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interesting complexity class is determined by \Las Vegas" (error-free) algo-rithms, cf. [K98]. For these randomized algorithms the answer \I do notknow" is also possible with probability less than � < 1=2. Otherwise it is notallowed to make mistakes: the algorithms give always correct answers. Thecomplexity class Las Vegas of functions computable by such polynomiallybounded algorithms is equivalent to the complexity class ZPP if no restric-tions on number of readings of variables are imposed (cf., e.g., [G77]). Itis not evident whether this is true for the complexity classes determined bybranching programs with some restrictions on reading inputs. Moreover thefollowing inclusions are straightforward:P � LasV egas (1)LasV egas � ZPP (2)ZPP � BPP \NP \ coNP: (3)In the sequel we consider above complexity classes for read-once branchingprograms with polynomial sizes.2 Las Vegas OBDDsThe following function ADDR(f)n was introduced by S.Jukna ( [J88]), andalso used by Sauerho� ( [S98b]). We follow the notation of [S98b].De�nition. Let n = 2l; l = 2r;m = n=l = 2(l�r). The variables of thefunction ADDR(f)n determine (l � m)-matrix. For i = 0; : : : ; l � 1, xi =(xim; : : : ; x(i+1)m�1) is the i-th row of this matrix. Let f : f0; 1gm ! f0; 1gbe an arbitrary function which can be computed by a deterministic read-oncebranching program in polynomial size. Then ADDR(f)n : f0; 1gn ! f0; 1gis de�ned byADDR(f)n(x0; : : : ; xn�1) := xa; a := j(�(x0); : : : ; �(xl�1))j2;where j(y0; : : : ; ys�1)j2 := Pr�1i=o 2iyi for an arbitrary vector (y0; : : : ; ys�1) 2f0; 1gs.It is shown in [S98b] that the functionADDR(f)n 2 LasV egas�BP1 n P�BP1and therefore the LasV egas�BP1 and P�BP1 complexity classes are dif-ferent, i.e. the inclusion (1) is proper for BP1s. For OBDDs, we have asurprisingly di�erent result. 2



Theorem 1 P�OBDD = LasV egas�OBDDi.e. the inclusion (1) is the equality for OBDDs.Proof. It is shown in [DHRS97] that the one-way communication com-plexity of LasV egas computation is at least one half of the one-way deter-ministic communication complexity. We adopt the proof technique for thisresult to prove that P = LasV egas for OBDDs. We recall �rst some ideasof [DHRS97], and adopt them towards our construction.A Las Vegas branching program B computing a function h can be consid-ered as a collection of, say, m deterministic branching programs B1; : : : ; Bmwith assigned probabilities p1; : : : ; pm. Note that m can depend exponentiallyon the number of input variables. For any input, Bi may compute results0; 1 or 2 (stands for \I do not know"). Since B is a Las Vegas OBDD, noOBDD Bi ever errs.There is a deterministic OBDD B0 (with no size restriction) computingthe same function h and having the same order as P of reading inputs. Let B0be of the minimum complexity. W.l.g. suppose that OBDDs B;B1; : : : ; Bmare leveled. For any number l, 1 � l < n, l-th level contains only such nodesfor which exactly l variables have been read. These nodes correspond to max-imum di�erent rows of a communication matrix C(B0)l�(n�l) for OBDD B0.The same is true for OBDDs Bi where communication matrix C(Bi)l�(n�l)has the same elements as C(B0)l�(n�l) except for some elements that are equalto 2. Following [DHRS97], if C(B0)l�(n�l) has r di�erent rows there is an i,1 � i � m such that C(Bi)l�(n�l) has at least pr di�erent rows. Therefore,Bi has at least pr nodes on the l-level.Because B0 is of the minimum complexity, it follows that if B has apolynomial complexity than B0 is an OBDD of polynomial size as well. �Let B be a read-once branching program with the variable set X =fx1; : : : ; xng, and let (X1;X2) be a partition of X. B is called weakly-orderedwith respect to (X1;X2) if all computation paths leading from the source toa sink can be decomposed into two parts, where on the �rst part only vari-ables from X1 are tested and on the second part only variables from X2 (cf.[AK96], and [S98a]).Corollary 1 Let h be a function on a set of variables X such that for anypartition (X1;X2) of X there exists a Las Vegas read-once branching pro-gram weakly-ordered with respect to (X1;X2) and of polynomial complexitycomputing h. Then, for any ordering � on X there is a polynomial complexityOBDD respecting � and computing h.3



Indeed, the same idea as in the proof of Theorem 1 holds for the Corollary.If an optimal (i.e. with the minimum complexity) OBDD computing h hasan exponential complexity, then it has a level with exponential number ofnodes. This level determines a partition (X1;X2) such that any weak-orderedLas Vegas-branching programs with respect to (X1;X2) computing h has anexponential complexity.Given now a complexity class Q. The notation Q�wOBDD correspondsto the analogous class of functions computable by some polynomial size weak-ordered branching programs with respect to some partition (X1;X2).Remark 1 For x = (x1 : : : xm) and y = (y1 : : : ys), the function h(x;y) =ADDR(f)n(x)W(Wsi=1 yi) is in LasV egas� wOBDD n P �wOBDD.Indeed, if all yi are equal to 1, the function h is equal to ADDR(f)n that is\hard" for deterministic read-once branching programs (cf. [JRSW97], seealso [S98b]). Let the x-part of inputs determines the subset X1 of the setof variables X. Then a polynomial size weak-ordered randomized branchingprogram B with respect to the partition (X1;X2) has 2 parts. First part is aLas Vegas read-once branching program computing ADDR(f)n(x) ([S98b]).The second part of B has a source in rejecting sink of the �rst part andcomputes Wi yi. Therefore h 2 LasV egas� wOBDD.3 Las Vegas Read-Once Branching ProgramsWe conjecture that the inclusion 2 is the equality for OBDDs and BP1s. Wewere however able to prove only the following.Theorem 2 ZPP�BP1 � LasV egas�BP3.Proof. Let a function h be in ZPP = RP \ coRP and the randomizedbranching programs B1, B2 (0; 1 � �)-compute (with one-sided error) thefunction h and its negation respectively, � < 1=2. We determine a branchingprogram B in the following way. It starts with the same probability 1=2the programs B1 and B2. The accepting sinks of B1 and B2 become theaccepting and rejecting sinks of B, respectively. It is evident that onthese sinks B gives always correct output for h. We identify other sinkscorresponding to the answer \I do not know".The probability of this answeris 1=2(1 + �) < 3=4. If three copies of B are connected in such a way thatthe source of a next program is identi�ed with the \I do not know"-sink ofa previous one, then the probability of giving the answer \I do not know"for this combination of three programs is less than (3=4)3 < 1=2. �4



Theorem 3 If a function h belongs both to RP �OBDD and to coRP �OBDD, and the corresponding OBDDs B1, B2 use the same order of de-terministic variables and both have a constant (independent of a number ofvariables of h) number of RSP s, then h 2 LasV egas�OBDD.Proof. Firstly we need to prove the following Lemma.Lemma 1 If a function h is (a; b)-computed by a polynomial size probabilisticOBDD B with a constant (independent of number of variables of h) numberof RSP s, then it is (a; b)-computed by a polynomial size probabilistic OBDDB0 without a proper RSP .Proof. We can obtain from B a polynomial size branching program B00 that(a; b)-computes h, have a constant number of RSP s, for which RSP s C1; C2have common nodes i� C1 is a RSP of C2 or vice versa. Analogous propertyholds for DSP s of B 00.If B00 has proper RSP s without proper RSP s and B 00 is a DSP thenone can construct a polynomial size RSP without proper RSP s which(a; b)-computes h. This recursive procedure gives a required B 0. �Because of Lemma 1, we can assume that B1, B2 do not have a properRSP . Then we use the \Apply" algorithm (see [B86]) for OBDDs whichcombines DSP s of B1 and B2 with the operator \V00 to compute the graphof deterministic branching programs Ci. By properly randomly choosing Ciwe obtain an RSP computing h without an error. Moreover, because forany input, B1 or B2 give the correct output, B is a deterministic branchingprogram in a sense that it gives always a correct output (see the Theorem1), and does not give the answer \I do not know". �Lemma 3 seems to be interesting because of the following. For any knownfunction computed by OBDDs of di�erent types (probabilistic, nondetermin-istic, and so on), it holds that all OBDDs use the same order of deterministicvariables, and the random or nondeterministic nodes, respectively, are to betested before deterministic ones.As for the inclusion (3), we have a conjecture.Conjecture 1 For OBDD and BP1, the following is trueRP = BPP [NP:If this conjecture is true then coRP = BPP \ coNP , ZPP = BPP \NP \ coNP for OBDD and BP1 (i.e. the inclusion (3) will be the equalityfor OBDD and BP1). 5
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