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1 IntroductionThe paper studies explicit approximation thresholds for bounded depen-dency, and bounded degree optimization problems. There was a dramaticprogress recently in proving tight inapproximability results for a number ofNP-hard optimization problems (cf. [H96], [H97], [TSSW96]). The goal ofthis paper is to develop a new method of reductions for attacking boundedinstances of the NP-hard optimization problems and also other optimizationproblems. The method uses randomized reductions and applies to the num-ber of problems including Maximum Independent Set in graphs of degree d(d-MIS), bounded degree Minimum Node Cover (d-Node Cover), boundeddegree MAX CUT (d-MAX CUT) and bounded occurrence MAX-2SAT (d-OCC-MAX-2SAT), (cf. [PY91], [A94], [BS92], [BF94], [BF95], [AFWZ95]).This yields also the �rst explicit approximation lower bounds for the smalldegree graph problems, and the small dependency satis�ability. Indepen-dently, we apply this method to prove for the �rst time approximationhardness of the problem of sorting by reversals, MIN-SBR, motivated bymolecular biology [HP95], and proven only recently to be NP-hard [C97].Interestingly, its signed version can be computed in polynomial time [HP95],[BH96], [KST97].The core of the new method is the use of restricted versions of the E2-LIN-2 and E3-LIN-2 problems studied in [H97]. We denote by E2-LIN-2 theproblem of maximizing the number of satis�ed equations from a given set oflinear equations mod 2 with exactly 2 variables per equation. E3-LIN-2 is asimilar problem with three variables per equation. E2-LIN-2 can be viewedas a graph problem in the following way: each variable is a node, and anequation x�y = b is an edge fx; yg with label b. (Note that the special casewhen all edges have label 1 constitutes MAX CUT problem.)We denote by d-OCC-E2-LIN-2 and d-OCC-E3-LIN-2 the versions ofthese problems where the number of occurences of each variable is boundedby d (note that in d-OCC-2-LIN-2 can be also viewed as restricted to graphsof degree d).The rest of the paper proves the following main theorem:Theorem 1. For every � > 0, it is NP-hard to approximate(i) 3-OCC-E2-LIN-2 and 3-MAX CUT within factor 332=331� �;(ii) 6-OCC-MAX 2SAT within factor 668=667� �;(iii) 3-OCC-E3-LIN-2 within factor 62=61� �;(iv) 4-MIS within factor 74=73� � and 4-Node Cover within 79=78� �;(v) 3-MIS within factor 140=139�� and 3-Node Cover within 145=144��;2



(vi) MIN-SBR within factor 1237=1236� �.Our proof can be easily extended to provide explicit inapproximabilityfactors for many other optimizations problems that are related to boundeddegree graphs. E. g. we get also 1.0149 lower bound for 5-MIS, 1.0138 lowerbound for 5-NodeCover, and 1.0005 lower bound for 3-OCC-MAX 2SAT.We provide proof sketches in Sections 4, and 7.The technical core of all these results is the reduction to show (i), whichforms structures that can be translated into many graph problems with thevery small and natural gadgets. The best to our knowledge gaps betweenthe upper and lower approximation bounds are summarized in Table 1. Theupper approximation bounds are from [GW94], [BF95], [C98], and [FG95].Problem Approx. Upper Approx. Lower3-OCC-E2-LIN-2 1.1383 1.00303-OCC-E3-LIN-2 2 1.01633-MAX CUT 1.1383 1.00303-OCC-MAX 2SAT 1.0741 1.00056-OCC-MAX-2SAT 1.0741 1.00143-MIS 1.2 1.00714-MIS 1.4 1.01365-MIS 1.6 1.01493-Node Cover 1.1666 1.00694-Node Cover 1.2857 1.01285-Node Cover 1.625 1.0138MIN-SBR 1.5 1.0008Table 1: Gaps between known approximation bounds.2 Sequence of reductionsWe start from E2-LIN-2 problem that was most completely analyzed byH�astad [H97] who proved that it is NP-hard to approximate it within afactor 12=11� �. In the sequel we will use notation of this paper. In thisproblem we are given a (multi)set of linear equations over Z2 with at mosttwo variable per equation, and we maximize the size of a consistent subset.3



In this paper, we prefer to interpret it as the following graph problem. Givenan undirected graph G = hV;E; li where l is a 0/1 edge labelling function.For S � V , Cut(S) is the set of edges with exactly one endpoint in S(as in the MAX CUT problem). We de�ne Score(S; e) 2 f0; 1g as follows:Score(S; e) = l(e) i� e 2 Cut(S). In turn, Score(S) = Pe2E Score(S; e).The objective of E2-LIN-2 is to maximize Score(S).Our �rst reduction will have instance transformation �1, and will mapan instance G of E2-LIN-2 into another instance G0 of the same problemthat has three properties: G0 is a graph of degree 3, its girth (the length ofa shortest cycle) is 
(logn), and its set of nodes can be covered with cyclesin which all edges are labeled 0. We will use �1(E2-LIN-2) to denote thisrestricted version of E2-LIN-2. The last two properties of �1(E2�LIN� 2)are important in the subsequent reductions that lead to MIN SBR problem.We alter the reduction �1 in two ways. The �rst modi�cation resultsin graphs that have all edges labeled with 1, i.e. it reduces E2-LIN-2 to 3-MAX CUT and allows to complete the proof of (i). The second modi�cationreduces E3-LIN-2 to a very special version of 3-OCC-E3-LIN-2, which wecall HYBRID, because a large majority of equations have only two variables.This reduction instantaneously leads to (iii).To show (ii), we use an obvious reduction from �1(E2-LIN-2): an instanceof E2-LIN-2 can be viewed as a set of equivalence statements, and we canreplace each equivalence with a pair of implications. On the other hand, weobtain (v) and (iv) using reductions from HYBRID.Although HYBRID problem appears to be very \e�cient", we cannotuse it in the chain that leads to MIN-SBR. Instead, we use another reduc-tion, with instance translation �2, that leads from �1(E2-LIN-2) to 4-MIS.This translation replaces each node/variable with a small gadget. The re-sulting instances of 4-MIS can be transformed into the next problem that weconsider, which we call breakpoint graph decomposition, BGD. This problemis related to maximum alternating cycle decomposition, (e.g. see Caprara,[C97]) but has a di�erent objective function (as with another pair of relatedproblems, Node Cover and MIS, the choice of the objective function af-fects approximability). An instance of BGD is a so-called breakpoint graph,i.e. an undirected graph G = hV;E; liwhere l is a 0/1 edge labelling function,which satis�es the following two properties:(i) for b 2 f0; 1g, each connected component of 
V; l�1(b)� is a simplepath;(ii) for each v 2 V , the degrees of v in 
V; l�1(0)� and in 
V; l�1(1)� arethe same.An alternating cycle C is a subset of E such that hV; C; ljCi has theproperty (ii). A decomposition of G is a partition C of E into alternatingcycles. The objective of BGD is to minimize cost(C) = 12 jEj � jCj.4



By changing the node-replacing gadget of �2 and enforcing property (i) by\brute force", we obtain reduction �3 that maps �1(E2-LIN-2) into BGD. Thelast reduction, �, converts a breakpoint graph G into a permutation �(G),an instance of sorting by reversals, MIN-SBR. We use a standard reduc-tion, i.e. the correspondence between permutations and breakpoints graphsused in the approximation algorithms for MIN-SBR (this approach was ini-tiated by Bafna and Pevzner, [BP96]). In general, this correspondence is notapproximation preserving because of so-called hurdles (see [BP96, HP95]).However, the permutations in �(�3(�1(E2-LIN-2))) do not have hurdles, andconsequently for these restricted version of BGP, � is an approximationpreserving reducibility with ratio 1.3 First ReductionTo simplify the �rst reduction, we will describe how to compute the instancetranslation using a randomized poly-time algorithm. In this reduction, ev-ery node (variable) is replaced with a wheel, a random graph that is de�nedbelow (some parts of this de�nition will not be used to describe the reduc-tion, but will be used later, in the proof of correctness). The parameter �used here is a small constant; in this version of this paper we sketch theproof that � = 9 is su�ciently large, in the full version we will show that� = 6 is also su�cient.De�nition 2. An r-wheel is a graph with 2(�+1)r nodes W = Contacts [Checkers, that contains 2r contacts and 2�r checkers, and two sets of edges,C and M . C is a Hamiltonian cycle in which with consecutive contacts areseparated by chains of � checkers, while M is a random perfect matchingfor the set of checkers (see Fig. 1 for an example).For a set of nodes A � W let aA be the number of contacts in A, bA thenumber of contiguous fragments of of A in the cycle C (i.e. bA = jCut(A)\Cj=2) and cA = jCut(A) \M j.We say that A is bad i� r � aA > 2bA + cA. A set B is wrong i� for somebad set A we have B = A\ Checkers. A set B � Checkers is isolated i� noedges in M connect B with Checkers�B.Consider an instance of E2-LIN-2 with n nodes (variables) and m edges(equations). Let k = dn=2e. A node v of degree d will be replaced with akd-wheel Wv. All wheel edges are labelled 0 to indicate our preference forsuch a solution S that either Wv � S or Wv \ S = ;. An edge fv; ug withlabel l is replaced with 2k edges, each of them has label l and joins a contactof Wv with a contact of Wu. In the entire construction each contact is usedexactly once, so the resulting graph is 3-regular.We need to elaborate this construction a bit to assure a large girth of theresulting graph. First, we will assure that no short cycle is contained inside5



4-wheel

checker node
contact nodeFigure 1: A small example of a gadget used by �1.a wheel. We can use these properties of an r-wheel W : each cycle diferent oflength lower than 2�r must contain at least one edge of the matchingM andthe expected number of nodes contained in cycles of length 0:2 log2(�r) orless is below (�r)�0:8 fraction). Thus we can destroy cycles of length below0:2 log2 n by deleting matching edges incident to every node on such a cycleand neglect the resulting changes in Score.Later, we must prevent creation of short cycles when we introduce edgesbetween the wheels; this can be done using a construction described byBollob�as [B78]. While Bollob�as described how to build a graph of largegirth from scratch, his construction can assure the following: given a graphof degree 3 with girth at least 0:5 log2 n and two n-element disjoint sets ofnodes of degree 2, each of size n, say A and B, one can increase the set ofedges by a perfect bipartide matching of A and B without increasing thegirth above 0:5 log2 n. Note that we are indeed replacing an edge of theoriginal graph with a perfect matching with at least n edges, which allowsus to use the construction of Bollob�as.The solution translation is simple. Suppose that we have a solution Sfor a translated instance. First we normalize S as follows: if the majorityof contacts in a wheel W belong to S, we change S into S [W , otherwisewe change S into S �W . A normalized solution S can be converted into asolution S 0 of the original problem in an obvious manner: a node belongs toS 0 i� its wheel is contained in S. Assuming that G has m edges/equations,we have Score(S) = 2k((3�+ 2)+ Score(S0)). H�astad [H97] proved that forE2-LIN-2 instances with 16n equations it is NP-hard to distinguish thosethat have Score above (12� �)n and those that have Score below (11+ �)n,where the positive constant � can be arbitrarily small. By showing that ourreduction is correct for � = 6 we will proveTheorem 3. For any � > 0, it is NP-hard to decide whether an instanceof �1(E2-LIN-2) 2 3-OCC-E2-LIN-2 with 336n edges (equations) has Scoreabove (332� �)n or below (331 + �)n.6



The latter claim uses the assumption that Score(S) is not decreased bythe normalization. Because the reduction uses a random matching, it actu-ally does not have to be the case, i.e. the normalization may fail. Obviously,if the normalization fails, than one of its step, say dealing with wheel W ,fails. Let us inspect closer what such a failure means. For some d, W is akd-wheel, so it contains 2kd contacts. Let A be the subset ofW consisting ofnodes that change membership in S during the normalization step. It is easyto see that Score(S; e) changes i� e 2 Cut(A). According to our de�nition,the size of Cut(A) is aA + 2bA + cA. The edges counted by 2bA and cA areinside W , so their score is changed to 1 (from 0); the edges counted by aA areconnecting the contacts in A with contacts of other wheels, pessimisticallywe may assume that their score changes to 0. As a result, Score(S) decreasesby at most aA�2bA�cA; the normalization step fails only if aA > 2bA+cA,i.e. only if A is a bad subset of the wheel W . To show that our reductionpreserves the approximation with a high probablility we need to show thatthe probablility that a wheel contains a bad subset is very low. Note thatwhen we try to �nd a bad set A in a wheel, it is very easy to obtain anypossible combination of the values of aA and bA. However, the number cAis established by a random matching, so we need to use the fact that with avery high probability Cut(A) \M contains many edges. We start with thefollowing lemma.Lemma 4. Assume that Q is a clique, P � Q, 2q = jQj and 2p = jP j.Choose, uniformly at random, a perfect matching M for Q. Then the prob-ability that Cut(P ) \M is empty equals qp! 2q2p!�1 � 2 p2q!p :Proof. Let �r be the number of perfect matchings in a complete graphwith 2r nodes. By an easy induction, �r = Qri=1(2i�1) = (2r)!=(2rr!). Theprobability of our event is�p�q�p�q = (2p)!2pp! (2(q � p))!2q�p(q � p)! 2qq!(2q)! = (2p)!(2p� 2q)!(2q)! q!p!(q � p)! :The second part of the claim follows from Stirling formula.Consider now a bad set A. Suppose that a node u 2 A has two neighborsin W � A. It is easy to see that after removing u from A the expressionaA � 2bA � cA increases, so A remains bad. Similarly, if u 62 A has twoneighbors in A we may insert u and A again remains bad. Therefore Wcontains a bad set only if it contains such a bad set A that neither A norW � A contains fragments of size 1.Consider now set B � Checkers. Let Bi be the set of contacts that haveexactly i neighbors in B. According to our last remark, B is wrong i� for7



some B0 � B1 the set A = B [B2 [B0 is bad. Clearly, whatever the choiceof B0, we have aA = jB2j+ jB0j, bA = bB[B2 and cA = cB. Thus if jB2j > rthen B cannot be wrong, else if jB2j+ jB1j > r we can assume that aA = r,and in the remaing case we can assume that aA = jB2j+ jB1j. Later we willuse notation aB, bB and cB to denote these reconstructed values of aA, bAand cA.The probability that W contains a bad subset can be estimated with asum, over every B � Checkers, of the probability that B is wrong. Insteadof computing this probability, we will estimate it, using three parameters ofthis set.The �rst parameter of B is �, de�ned by the equality aB = �r. BecauseB is wrong only if aB � r, we may assume that � 2 (0; 1]. The secondparameter is �, de�ned by bB = ��r. Because B can be wrong only ifaB > 2bB, � is a fraction in the range (0; 12).Before we de�ne the third parameter, we will use the �rst two to countthen number of ways in which B can be generated. The sets B andCheckers�B together contain 2��r fragments which can be described byindicating, for each of them, the �st element (say, if we move in clockwisedirection). This description leaves ambigous which is set B and which isW � B, this can be decided using the property aB � r. Thus we cangenerate B in  2�r2��r! � (e�)2��r 1��!2��r = �many ways.After we generated a set B, we need to estimate the probability that itis wrong. To do so, we need to make an assumption concerning its size. Itis easy to see that a fragment of B that contributes, say, a, to aB, mustcontain a� 1 complete chains of checkers, each of length �, so it contributesat least (a� 1)� to the size of B. Additionally, this fragment may containtwo \fringe" chains, each of length between 0 and � � 1, so it contributesless than (a + 1)� to the size. After adding such inequalities together over��r fragments we see that��r � ���r � jBj < ��r + ���r ;hence for some 
 2 [�1; 1] we have jBj = (1 + 
�)��r. Note that B willbecome isolated if we remove the endpoints of the matching edges thatconnect B with W �B; if B is wrong, then the number of such endpoints isat most cB < (1� 2�)�r. We can estimate the probability that B is wrongby multiplying the number of ways in which we can remove (1�2�)�r nodes(call it �) with the probability that the result is isolated. The former canbe estimated as (1 + 
�)��r(1� 2�)�r ! � (e�)(1�2�)�r 1 + 
�1� 2�!(1�2�)�r = � :8



To express the latter, we de�ne �(�; 
) so that the size of each of ourcandidates for an isolated set is 2�(�; 
)�r, one can see that �(�; 
) =[(1+
�)�� (1� 2�)]=2 and the probability that the candidate set is indeedisolated is below �(�; 
)�2�r !�(�;
)�r =  �(�; 
)�2� !�(�;
)�r =  :We need to show �� << 1; it su�ces to show that (�� )1=(�r) < 1. Weeasily can compute that(�� )1=(�r) = e� 1��!2� 1 + 
�1� 2�!1�2� �(�; 
)�2� !�(�;
) :One can quickly check that the above formula is an increasing function of� (because 2� � 1 < (� � 1)=2 < �(�; 
)). Since we want to estimate itfrom above, we can put � = 1. Now it remains to check that the simpli�edfunction is always smaller than 1 for � 2 (0; 12 and 
 2 [�1; 1]. Using the factthat the partial derivative is bouded, one can accomplish it by evaluatingthis function in a limited number of points. For � = 9 we checked that 0.72is an upper bound. With a more complicating argument, and more accurateestimates than Lemma 4, one can also show that � = 6 is su�cient as well.Remark 1. One can modify reduction �1 as follows. We replicate the set ofequations even number of times, as before, so the number of occurences ofeach variable is su�ciently high. On each r-wheel the nodes are labeled witha and b, labels alternating. When we select the random matching betweencheckers, we choose only from perfect matchings in a full bipartite graphsformed by a-checkers and b-checkers (rather than a random perfect matchingfrom the full graph). One can easily show that this restriction makes almostno di�erence in the probability calculations. Moreover, when we connectthe contacts of two wheels, we do it in two ways. If the edge between therespective original variables is labeled with 0, we connect a-contacts withb-contacts, and vice versa. If this edge is labelled with 1, we connect a-contacts with a-contacts and b-contacts with b-contacts. This allows us toconvert all labels in the new graph to 1, and as a result, we obtain a graphwhich is simultaneously an instance of E2-LIN-2 and MAX CUT (and is3-regular). Let � 01 be the new reduction. We obtain the following:Theorem 5. For any � > 0, it is NP-hard to decide whether an instance of� 01(E2-LIN-2)23-MAX CUT with 336n edges has Score above (332� �)n orbelow (331 + �)n.Remark 2. We can translate MAX CUT into MAX 2SAT by replacingeach edge with two clauses, i.e. and edge fx; yg is replaced with x_y; �x_ �y.This reduction allows to prove Theorem 1(ii).9
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dFigure 2: Consistency wheel for 4-MIS problem. The gadget used to replacea contact node is shown in the upper right corner. The lower right cornershows a way to avoid a dirty hexagon.Remark 3. We will also use another modi�cation. We can start from aninstance of E3-LIN-2 with 2n equations. (Recall that H�astad has shownthat it is NP-hard to distinguish instaces where (2 � �)n equations can besatis�ed from those where we can satisfy at most (1 + �)n.) We modify itto an instance with in which each variable occurs in at least n equations,again, by replicating the equations. Next, each variable is replaced by ar-wheel, where r is the (increased) number of occurences. The originalequations are left same as before, but occurences of a variable are replacedwith occurences of its contacts. Now we have a new system where eachvariable occurs exactly three times, and consisting of 2kn equations with 3variables (replicated original equations) and (1:5� + 1)6kn equations with2 variables (inside the wheels). We take � = 6, so we have 60kn equationsinside the wheels. It will be convenient to view the resulting structure asa hypergraph that has 60kn normal edges and 2kn hyperedges (of size 3),6kn contact nodes and 36kn checker nodes.We can modify the last reduction in a similar manner as in Remark 1.In each chain of 6 checkers (separating two contacts) we label 3 of themwith a and 3 with b; then we choose a random bipartite matching betweena-checkers and b-checkers. The set of resulting instances of E3-LIN-2 will belater called HYBRID (this name refers to the fact that we have a mixture ofequations with 2 and 3 variables). Observe that the reduction from E3-LIN-2to HYBRID allows to prove Theorem 1(iii).4 From HYBRID to 4-MIS and 3-MISGiven an instance S of HYBRID, we will form graph G of degree 4, aninstance of 4-MIS. Each variable/node x of S will be replace with a gadgetAx which is an induced subgraph of G. Every gadget contains a hexagon, i.e.a cycle of length 6 in which nodes with labels 0 and 1 alternate. Hexagons10
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will have two types: a-hexagons, with 2 chords, and b-hexagons, with 1chord.If x and y are connected by an edge (equation with two variables), thehexagons of Ax and Ay will share a pair of adjacent edges; this edge ofG corresponds to the equation/edge x = y. A checker gadget is simply ahexagon: 3 edges edges of equations connected by three other edges, andone or two diagonals. A contact gadget consists of a hexagon fused with asquare; 3 such gadgets are connected by an equation gadget that contains 4nodes that do not belong to gadgets of nodes/variables. Fig. 2 and 3 showthese gadgets in detail.Given an independent set (a solution) I in graph G we form a solutionof S as follows. If Ax\I consists of one type of nodes only (i.e. only 0-nodesor only 1-nodes), we assign to x the value equal to this type. In this case,we say that Ax is pure. If Ax is dirty, we must purify it without decreasingthe size of I .Suppose �rst that a hexagon H is dirty (a checker gadget or a part ofa contact gadget). It is easy to see that H can be dirty in one way only:H \ I is a pair of nodes that forms a \missing diagonal" of H . In the lowerright part of Fig. 2, we assume that fa; bg is this pair. The construction ofG assures that in this case there exists a quadrilateral (c; d; e; f) as in this�gure, either because fe; fg is a diagonal of an adgacent hexagon, or becausehexagon H is a part of a contact gadget and this quadrilateral is the squareincluded in this gadget. One must observe that in the cases we considernodes adjacent to c and d are either adjacent to a or b (and consequentlythey cannot be in I) or belong to fe; fg. If e 62 I , we can purify H removinga from I and inserting c, if f 62 I , we do it by removing b and inserting d.One can see that one of these two cases must hold. Moreover, if the edgefc; dg is shared with another gadget, we can always choose the replacementin such a way that we do not make the other gadget dirty when we purifyH . Once we made all hexagons pure, we can make every contact gadgetpure as well. Suppose that the gadget from the upper right corner of Fig. 2is dirty. There are two cases: if a 2 I , then the hexagon (c; d; e; f; g; h) is0-pure and we can replace a with h; the case when b 2 I is symmetric.Now we can modify I so that each edge corresponding to an equationwith two variables contains a node of I i� the respective equation is true. Ifsuch an edge contains a b-node (bf0; 1g), than both gadgets containing thisedge must be b-pure; if both of them are b-pure, we can insert the b-node ofthis edge to I .If we partition G into gadgets coresponding to equations, that a gadgetAof an equation with three variables consists of 16 nodes: a square containedin a gadget of each participating (contact) variable and four special nodescorresponding to four legal combinations of variable values. Our goal is toassure that if the this equation is true, A \ I contains 7 nodes and 6 if the12



equation is false. Clearly, we can place two nodes of I in each square, soA \ I always has at least 6 nodes. We consider three cases, according tothe number of special nodes in A \ I . If this number is 0 and the equationis false, we are done. If it is 0 and the equation is true, then we can insertthe special node corresponding to the combination of the values of the threevariables. If this number is 1 and the equation is true, again, we are done. Ifthe equation is false, than one of the special node p contained in I wronglydescribes one of the variable values, and so it is connected to a node q inthe respective contact gadget that has the type equal to the value of thisvariable; clearly we can replace p with q. Now suppose that this number is2. Because the equation gadget is very symmetric, it su�ces to consider onecase, e.g. that the two special nodes in I are 000 and 011. In this case thesquares of y and z contain only one node of I each, thus we can replace 000and 011 with nodes from these two squares.To �nish our reasoning, it remains to perform the accounting. We startwith an HYBRID instance with 60kn equations with two variables and 2knequations with three variables, and the di�cult question whether we can sat-isfy at least (62��)kn equations, or at most (61+�)kn. Each of 2kn gadgetscorresponding to equations with three variables contributes 6 nodes to anindependent set, even if they are false. Morover, each gadget contributes anode if the respective equation is true. As a result, the new di�cult questionis whether the maximum independent set contains at least (12 + 62� �)knnodes, or at most (12 + 61 + �)kn.Theorem 6. For any � > 0, it is NP-hard to decide whether an instance of4-MIS with 152n nodes has the maximum size of an independent set above(74� �)n or below (73 + �)n.Suppose now that we can reduce the size of the gadget correspondingto an equation with three variables so it consists of 10 nodes rather than16, and it contributes 4 nodes to an independent set if the equation is false,and 5 if it is true. In this case the above accounting would show that forgraphs with 140n nodes it is di�cult to distinguish between those that havea maximum independent set with at least (68 � �)n nodes and thoses thathave at most (67 + �)n nodes. We can achieve this by constructing thegadget for replacing contact nodes that has two nodes less than the one inFig. 2. However, some nodes in this gadget have degree 5 (see Fig. 6 andhence the improved result, mentioned in Table 1, applies to 5-MIS (and, byextension, 5-Node Cover). Because in these instances only 12n nodes out of140n have degree 5, we believe that this result should be easy to improve.We can describe a similar reduction from HYBRID to 3-MIS. Given aHYBRID system of equations S, we form a graph G of degree 3. Again,each variable x of HYBRID is replaced with a gadget Ax; the gadget of achecker variable is a hexagon, and a gadget of a contact variable is a hexagon13



Figure 6: Contact gadget for 5-MIS.augmented with a trapesoid, a cycle of 6 nodes that shares one edge with thehexagon. The hexagons used here have no chords. If two variables/nodesx; y are connected by an equation/edge, x = y, we connect their hexagonswith a pair of edges to form a rectangle in which the edges of the hexagonsand the new edges alternate. The rectangle thus formed is a gadget of thisequation. If three variables are connected by an equation/hyperedge, say,x� y� z = 0, the trapesoids of Ax, Ay and Az are connected to four specialnodes of the gadget of this equation. As a result, the gadget of this equationconsists of 3 trapesoid and 4 special nodes, for the total of 22 nodes. Thedetails are shown in Fig 4 and Fig. 5.Given a solution of the new problem, and independent set I of G, wetranslate it into a solution of S in the same manner as before. Again, if somevariable gadget are dirty, we need to purity them, so that this translationwill be well-de�ned. The beginning of the puri�cation is same as before: wepurify dirty hexagon using the method illustrated in the lower right cornerof Fig. 2. As a result, all checker gadgets become pure. We can also insiststhat if a checker variable x is connected to a contact y, I contains a node inthe intersection of the gadget of this equation (a rectangle) with Ax.Now we consider a contact gadget Ax. Of Hx is the hexagon of Ax, wewill say that Ax �Hx is the front piece of Ax and we use Fx to denote it.Before we proceed, we make the following observation:Observation. Assume that jFx\I j = i and thatAu and Av are the adjacentchecker gadgets. We can modify I so that Ax becomes pure, Au \ I andAv \ I do not change, and the size of Ax increases by 2� i.Now we can return to the gadget of x� y� z = 0. Our goal is that afterall stages of the puri�cations, each variable gadges is pure, each trapesoidcontains 3 nodes of I and if the equation is satis�ed (we can decide that oncethe the gadget variables are pure and the value translation is de�ned) itsgadget contains the special node described by the triple of values of x; y andz; otherwise no special nodes belong to I. As a result, a satis�ed equationcorresponds to 10 nodes in I and an unsatis�ed equation corresoponds to10. Morever, a satis�ed equation with two variables corresponds to 2 nodesin I . This will lead to the following accounting: the question whether wecan satisfy at least (62� �)kn equations or at most (61+ �)kn, where 60kn14



equations have two variable translates into the question whether the maxi-mum independenet set has at least (2� 60 + 20� �)kn elements or at most(2� 60 + 19 + �)kn. This will lead to the following theorem:The �rst case that we consider during the puri�cation of an equationgadget is when I contains all 4 of its special nodes. In this case, jFv \ I j = 0for v = x; y; z; according to the Observation, we can remove 4 special nodesform I , make all the participating contact gadgets pure and increase the sizeof I by at least 6-4. The second case is when I contains 3 of the specialnodes; then jFv \ I � 1 for v = x; y; z; now throwing away the special nodesand purifying the contact gadgets increases the size of I be at least 3 � 3.Lastly, when I contains two special nodes, we can remove one of them and,by Observation 1, purify one of the variable gadgets and restore the sizeof I (one can inspect all 6 cases to prove it). Thus at the end we need toconsider only cases when I contains at most one special node (from a givenequation gadget).Theorem 7. For any � > 0, it is NP-hard to decide whether an instance of4-MIS with 284n nodes has the maximum size of an independent set above(140� �)n or below (139+ �)n.5 From E2-LIN-2 to 4-MISAn instance of 4-MIS can be modi�ed to became an instance of BGD in asimple manner: each node can be replace with an alternating cycle of length4; adjacent nodes will be replaced with a pair such cycles that have an edge(or two) in common. If we are \lucky", after the replacement we indeedobtain a breakpoint graph. Unfortunately, it is not possible to apply suchtransformation consistently to a graph from Fig. 3. We did not �nd othergadgets that can replace an equation with three variables and can later bereplaced with a fragment of a breakpoint graph. Therefore we will be usinga translation from �1(E2-LIN-2), shown in Fig 7.
fragment of a wheel of gadgets
one of the gadgets is shaded
its contacts are darker

0-node 1-nodeFigure 7: A part of 4-MIS instance obtained from �1(E2-LIN-2).It is easy to see that the size of the resulting 4-MIS graph is 9n, and thatthe correspondence between the size of the pure solution and the score in the15



original �1(E2-LIN-2) instance is i = 3n+ s. The \purifying" normalizationhas to proceed somewhat di�erent, however. We do it in two stages. Theresult of the �rst stage is that gadgets are either pure, or contain no nodesof I in their contacts.If an impure gadget contains only 4 nodes of I (or less), we replace thesenodes with the (unique) independent set of size 4 with no contact nodes(i.e. contained in the light gray area of Fig. 2b). A gadget that contains 6nodes of the independent set is already pure. If an impure gadget contains5 nodes of I , then it must contain one of the two \central" points (note thatthe non-central nodes form a cycle of length 10). Suppose that this centralnode has label 0. Then I cannot contain neither of the 4 adjacent 1-nodes,and the remaing 7 nodes form two isolated 0-nodes and a chain of the form0-1-0-1-0, where the �nal 0-1 is a contact. If the chain contains 3 nodes ofI , the gadget is pure. Otherwise we can set the intersection of I with thischain to contain two 0-nodes that do not belong to the contact; afterwardthe gadget becomes pure.At this point, we have \pure" gadgets, with 0 or 1 values, and at least5 nodes of I , and \undecided" gadgets that contain only 4 nodes of I . Ifan undecided gadget is adjacent to two gadgets that are either 0-pure orundecided, then we can incease I by increasing the number of nodes of I to5, all of them 0. There is also symmetric case for 1, and one of the two casesmust hold.6 Reduction to BGDThe idea of reducing MIS problem to BGD is very simple and natural.Observe that the set E of all edges forms an alternating cycle (AC forshort), a disjoint union of ACs is an AC, and a di�erence of two ACs, onecontained in another is also an AC. Thus any disjoint collection of ACs canbe extended to a decomposition of AC. Consequently, the goal of BGD is to�nd a collection of disjoint ACs as close in size to the maximum as possible.Second observation is that the consequences of not �nding an AC dimin-ish with the size of AC. Suppose that the input has n breakpoints (edges ofone color), and that we neglect to �nd any AC's with more than k break-points. The increase in the cost of the solution is smaller than n=k, whilethe cost is at least n=2. Thus if k = 
(logn), such oversight does not a�ectthe approximation ratio.The strategy suggested by these observation is to create instances ofBGP in which alternating cycles that either have 2 breakpoints, or 
(logn).Then the task of approximating is equivalent to the one of maximizing thesize of independent set in the graph G of all ACs of 4; we draw an edgebetween two ACs if they share an edge.More to the point, we need to �nd a di�cult family of graphs of degree16



4 which can be converted into breakpoint graphs by replacing each nodewith an alternating cycle of size 4. To this end, we can use the results ofthe second reduction described in the previous section. Fig. 3 shows theresult of this replacement applied to the long cycles of gadgets. The unionof ACs used in the replacements is also a disjoint union of 5 ACs (in Fig. 3these ACs are horizontal zigzags). To apply the resoning of the previoussections, we need to establish that no cycles of length larger than 4 have tobe considered. In the short version we only sketch this argument.The cycles in question fall into three categories. The �rst kind of cyclesare included in an adjacent pair of gadgets, identi�ed on their diagonallyplaced corners. By an easy case analysis one can show that we can replacesuch cycles with a larger collection of cycles of size 4. The second kindtraverses a collection of gadgets that is cycle-free (if each gadget is consideredto be a node). Such a cycle has a de�ned interior; the union of the cyclewith its interior can be easily decomposed into 4-cycles. The third and lastkind traverses a cycle of gadgets. Then it must be at least as long as sucha cycle, i.e. 
(logn).At this point the translation is still not correct, as the resulting graphsMUST violated property (i) of BPG: edges of one kind form a collection ofcycles: in Fig. 3 such edges form diagonal lines consisting of 5 edges each;such a line crosses to another strip of gadgets and then proceeds without end.However, these cycles induce cycles of gadgets, hence have length 
(logn),moreover, they are disjoint. Therefore we can remove all these cycles bybreaking O(n=logn) contacts between the strips.
Fragment of a wheel of gadgets,
one of the gadgets is shaded,
its contacts have darker shade,
dash lines show the contact with
another wheelFigure 8: Gadget for breakpoint graphs.Given and instance G of �1(E2-LIN-2) with 2n nodes and 3n edges, thisconstruction creates BGD instance G0 with 20n breakpoints (edges of onecolor), and the correspondence between the cost c of a cycle decompositionin G0 and s, Score of the corresponding solution of G is c = 20n� 3n � s.Together with Theorem 3 this impliesTheorem 8. For any � > 0, it is NP-hard to decide whether an instance ofBGD with 2240n breakpoints has the minimum cost of an alternating cycledecomposition below (1236 + �)n or above (1237� �)n.17



7 Reduction of 3-MAX CUT to 3-OCC-MAX2SATIn order to translate an instance G =< V;E > of 3-MAX CUT into aset of disjunctive two clauses, we create a separate set of 4 propositionalvariables for each edge fu; vg and 4 clauses, � ue0 _ ue1, � ve0 _ ve1, ue0 _ ve0and � ue1_ � ve1. Morever, for each node incident to edges e; f and g we addclauses � ue1 _ uf0 , � uf1 _ ug0 and � ug1 _ ue0. Thus, if jV j = 2n and jEj = 3nwe have 12n propositional variables and 18n clauses.To describe a solution translation, consider a valuation of propositionalvariables, say I . Before we translate I into a partition of V , we will normalizeI without decreasing the number of satis�ed clauses. We do it in three stages.(i) We eliminate cases when for some e = fu; vg we have I(ue0) = 0 andI(ue1) = 1. In every such situation we change I(ue1) to 0. Afterwardsall 3 clauses where ue1 occurs are true: two of them contain � ue1, andthe other one contains � ue0. Clearly, the number of true clauses couldnot decrease.(ii) We eliminate cases when for some e = fu; vg we have I(ue0) 6= I(ue1) =1. Because we performed 1), this means I(ue0) = 1 and I(ue1) = 0.Consider I(ve0), if it is 1, then we change I(ue0) to 0. It results in� ue0 _ ue1 becoming true, ue0 _ ve0 and remaining true, so the numberof true clauses cannot decrease. On the other hand, if I(ve0) = 0, thenbecause of 1) we have I(ve1) = 0. In this case we change I(ue1) to 1.(iii) We eliminate cases when for some u; e; f; i; j we have I(uei ) 6= I(ufj ).In such a situation, pairs of the form ue0; ue1 have equal values of I , thusamong 3 such pairs there must be exactly one minority pair, say theone that cooresponds to edge e. We convert this pair to the majorityvalue; as a result we gain one clause in the ring of implications of uand loose at most one clause in the gadget of e.After the normalization, every 6-tuple of propositional variables that corre-sponds to a node u of G has the same valuation, which we may denote I(u).We de�ne C as the set of those nodes that have I(u) = 0. It is easy to seethat CUT (C) = k i� for our set of 18n clauses, I satis�es 15n�k (6 clausesfor every of 2n nodes, 1 clause for each of 3n edges and one extra clause forevery edge in CUT (C)).By applying this reduction together with Theorem 5 we can show that forany � > 0 it is NP hard to decide whether an instance of 3-OCC-MAX 2SATwith 2016n clauses has a truth assignment that satis�es at least (2012� �)nclauses, or it can be at most (2011 + �)n.18



8 Reduction to MIN-SBROur reduction from BGD to MIN-SBR is straightforward, in particular wecan use the procedure GET-PERMUTATION of Caprara [C97, p.77] toobtain permutation �(G) from a given breakpoint graph G. It is easy to showthat if G is the result of reduction �4 � �1 applied to E2-LIN-2, then � haso(n) hurdles. The basic reason is that all ACs of length 4 that may belongto a normalized solution (decomposition into ACs) for a single connectedcomponent in the interleaving graph (cf. [BP96, HP95]), because the numberof longer cycles in a cover is O(n=logn), this implies that the total numberof connected components of the interleaving graph is O(n=logn). Becausehurdles are de�ned as connected components with a special property, wecan conclude that there are O(n=logn) = o(n). As a result, the number ofreversals needed to sort � is exactly equal (modulo lower order terms) to theminimum cost of a decomposition of G into alternating cycles. ThereforeTheorem 8 apllies also to MIN-SBR.9 Further Research and Open ProblemsIt would very interesting to improve still huge gaps between approximationupper and lower bounds for bounded approximation problems of Table 1.The lower bound of 1.0008 for MIN-SBR is the �rst inapproximability resultfor this problem. The especially huge gap between 1.5 and 1.0008 for theMIN-SBR problem re
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