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0 IntroductionIn this paper we improve the main result of [W96] by weakening the assump-tion that S is determined by its smooth functions.We assume complete familiarity with [W96]. Wilkie starts with a weakstructure S which is o-minimal, and passes to ~S ([W96], De�nition 1.6),which should perhaps be called the Charbonel closure of S. Wilkie showsthat of S is DSF (determined by its smooth functions) then ~S is closed undercomplement, is the structure generated by S, and is o-minimal.The main action in Wilkie's paper involves his 3.6. This result involvesreference to de�nitions of type 3.5. We observed after reading [W96] (our mo-tivation came from our paper [KM97a] in which Sardian arguments abound)that one may modify 3.5 so that the modi�cation of 3.6 remains true underassumptions surely weaker than his DSF.The original 3.5 involved subsets of IRn � IRk+ de�ned by conditions on(x1; : : : ; xn; �1; : : : ; �k) of the form9xn+1 : : :9xn+k�1 k̂i=1 fi(x1; : : : ; xn+k�1) = �iwhere the f1; : : : ; fk are C1 functions from IRn+k�1 to IR which lie in ~S.A close look at [W96] shows that (without use of DSF) one gets o-minimality of ~S provided one has, instead of 3.6, the following for eachA 2 ~Sn:(3.6)�: For each N � 1 there exists k � 1, a k-modulus ��, and a setSN � IRn � IRk+, which is a �nite union of sets de�ned in the form9xn+1 : : :9xn+k�1 k̂i=1 fi(x1; : : : ; xn+k�1) = �iwith the fi CN functions from IRn+k�1 to IR which lie in ~S, such that @ �A �S(mod ��) and S � �A(mod ��).Now one looks for hypotheses on S, weaker than DSF, which permit aninductive proof of (3.6)� along the lines of Wilkie's inductive proof of 3.6.One such is given by:De�nition 1. A prestructure hSn : n � 1i satis�es DCN for all N if foreach A 2 Sn there exists an m � n such that for each N A is of the form2



�[Z(fN)] where fN is a CN function in S, fN : IRm ! IR, and � is the naturalprojection IRm ! IRn.Obviously DSF impliesDCN for all N . Our re�nement of Wilkie's resultis:Theorem 1. Suppose S is an o-minimal weak structure satisfying DCN forall N . Then ~S is o-minimal, and is the smallest structure containing S.We prove also a converse:Theorem 2. Let J be an o-minimal structure. Then there is an o-minimalweak structure S satisfying DCN for all N and ~S = J .Indeed S can be chosen so that it satis�es DCN for all N in the strongsense that we can take m = n in De�nition 1.Theorem 1 needs only a small modi�cation to Wilkie's proof. Theorem 2follows from a striking result in [DM96].We applied Theorem 1 already in late 1996 to get o-minimality of sys-tems got by adjoining to o-minimal S total C1 functions "Pfa�an over S".The proof used re�nements of the basic method of Khovanski [K91]. Therestriction to total functions was not seen by us as essential, but the C1assumption seemed hard to eliminate. This was �rst done by Speissegger[S97], by a totally di�erent method.By using the more routine part of [S97], and dispensing entirely with the"T1-Pfa�an" terminology, we are now able to give a simple proof of theo-minimality of Pfa�an (or, maybe better, Rolle) closure.1 Proof of Theorem 1Nothing in [W96] needs to be changed until 3.5, which should be replaced by(3:5)N for each N , where (3:5)N is just like 3.5 except that fi is now assumedonly to be a CN element of ~S.The goal now is to show that if S satis�es DCN for all N then for eachn � 1, A 2 ~Sn, and each N � 1:(3:6)N There exists k � 1 (the N -complexity of A), a k-modulus �� (theN -modulus of A) and a set S � IRn � IRk+ (the N -approximation of A)which is a �nite union of sets de�ned by conditions of the form (3:5)N (the3



N -approximating constituents of A) such that @ �A � S (mod ��) and S ��A (mod ��).Now, Wilkie's Lemma 3.7 holds if 3.6 is replaced by (3:6)N for some �xedN . However, the statement and proofs of the subsequent lemmas need mod-i�cation, though the basic ideas remain the same.One wants �rst to show for A 2 Sn that A satis�es (3:6)N for all N . Wewill use the assumption of DCN for all N , and get the obvious analogue of3.11. Thereafter nothing will need to be changed.So, consider A 2 Sn. Since we assume DCN for all N , there exists m � nsuch that for each N there is a CN gN : IRm ! IR, gN in S, A = �[Z(gN)].Firstly, by inspection of the proof of Wilkie's Lemma 3.8, one sees that(3:6)N holds for Z(gN ).Now (the crucial step) one inspects the proof of 3.10. This shows that ifN � m then (3:6)N�m holds for A (= �[Z(gN)]). The drop to N �m comesabout via the di�erentiations used in each application of 3.10. By replacingN by N +m, we conclude that (3:6)N holds for A.We thus have, in the obvious adaptation of Wilkie's notation,Corollary (3:11)N Suppose S is o-minimal and satis�es DCN for all N . Letn � 1, A 2 Sn. Then (3:6)N holds for A.>From here on, we can take up Wilkie's development without change. His3.10 should in its general application be unwound to:Let n � 1, A 2 ~Sn+1, and suppose (3:6)N+1 holds for A. Then (3:6)Nholds for �[A], where � : IRn+1 ! IRn is the projection map onto the �rst ncoordinates.His Lemma 3.12 goes through with (3:6)N replacing (3.6) in its two oc-curences. His Theorem 3.13 becomes:Assume S satis�es DCN for all N . Let n � 1 and suppose A 2 ~Sn. Then(3:6)N holds for A, for all N .His proof simply goes through, and his Section 4 adapts (as he essentiallyremarks at its outset) to our hypothesis. Theorem 1 is proved.2 The Converse. Theorem 2Let J be an arbitrary o-minimal structure on IR. The following is a remark-able result of van den Dries and Miller [DM96] (inspired by unpublished work4



of Bierstone, Milman and Pawlucki):Suppose A 2 Jn, A closed. Then for each j � 1 there is a total Cj f inJ with A = Z(f).Rather more trivial is the fact that every element of J is a Boolean combi-nation of closed sets (this follows from cell decomposition [D97]). Combiningthis with Theorem 3, and using the usual equivalencex 6= 0, (9y)(yx� 1 = 0)one gets immediatelyTheorem 2 Any o-minimal structure J is of the form ~S, where S is ano-minimal weak structure satisfying DCN for all N .Proof Take S = J .3 The Application to Pfa�an Closure3.1 As Wilkie remarks at the end of [W96], our method permits arelativization of his theorem on o-minimality of the structure based on the(total) classical Pfa�an functions. A �rst version of this was shown to Wilkiein late 1996. Later (less carefully presented) versions dealt with the case ofadjoining C1 total functions Pfa�an over C1 functions of an o-minimalS. The restrictions to C1 and total are blemishes, removed by Speissegger[S97] in later, independent work relying heavily on work of Moussu - Roche[MR91] and Lion - Rolin [LR96] (the latter inspired also by [W96]). Whilethe restriction to total was never really imposed by our original method, wefaced serious di�culties in trying to remove the C1 assumption in certainvariations on Sard's Theorem (as in Wilkie's 2.7).In this exposition we will pro�t from (a small) part of Speissegger's [S97]to give a new proof of his main result, and to give a small generalization ofit. We stress that without access to Speissegger's preprint [S97] we wouldhave had to settle for a weaker result (albeit with a more perspicuous proof).3.2 Rolle leaves (following Speissegger) Let U � IRn be open, and! = a1dy1 + : : :+ andyn a 1-form on U of class C1. LetS(!) = fy 2 U : ai(y) = 0 1 � i � ng:5



Let E be the closed subset of (U � S(!))� IRn de�ned byf(y; x) : X ai(y)xi = 0g;and let p : E ! U �S(!) be the projection to U �S(!). Let Uj be the openset fy 2 U : aj(y) 6= 0g. Thenp�1(Uj) = ((y; x) : y 2 Uj ; x̂j = �Xi 6=j ai(y)aj(y)xi)and the right hand side is homeomorphic to Uj � IRn�1 via the map 'j givenby (y; x) 7! (y; x1; : : : ; xj�1; xj+1; : : : ; xn):Also, if � is the projection Uj � IRn to Uj, we have for (x; y) 2 p�1(Uj),p(y; x) = y, and �'j(y; x) = y.If y 2 Uj , we have the homeomorphism'j;x : p�1(y) 'j�! fyg � IRn�1 ! IRn�1Now if y 2 Ui,'i;y � '�1i;y (x1; : : : ; xi�1; xi+1; : : : ; xn) = 'i;y(t);where 'i;y(t) = (x1; : : : ; xi�1; xi+1; : : : ; xn):So 'i;x(t) = (p(t); x1; : : : ; xi�1; xi+1; : : : ; xn) and p(t) = y.So t = (y; x1; : : : ; xi�1; xi; xi+1; : : : ; xn) some xiand 'j;y(t) = (x1; : : : ; xj�1; xj+1; : : : ; xn).Thus 'j;y �'�1i;y (x1; : : : ; xi�1; xi+1; : : : ; xn) is linear and (p;E;U n S(w)) isa vector bundle of dimension n� 1.An integral manifold of w = 0 is an (n � 1) dimensional immersed C1submanifold on which the above is the tangent bundle.A leaf of w = 0 is a Rolle leaf if L is an embedded submanifold of U nS(w),closed in UnS(w), such that for each C1 curve 
 : [0; 1]! U with 
(0); 
(1) 2L there is t 2 [0; 1] with (a1(
(t)); : : : an(
(t))), grad 
(t) = 0.6



The crucial example is (as in Speissegger):Example: V � IRn, nonempty, open, connected, f : V ! IR C1 such that@f@yi (y) = Fi(y; f(y)); y 2 V; 1 � i � n:Then the graph �(f) of f is a Rolle leaf on U = V � IR of! = F1dy1 + : : :+ Fndyn � dyn+1:As Speissegger remarks, there is no reason to restrict to integrable1-forms, when one is working over an o-minimal theory (Section 2 of [S97],routine Remark).3.3 Here is our setting. S is an o-minimal structure in Wilkie's sense.Let U be an open element of Sn, and a1; : : : ; an C1 functions U ! IR in S.Let ! = a1dx1+ : : :+ andxn, so clearly ! can naturally be called "in S". LetL be a Rolle leaf for ! = 0.Let S[L] be the structure generated by S and L. Then Speissegger provedthat S[L] is o-minimal. Iteration of these operations S 7! S[L] leads to anatural notion of Pfa�an (or, perhaps better, Rolle) closure of S.Speissegger's proof has a distinctly clear and elementary component (Sec-tion 2), and then a longer section involving "T1 - Pfa�an" sets. We willshow that the latter (which is hardly constructive) is unnecessary, and canbe replaced by use of our Theorem 1.3.4 Let S be an o-minimal structure. We pass to Rolle(S), a prestructureextending S, where (Rolle(S))n consists of all �nite unions of setsA \ L1 \ : : : \ Lk (*)where A 2 Sn, and each Li is a Rolle leaf associated with data (Uj; !j) in S.We will show, rather easily, that Rolle(S) is an o-minimal weak structurein Wilkie's sense, and satis�es DCN for all N .For various reasons we need to represent sets of the form (*) as projectionsof sets of the same form, but where Uj = U for all j. The idea is standard.We work in (IRn)k and let U = U1� : : :�Uk. Use coordinates xji(1 � i � n)for the jth copy of IRn in (IRn)k, and let~!j =Xi aji(xj1; : : : ; xjn)dxji7



where !j =X aji(x1; : : : ; xn)dxi:The ~!j are forms on U . Let~Lj = U1 � : : :� Uj�1 � Lj � Uj+1 � : : :� Un:Clearly ~Lj is a Rolle leaf for ~!j on U.Now consider Ak \ ~L1 \ : : : \ ~Lk \4;where 4 is the diagonal copy of IRn in (IRn)k. This set is of form (*), andits projection to the �rst copy of IRn gives our original set.The main point of this is that to prove uniform bounds for the number ofconnected components of sets (*) we can assume that the Ui are the same.3.5 Lemma 3 Rolle(S) is a weak structure.Proof The product condition (WS3) follows from a variant of the argumentabove. (WS4), the closure under GLn action, is obvious. 2Lemma 4 Rolle(S) satis�es (WS6).Proof Using the �nal remark of 3.4, this follows from Corollary 2.7 of [S97],which has a straightforward proof. 2Lemma 5 Rolle(S) satis�es WS6.Proof We repeatedly usei) union commutes with projection;ii) the class of projections (from various IRm) of closed sets is closed underintersection.It clearly su�ces to show that any L is the projection of a closed set inRolle(S), where L is a Rolle leaf for ! on U , where ! and U are in Sn.Do a cell-decomposition in S to express U as a �nite union of open cellsUi in S, each equipped with a C1 homeomorphism fi : IRn ' Ui ; fi in S.8



Li = L \ Ui is Rolle on Ui (cf. [S97], Lemma 1.4) for !i = ! � Ui, or is ;.Also, ~!i = (fi)�!i is a C1-form on IRn, and (fi)�Li is a Rolle leaf for ~!i.So it su�ces to prove the result for U = IRn. Let! = a1dx1 + : : :+ andxnas usual. Let Un = f�x : an(�x) 6= 0g. Go to a �nite decomposition (in S) ofUn as a union of cells C1-homeomorphic to IRn. Pull back again, to reduceto U = IRn, an(�x) never 0. Then it is standard that L is the graph of a C2function. This concludes the proof. 2Corollary Rolle(S) is o-minimal.So Rolle(S) enjoys all the nice properties detailed by Wilkie. In par-ticular, ^Rolle(S) is o-minimal, closed under partial di�erentiation, has theunrestricted Sard Property, etc.Now we come to the last step which will give us the main result thatRolle(S) generates an o-minimal structure.Lemma 6 Rolle(S) satis�es DCN for all N .Proof This is a signi�cant re�nement of the proof of the preceding lemma(which had to be done �rst, to exploit the o-minimality of ^Rolle(S)).Now we have to prove the following (exploiting the tricks detailed at thestart of the previous proof):If U 2 Sn is open, and ! is a C1 1-form on U , also "in" S, and L is aRolle leaf for !, then there exists m � n such that for each N � 1 there is aCN fN : IRm ! IR in ~S so that L = � [Zer(fN)], where � : IRm ! IRn is theusual projection.This time a more delicate decomposition of U is required, depending onN , and one has to ensure m remains bounded throughout.Fix N . First decompose U (in S) into CN cells each CN homeomorphicto IRn (in S) [DM96], so reducing (always with attention to m) to the case Uis a CN cell. Then partition U (in S) into a closed set D and a dense unionof CN cells on which w is a CN form (use [DM96]). So we reduce to the cases(for U)i) D \ L; 9



ii) U a CN cell, w CN .For the latter, pull back to IRn, so U = IRn. Then as in the previous proofwe can reduce to U = IRn and L the graph of a CN function 	 on IRn�1, soL is Zer (	(x1; : : : ; xn�1)� xn), and 	(x1; : : : ; xn�1) � xn is a CN functionin ^Rolle(S).For the former, write D (in S) as a disjoint union of connected manifoldsDi � U , of dimension � n�1. Within Di, consider the S-de�nable subset ofpoints where the tangent space is included in ker (!). Decompose this againinto de�nable connected submanifolds in S. Any one of these is either � Lor disjoint from L ([S97], 1.4). Thus L\D is a �nite union of sets in S, andso is in S. Thus it satis�es DCN all N , and we are (essentially) done. Oneeasily checks that the m remains bounded. 2SoTheorem 7 (Speissegger). Rolle (S) generates an o-minimal structure.Proof. By Theorem 1. 23.6 (Minor) Re�nements We have used the fact that the forms ! areC1 rather systematically. However we can make some improvements, withminimal e�ort.Theroem. Let S be o-minimal, U � IRn a connected open set in S. Letf : U ! IRn be a C1 function satisfying a system@f@xi = Pi (�x; f(�x)) ; 1 � i � n;where the Pi are continuous, and in S. Then f is in Rolle (S), so inparticular f lives in an o-minimal extension of S.Proof. Break up U (in S) into �nitely many connected open V and a D, sothat the union of the V is dense in U , with complement D, and the Pi areC1 on each V . Then f � V is in Rolle (S), and the graph of f on U is gotby closure.In particular,Corollary (Speissegger) Rolle (S) is closed under integration of continuousfunctions of one variable. 10



4 Concluding RemarksWe came to this topic from our very explicit work [KM97a] on bounds forVapnik-Chervonenkis dimension of semi-Pfa�an families. There one madeconstant appeal to Sardian arguments. The power of the idea there convincedus that a "Sardian" approach to o-minimality would be fruitful. The workof Charbnel and Wilkie certainly con�rms this.Our 1996 work gave results signi�cantly weaker than those reported here,though we could do the closure under integration of the last corollary. Speiss-egger got the optimal result, using the quite heavily disguised version ofWilkie's technology due to [LR96]. Our proof here is explicitly in the styleof Wilkie.
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