; v such that:(n+ 1)u � x1(n+ 1)(u+ 1) > x1(n+ 1)v � x2(n+ 1)(v + 1) > x2x1 � (n+ 1)u = x2 � (n+ 1)v = y1 � 2u� (n� 1)va3) With amplitude 1p11n � (cos0�6 + i sin0�6 ) compares whether there arenonnegative integers u; v such that:(n+ 1)u � x1(n+ 1)(u+ 1) > x1(n+ 1)v � x2(n+ 1)(v + 1) > x217



x1 � (n+ 1)u = x2 � (n+ 1)v = y1 � 3u� (n� 2)v|||||an) With amplitude 1p11n � (cos0�6 + i sin0�6 ) compares whether there arenonnegative integers u; v such that:(n+ 1)u � x1(n+ 1)(u+ 1) > x1(n+ 1)v � x2(n+ 1)(v + 1) > x2x1 � (n+ 1)u = x2 � (n+ 1)v = y1 � nu� vIf y1 = y2, then the total of amplitudes for the acceptance is 0 since theamplitude for comparison of y1 with arbitrary pair xi; xj is (minus 1) timesthe amplitude for the comparison of y2 with the same pair xi; xj.If y1 6= y2, and y1 = x1 = x2, then y2 cannot equal more than one ofthe xj, namely, x3. In this case, all the actions am) [m = 1,2, . . . , n] end inacception and so do also no more than one of the actions bm) ,no more thanone of the actions cm), no more than one of the actions dm), no more thanone of the actions em), and no more than one of the actions fm). The totalof the amplitudes for the accepting actions am) is np11n � (cos0�6 + i sin0�6 )2
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