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IntroductionIn this paper we are interested in a fundamental problem of computing func-tions by unbounded fanin arithmetic circuits of depth 3. Unlike the booleancircuits, general arithmetic circuits of depth 3 are surprisingly powerful.They can compute (via polynomial interpolation) in polynomial size anysymmetric function. To date however the best lower bound known for gen-eral arithmetic circuit size was only slightly superlinear 
(n logn) ([S73]).In this paper we prove the �rst superpolynomial (in fact exponential) sizelower bound on depth 3 arithmetic unbounded fanin circuits computing anexplicit function, the determinant function, over an arbitrary �nite �eld. Inthis paper, we interpret the arithmetic circuits in the polynomial algebraover the given �eld.The determinant function is especially interesting because of its algebraicuniversality property ([V79]) over arbitrary �elds.We refer a general reader to [L84] and [H77] for all the needed notions usedin our proof.We denote by F = Fq a �nite �eld with q elements. We shall study �elds forq � 3 (for q = 2, the boolean case, the lower bound could be derived from[R87] and [V79]).We study the representation of Det = Detn =P�(�1)sgn(�)X1;�(1) � � �Xn;�(n) in the polynomial algebra F [X1;1; : : : ; Xn;n]in the form of a depth 3 arithmetic circuit, or equivalently, an expansion:Det = X1�`�NYm L`;m (1)where each L`;m = Pi;j a(`;m)i;j Xi;j + a(`;m)0 2 F [X1;1; : : : ; Xn;n] is a linearfunction in the variables X1;1; : : : ; Xn;n. Our purpose is to prove the fol-lowing exponential lower bound on the size of a representation (1). Fromthis, the lower bound on the size of any depth 3 arithmetic unbounded fanincircuit computing the determinant follows.Theorem For any q � 3 there is a constant � > 1 such that in a represen-tation (1) the number of terms N = 
(�n).Representations of the form (1), but under the restriction that L`;m are(homogeneous) linear forms, rather than functions, were considered in [G82](over an arbitrary �eld), where lower bounds on N were established. Thebasic idea in [G82] was to design a linear operator on polynomials intomatrices which maps a product Qm L`;m into a matrix of a bounded rank.2



This approach was also used in [R87]. Later a di�erent method of provinglower bounds on N (again under a similar to [G82] assumption that thedegree of each product QmL`;m, i.e. the number of linear functions in theproduct, is bounded) was proposed in [NW95]. The core of the methodwas to estimate the dimension of all the partial derivatives (up to a certainorder).On the other hand, the circuits with a bounded depth (and unbounded fanin)were studied in connection with the boolean AC0 class and an exponentiallower bound on their sizes was proved in [R87], [S87]. The methods in bothpapers were working just for boolean circuits, and it would be interesting toexplore whether they could be extended to arbitrary �nite �elds (the presentauthors were not able to do it). These boolean methods imply, in particular,an exponential lower bound on the size of any bounded depth boolean circuitfor determinant (and consequently, of any arithmetic circuit over F2). Therepresentation (1) can be viewed as a depth 3 arithmetic circuit. In contrastto boolean circuits we interpret arithmetic circuits (1) as an identity in thepolynomial algebra (vs. the algebra of functions over F , see section 1 below).Recently, Razborov [R98] was able to generalize our results to the algebraof functions over F .An important problem remains open to get lower bounds for representationsof the kind (1), or for the more general bounded depth circuits, over thearbitrary �elds including zero characteristic.The rest of the paper is devoted to the proof of the Theorem. In Section 1we treat the representation (1) and its partial derivatives in the algebra offunctions over F and partition the terms Qm L`;m into two groups, regard-ing the rank of the family of linear functions fL`;mgm being greater or less Jthan, respectively, a certain integer (threshold). We show that the productsQm L`;m with a large rank vanish (and moreover with a large multiplicity)everywhere out of a small fraction of points from Fn2 (which could be in-formally viewed as \erroneous" points). For the products with a small rankwe estimate from above the dimension of the set of all its derivatives (up tosome order) restricted to the algebra of functions over F .In Section 2 we study linear combinations of minors (of a �xed size) ofa matrix vanishing at all the points (in other words, matrices) out of an\erroneous" set, because minors are just the derivatives of Det. Since thefull linear group GLn(F ) acts on linear combinations of minors, we showthat a small number of shifts by means of elements from GLn(F ) allow toget rid of the \erroneous" set and to obtain a linear combination of minorsvanishing at all nonsingularmatrices. Finally, we prove that it is impossible.3



1 A product of linear functions in the algebra offunctions over a �nite �eldDenote by A the algebra of all functions f : Fn2 ! F which can be naturallyidenti�ed with the quotient algebraF [X1;1; : : : ; Xn;n]=(fXqi;j �Xi;jg1�i;j�n)For any set E � Fn2 of n � n matrices one can consider (as in [S87]) aquotient algebra AE of A over the ideal of all the functions from A van-ishing everywhere out of E. Obviously, dimAE = dimF AE = qn2� j E j.Conversely, any quotient algebra of A equals to AE for a suitable E (we donot use this remark). Talking about some elements from AE we mean theimages of the elements from A in the quotient algebra.Fix a constant 
 > 0 satisfying the inequality 
 < q�q=2. Then there existsa constant � such that qq
 < q� < 
�s
 (2)Introduce also a threshold r = [� n] (3)For the time being we �x a product Qm L`;m (of linear functions (see (1)).By its rank r` we mean the dimension of the family of the linear func-tions fL`;mgm, in other words, the rank of the matrix of their coe�cients(a(`;m)i;j ; a(`;m)0 ) (which has n2 + 1 columns, hence r` � n2 + 1).We treat separately two cases: when the rank r` is less or greater, respec-tively, than the threshold r and consider the restriction of the product alongwith its derivatives onto the space Fn2 (in other words, the points de�nedover F ).Large rankLet r` � r. Then the number of points from space Fn2 (of all n�n matriceswith the entries from F ), at which at most 
n among the linear functionsfL`;mgm vanish, does not exceedqn2�r`((q � 1)r` +   r1̀!! (q � 1)r`�1+ : : :+   r`d
ne!! (q � 1)r`�d
ne)4



since one can choose a basis L1; : : : ;Lr` of r` functions among fL`;mgm andassign in an arbitrary way the values for L1; : : : ;Lr` (among these valuesat most 
n are zeros). A described point will play a role of an \erroneous"point at which all the derivatives of the product Qm L`;m of the order d
nemay not vanish. The obtained bound can be estimated from above byqn2�r`   r`d
ne!! (q � 1)r`�d
ne(
n+ 1) (4)since the sequence (q�1)r` ; (�r1̀ �)(q�1)r`�1; : : : increases until (� r`dr`=qe�)(q�1)r`�dr`=qe and beyond that decreases (taking into account (3) and the leftinequality (2)).Now we show that (4) can be estimated from above byqn2�n (5)for a suitable � < 1 depending on q; 
; �. Denote r = y0q
n (for an ap-propriate y0 > 1 (see (3))) and r` = yq
n where y � y0. Using Stirling'sformula one concludes that (4) is less (up to a factor polynomial in n) thanqn2(yq(q�1)(yq�1)q )yq
n(yq�1q�1 )
n. It su�ces to check that (yq(q�1)(yq�1)q)yq(yq�1q�1 ) < �1 forany y � y0 and a certain �1 < 1 depending only on q; y0. The logarithmicderivative q log y(q�1)yq�1 (over y) of the left side of the latter inequality is neg-ative for any y > 1, hence the left side decreases for y � 1 (for y = 1 itequals 1), that proves (5).Small rankNow let r` < r.Note that derivatives of all the orders (actually, we are interested just in theorder d
ne) of the product Qm L`;m lie in the F -linear hull of the productsof the form Li11 � � �Lir`r` for all nonnegative integers ij ; 1 � j � r`. Whensubsequently we restrict these derivatives onto the space Fn2 , thus treatingthem as elements from the algebra A, they would lie in the F -linear hullof the products Li11 � � �Lir`r` , 0 � ij � q � 1; 1 � j � r`. Therefore, thedimension of the set of these images in A of the derivatives is less than qr.The derivatives of the order d
ne of Det are exactly the minors MI;J of thesize (n� d
ne)� (n� d
ne), where I , J are subsets of the sets of rows andcolumns, respectively, j I j=j J j= n � d
ne. We take all the derivatives ofthe order d
ne of both sides of (1) and subsequently restrict them onto Fn2(thus, treating them as elements from the algebra A). Denote by E � Fn2the union of the (\erroneous") sets considered above for all the products5



from (1) of big ranks. Then the images in the quotient algebra AE oftaken derivatives vanish for all big rank products and we conclude with thefollowing Lemma (making use also of (5))Lemma 1 For any � > 1, if Det has a representation (1) with N < �n thenthe set of all minors M = fMI;JgjIj=jJ j=n�d
ne has the dimension less than�nqr in the quotient algebra AE for an appropriate subset E � Fn2 of thesize j E j� qn2(��)n.Remark. The statement of the Lemma is nontrivial when � satis�es thefollowing inequalities �� < 1; �q� < 
�2
 (6)The second inequality means that the dimension of the minors from theLemma is less than the number (� nd
ne�)2 of all (n � d
ne) � (n � d
ne)minors (due to the Stirling's formula and (3)). Furthermore, any smallenough � > 1 satis�es (6) due to the right inequality (2), and any such �one could use in the statement of the Theorem (see above).Henceforth, we assume that � satis�es (6).2 Group symmetry on polynomials vanishing atmatricesDenote by H (being isomorphic to F ( nd
ne)2) the F -space of all the linearcombinations of the minors from M . Observe that nonzero elements of Hare also nonzero in A (a stronger statement will appear below in Lemma 3), thereby one can think that H � A.For any point (matrix) a 2 Fn2 denote byHa 2 H a hyperplane consisting ofall f 2 H such that f(a) = 0. Lemma 1 states actually that the codimensionin H c = codim0@ \a 62EHa1A < �nqrBecause of the second inequality (6) and again the Stirling's formula we getthe inequality dimH > c �n (7)for a suitable constant � > 1. 6



Denote the full linear groups G = Gln(F ) � Fn2 , it is well known thatjGj = (qn � 1)(qn � q) � � �(qn � qn�1)� qn2(q � 2)=(q � 1)(remind that q � 3). For any g 2 G one can consider an F -linear operatorTg : H ! H de�ned for any f 2 H and any matrix a 2 Fn2 by the formula(Tg(f)) (a) = f(ga) (moreover, one could de�ne Tg1 by the same formulafor any not necessarily nonsingular matrix g1 2 Fn2). The latter formulade�nes an operator Tg : H ! H since the minors from M of the matrix gaare the linear combinations (with the coe�cients depending only on g) ofthe minors from M of a. Thus, Tg provides a representation of G becauseTg1g2 = Tg1Tg2 (more precisely, this representation is the direct sum of � nd
ne�copies of d
ne-th wedge power of the natural representation of G on Fn).Clearly Tg�1(Ha) = Hga. Consider now a planeP = \a2GnEHa � H;its codimension c1 = codim P � c. Also denote E1 = E \ G. So, from nowon we restrict ourselves to considering just matrices from G (rather thanfrom the whole set of matrices Fn2).Now assume that a subset S � G satis�es the following property[g2S g (G nE1) = G (8)For any g 2 G we haveTg�1(P ) = \a2GnE1 Tg�1(Ha) = \b2g(GnE1)Hb:Therefore, we get from (8) that\b2GHb = \g2S Tg�1(P ) (9)Next we need the following combinatorial lemma (see e.g. [L75]).Lemma 2([L75]) Let (V;R) be a directed (regular) graph with jV j = mvertices and with the in-degree and the out-degree of each vertex both equalto d. Then there exists a subset U � V of a size O(md log(d+ 1)) such thatfor any vertex v 2 V there is a vertex u 2 U forming an edge (u; v) 2 R.7



Construct a directed regular graph with the set of vertices G and an edge(g2; g1) if and only if g�12 g1 62 E1. Applying to this graph Lemma 2 suppliesus with a set S � G such that for any g1 2 G there is g 2 S satisfyingg�1g1 62 E1, or equivalently g1 2 g(G nE1). Thus, S ful�lls (8).According to Lemma 2 and taking into account Lemma 1 and the �rstinequality (6) jSj � O jGjjGj � qn2(� �)nn2 log q! � O(n2):Finally, we show that Tb2GHb 6= 0. Indeed, codimTg�1(P ) = codim P =c1 � c for any g 2 G. Hence codimTg2S Tg�1(P ) � O(jSj c1) � O(n2 c)which is less than dimH because of (7). Therefore, 0 6= Tg2S Tg�1(P ) =Tb2GHb (see (9)). Take an arbitrary 0 6= f 2 Tb2GHb, this means thatf vanishes at all nonsingular matrices. So, to complete the proof of theTheorem (see the introduction), we need the following lemma.Lemma 3 No multilinear polynomial 0 6= f 2 F [X1;1; : : : ; Xn;n] vanishes atall nonsingular matrices (note that q � 3).Proof of Lemma 3 goes by induction on n. The base of induction for n = 1is evident. For the inductive step suppose the contrary. Some variable occursin f , permuting the rows and the columns we can assume w.l.o.g. that Xn;noccurs in f . Then f = Xn;n f1+f0, where f1 6� 0, f0 are multilinear polyno-mials being independent fromXn;n. On the other hand, Det = Xn;nMn;n+h,where Mn;n is (n� 1)� (n� 1) minor and h is independent from Xn;n.For the time being, specify the variables Xk;` = x(0)k;` 2 F for all 1 � k; ` �n�1 in such a way thatMnn(fx(0)k;`g) 6= 0 (so far, there are many possibilitiesfor specifying). Also we get a multilinear polynomialf(fx(0)k;`g) =Xn;nf1(fx(0)k;`g) + f0(fx(0)k;`g) =Xn;nf1 + f 0;where f1, f 0, 2 F [Xn;1; : : : ; Xn;n�1; X1;n; : : : ; Xn�1;n]. For any set of thevalues of the variables Xn;k = x(0)n;k 2 F; Xk;n =x(0)k;n 2 F; 1 � k � n� 1 (10)8



there are exactly (q � 1) � 2 values of Xn;n such that Det does not vanish.Therefore, the multilinear polynomials f1, f0 vanish identically: indeed,otherwise for some values (10) a nonvanishing identically linear polynomialXn;n f1(fx(0)n;k; x(0)k;ngk)+f 0(fx(0)n;k; x(0)k;ngk) 2 F [Xn;n]would have q � 1 � 2 roots.On the other hand, there is an appropriate set of values (10) for which thesubstitution of these values ~f1 = f1(fx(0)n;k; x(0)k;ngk) 2 F [X1;1; : : : ; Xn�1;n�1]provides a nonvanishing identically polynomial. As we have seen above, ~f1vanishes at any nonsingular (n � 1)� (n � 1) matrix fx(0)k;`g1�k;`�n�1 ; thatcontradicts to the inductive hypothesis and proves Lemma 3.3 Open ProblemsAn intriguing open problem remains to extend our exponential lower boundfor depth 3 arithmetic circuits to arbitrary �elds including characteristiczero.AcknowledgementsWe thank L�aszl�o Babai, Sasha Razborov, Avi Widgerson, and Andy Yao forinteresting discussions on the subject of this paper.References[G82] D. Grigoriev, Lower Bounds in Algebraic Complexity, J. SovietMath., 29 (1985), pp. 1388{1425.[H77] R. Hartshorne, Algebraic Geometry, Springer Verlag, 1977.[L75] L. Lov�asz, On the Ratio of Optimal Integral and Rational Covers,Discrete Mathematics, 13 (1975), pp. 383{390.[N91] N. Nisan, Lower Bound for Non-Commutative Computation,Proc. 23rd ACM STOC (1991), pp. 410{418.[L84] S. Lang, Algebra (2nd Edition), Addison-Wesley, 1984.9
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