
ON THE COMPUTATIONAL HARDNESS OFTESTING SQUARE-FREENESS OF SPARSEPOLYNOMIALSMarek Karpinski1 and Igor Shparlinski21 Dept. of Computer Science, University of BonnR�omerstrasse 164, 53117 Bonn , Germanymarek@cs.uni-bonn.de2 School of MPCE, Macquarie UniversitySydney, NSW 2109, Australiaigor@mpce.mq.edu.auAbstract. We show that deciding square-freeness of a sparse univariatepolynomial over ZZ and over the algebraic closure of a �nite �eld IFq of pelements is NP-hard. We also discuss some related open problems aboutsparse polynomials.1 IntroductionIn this paper we extend the class of problems on sparse polynomials which areknown to be NP-hard.We recall that a polynomial f 2 R[X] over a ring R is called t-sparse if it is ofthe form f(X) = tXi=1 aiXni ; (1)with some a1; : : : ; at 2 R and some integers 0 � n1 < : : : < nt.For a sparse polynomial f 2 ZZ [X], given by (1), the input size S(f) of f isde�ned as S(f) = tXi=1 log (jaijni + 2)where log z denotes the binary logarithm.Let p be a prime number number. Denote by 
p the algebraic closure of the�nite �eld IFp of p elements.Similarly, for a sparse polynomial f 2 
p[X] given by (1), the input size S(f)of f is de�ned as S(f) = tXi=1 log (qni + 2) :



where IFq � 
p is smallest sub�eld of 
p containing all coe�cients of f .We recall that a polynomial f 2 R[X] over the unique factorization domain R iscalled square-free if it is not divisible by a square of a non-constant polynomial.We also refer to [7] for formal description of NP-hard and other related com-plexity classes.Since the pionering papers [17{19] complexity problems on sparse polynomialshave been studied quite extensively [6, 8{13, 15,16]. Nevertheless many naturalquestions about such polynomials remains open.Here we proof that testing square-freeness of sparse polynomials over ZZ andover 
p is NP-hard. Besides just being a natural problem, this question hasalso been motivated by several other possible links and applications.First of all we mention the problem of deciding whether a given sparse polynomialover ZZ has a real root. The existence of multiple roots is a major obstacle inobtaining e�cient algorithms for this problem, see [3].Another well-known related problem is sparse polynomial divisibility. That is,given two sparse polynomials f; g 2 ZZ [X], decide whether gjf . It has recentlybeen proved [11] that under the Extended Riemann Hypothesis this problembelongs to the class co-NP, that is, there exists a short proof of the propertyf j= g.Our basic tool is the Hilbert Irreducibility Theorem. We hope that they can beuseful for some other applications.We also discuss such possible applications and mention several new related prob-lems.2 Main ResultsWe consider the following two problems:Sparse Square-Free: Given a t sparse polynomial f 2 R[X], decide whetherf is square-freeandSparse GCD: Given a two t sparse polynomials f; g 2 R[X], decide whetherdeg gcd(f; g) > 0.First of all we consider the case R = ZZ .Theorem 1. Over ZZ, Sparse Square-Free and Sparse GCD are equaiva-lent under randomized polynomial time reduction.Proof. It is easy to see that Sparse Square-Free is deterministic polynomialtime reducible to Sparse GCD. Indeed, f is square-free if and only if f and f 0are relatively prime.



It is remain to show that Sparse GCD can be reduced to Sparse Square-Free.Denote by M (s; t) the set of all t sparse polynomials over ZZ of size at most s.Obviously jM (s; t)j � 22ts:We show that for all, but at most 210st, pairs a; b 2 ZZ the polynomials f + agand f + bg are square-free for all realtively prime pairs f; g 2M (s; t).Let us �x a pair f; g 2M (s; t) of relatively prime polynomials. The discriminantDX(Y ) of the polynomial f(X)+Y g(X) is a polynomial in Y of degree at mostmaxfdeg f; deg gg � 2s:We remark that, because f and g are relatively prime, the bivariate polynomialf(X) + Y g(X) 2 ZZ [X;Y ] is irreducible over Q. Therefore, by the Hilbet Irre-ducibility Theorem, it remains irreducible (and thus square-free) for in�nitelymany specializations of Y . Therefore D(Y ) is not identical to zero and thus hasat most 2s zeros. Considering all possible pairs f; g 2M (s; t) we see that thereare at most 22ts�1 �22ts � 1� 2s < 25tsvalues of y which are roots of the discriminat DX(Y ) for at least one realtivelyprime pair f; g 2M (s; t). Thus the number of pairs a; b 2 ZZ such that they arenot roots of all discriminats DX (Y ) corresponding to all relatively prime pairsf; g 2M (s; t) does not exceed 210st.Now to test whether f; g 2M (s; t) are relatively prime we select a random paira; b of integers a and b with 0 � a < b � 26tsand test if F = (f + ag)(f + bg) is square-free.Indeed, if f and g are not relatively prime then, obviously, F is not square-free.If f and g are relatively prime then it is easy to verify that f + ag and f + bgare relatively prime as well. Because of the choice of a and b we conclude thatf +ag and f + bg are square-free with probability at least 1+O(2�2ts) and thusF is square-free.It is also easy to check that the size of F is polynomially bounded in terms ofS(f) and S(g). utIt has been shown in [19] that over ZZ Sparse GCD is NP-hard, see also [17,18]. Therefore, from Theorem 1 we obtain the following statement.Corollary 1. Over ZZ , Sparse Square-Free is NP-hard.Now we turn out to the case R = 
p.



Theorem 2. Over 
p, Sparse Square-Free and Sparse GCD are equiva-lent under randomized polynomial time reduction.Proof. As before, only the reduction of Sparse GCD to Sparse Square-Freeis non-trivial.Denote by Mq(s; t) the set of all t sparse polynomials over IFq of size at most s.Obviously jMq(s; t)j � qt2ts:Using the algorithmof [21] (or one of previously know less e�cient algorithms) inprobabilistic polynomial time we construct an extension of IFq of degree N = 6st.As in the proof of Theorem 1, we see that for all, but at most q2t23st, pairsa; b 2 IFqN , the polynomials f + ag and f + bg are square-free for all realtivelyprime pairs f; g 2Mq(s; t).Now to test whether f; g 2 Mq(s; t) are relatively prime we select a random paira; b 2 IFqN and test if F = (f + ag)(f + bg) (2)is square-free.Indeed, if f and g are not relatively prime then, obviously, F is not square-free.If f and g are relatively prime then it is easy to verify that f + ag and f + bgare relatively prime as well. Because of the choice of a and b we conclude thatf + ag and f + bg are square-free with probability at leastqN � q2t23stqN = 1 +O(2�s)and thus F is square-free.It is also easy to check that the size of F is polynomially bounded in terms ofS(f) and S(g). utIt follows from the chain of reductions of [10], which has been used to show#P-hardness of the counting of rational points on a sparse plane curve over a�nite �eld, that over 
p the problem Sparse GCD is NP-hard.Therefore, from Theorem 2 we obtain the following statement.Corollary 2. Over 
p, Sparse Square-Free is NP-hard.3 RemarksThere are several more possible extensions of our results. First of all the reductionwe describe in Theorems 1 and 2 can be applied to polynomials given by straight-line programs and to multivariate sparse polynomials.



Our reduction in Theorem 2 uses an extension of the ground �eld IFq . It wouldbe inetresting to �nd a reduction over the same �eld. For polynomial given bystraight-line programs this can be done via considering the norm of the polyno-mial (2)	 (X) = Norm IFqN :IFqF (X) = NYi=1�f(X) + aqig(X)� NYi=1�f(X) + bqig(X)� :We see that if f and g are given by straight-line programs of polynomial sizethen 	 also has a straight-line program of polynomial size. On the other hand,unfortunately 	 contains a superpolynomial number of monomials. Indeed, it iseasy to show that 	 (X) is T -sparse withT � scp logp t;where p is the characteristic of IFq and c > 0 is an absolute constant. If p andt are both �xed then both the sparsity T and the S(	 ) are polynomial in S(f)and S(g). However, for sparse polynomial with �xed number of monomial we donot have the corresponding NP-hardness result for computing gcd(f; g). In bothworks [10] and [19] the sparsity grows together with the input size, and thus the�nal link is missing.Another interesting related question to which probably can be studied by themethod of this paper is deciding irreducibility of sparse polynomials. Unfortu-nately for irreducibility there is no analogue of the discriminant characterizationof square-freeness. Nevertheless, it is possible that e�ective versions [1, 2, 4, 5, 14,20,22] of the Hilbert Irreducibility Theorem (or their improvements) can helpto approach this problem.Unfortunately we do not know any nontrvial upper bounds for the aforemen-tioned problems. For example, it will be interesting to show that testing square-freeness of sparse univariate polynomials over ZZ can be done in PSPACE.Finally, it is very interesting to study similar questions for sparse integers, thatis, for integers of the form f(2), where f is a sparse polynomial. Several resultshave been obtained in [18, 19] but many more natural questions remain open.References1. S. D. Cohen, `The distribution of Galois groups and Hilbert's irreducibility the-orem', Proc. London Math. Soc., 43 (1981), 227{250.2. P. Corvaja and U. Zannier, `Diophantine equations with power sums and uni-versal Hilbert sets', Indag. Math., 9 (1998), 317{332.3. F. Cucker, P. Koiran and S. Smale, `A polynomial time algorithm for Diophantineequatiuons in one variable', J. Symb. Comp., 27 (1999), 21{29.4. P. D�ebes, `Hilbert subsets and S-integral points', Manuscr. Math., 89 (1996),107{137.5. P. D�ebes, `Density results on Hilbert subsets', Preprint , 1996, 1{25.
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