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Abstract

The bandwidth problem is the problem of numbering the vertices of a given graph
G such that the maximum difference between the numbers of adjacent vertices is
minimal. The problem has a long and varied history and is known to be N P-hard
Papadimitriou [Pa 76]. Recently for d-dense graphs a constant ratio approxima-
tion algorithm for this problem has been constructed in Karpinski, Wirtgen and
Zelikovsky [KWZ 97]. In this paper we prove that the bandwidth problem on the

dense instances remains N P-hard.
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1 Introduction

The bandwidth problem on graphs has a very long and interesting history cf.
[CCDG 82].

Formally the bandwidth minimization problem is defined as follows. Let G =
(V,I) be a simple graph on n vertices. A numbering ( or layout ) of GG is a one-
to-one mapping f : V — {1,...,n}. The bandwidth B(f,G) of this numbering is
defined by

B(f,G) = max{[f(v) = f(w)| : {v,w} € E},
the greatest distance between adjacent vertices in G corresponding to f. The

bandwidth B(G) is then

BG)=  min_ {B(f.G))

fis a numbering of G
Clearly the bandwidth of G is the greatest bandwidth of its components.

The problem of finding the bandwidth of a graph is NP-hard [Pa 76], even for
trees with maximum degree 3 [GGJK 78]. The general problem is not known to
have any sublinear n®-approximation algorithms. There are only few cases where we
can find the optimal layout in polynomial time. Saxe [Sa 80] designed an algorithm
which decides whether a given graph has bandwidth at most k in time O(n*) by
dynamic programming. Bandwidth two can be checked in linear time [GGJK 78].
Kratsch [Kr 87] introduced an exact O(n?logn) algorithm for the bandwidth prob-
lem in interval graphs. Smithline [Sm 95] proved that the bandwidth of the com-
plete k-ary tree Ty 4 with d levels and k9 leaves is exactly [k(k? — 1)/(k — 1)(2d)].
Her proof is constructive and contains a polynomial time algorithm, for this task.
For caterpillars [HMM 91] found a polynomial time log n-approximation algorithm.
A caterpillar is a special kind of a tree consisting of a simple chain, the body, with
an arbitrary number of simple chains, the hairs, attached to the body by coalescing
an endpoint of the added chain with a vertex of the body. Karpinski, Wirtgen and
Zelikovsky [KWZ 97] designed a 3-approximation algorithm for d-dense graphs.

Definition 1 ([AKK 95]) We call a graph dense, if the number of edges is in
Q(n?). A graph G is §-dense, if the minimum degree §(G) is at least Sn. We call

it everywhere dense, if it is §-dense for some § > 0 in O(1).

In this paper we show that the bandwidth problem on dense graphs is N P-hard,
answering the question raised in [KWZ 97].

This paper is organized as follows. In Section 2 we introduce some notations in
graph theory related to the bandwidth and discuss some known results of [ACP 87]
[BGHK 95] [KKM 96]. In section 3 we relate the results of section 2 to the band-

width problem in everywhere dense graphs and prove its N P-hardness.



2 Related Notations and Known Results

The class of k-trees is defined recursively as follows:
1. The complete graph on k vertices is a k-tree.

2. Let G be a k-tree on n vertices, then the graph constructed as follows is also
a k-tree: add a new vertex and connect it to all vertices of a k-clique of G,

and only to these vertices.

Any subgraph of a k-tree is called partial k-tree. Arnborg et al. showed in [ACP 87]
that PARTTAL-k-TREE is N P-complete. PARTIAL-k-TREE is the problem given
a graph GG and an integer k, decide whether G is a partial k-tree or not.

A tree decomposition of a graph G'= (V, F) is a pair ({X;]i € I},T = (I, I)),
where 7" is a tree and {X;} is a set of subsets of V', such that

1. U’iEI X’L = V
2. For all {u,v} € E, there is an ¢ € I with u,v € X;
3. Forall 7,7,k € I, if j is on the path from 7 to k in T, then X; N X} C Xj.
The treewidth tw(({X;},T),G) of a tree decomposition ({X;},T) is defined by
tw(({Xz}vT)vG) = maX|Xi| -1
The treewidth tw(G) of a graph G is then
tw(G) = min tw(({X;}, 1), G
(€)= uin, t0(({X.7),0)

Between the treewidth of a graph and the smallest k such that G is a partial

k-tree exists the following well known connection:

Lemma 2 For k > 1 the treewidth of a graph G is at most k if and only if G is a
partial k-tree. Thus tw(G) equals to the smallest k such that G is a partial k-tree.

PrOOF: See, for example, [Le 90]. m
There is also a connection between the bandwidth and the treewidth of cobi-
partite graphs as showed in [KKM 96]. We call a graph cobipartite if it is the

complement of a bipartite graph.
Lemma 3 ([KKM 96]) Let G be a cobipartite graph. Then
B(G) = tw(G)

Using Lemma 2 we get



Corollary 4 Let G be a cobipartite graph. Then B(G) equals to the smallest k
such that G is a partial k-tree.

In section 3 we will have a closer look to the proof of N P-hardness of
PARTIAL-k-TREE and prove that the instance for PARTIAL-k-TREE constructed
there, is everywhere dense and cobipartite. Thus it is easy to show that the band-

width problem on everywhere dense graphs is NP-hard.

3 NP-Hardness for Everywhere Dense
Graphs

First of all we sketch the proof of N P-hardness of PARTIAL-A-TREE proposed
in [ACP 87] to show that the constructed instance is a everywhere dense cobipar-
tite graph. By the results stated in section 2 the N P-hardness of bandwidth in

everywhere dense graphs follows.
Theorem 5 ([ACP 87]) PARTIAL-k-TREE is N P-hard.

Proor: (Sketch) Let G = (V, F) be a input graph of the N P-complete MINI-
MUM CUT LINEAR ARRANGEMENT (MCLA) problem (for the proof of N P-
completeness see [GJ 79] [GT44]): given (G and a positive integer k, does there exist
a numbering f of V', such that

Clf,G) = max [{{u, v} € Blf(u) <5 < @)} < &

We will construct a bipartite graph G' = (AU B, E’). The vertices are defined as

follows:

e BEach v € V is represented by A(G)+ 1 vertices in A, building the set A4, (We
denote by A(G) the maximum vertex degree in () and A(G) — deg(v) + 1
vertices in B, building the set B,.

e For each edge e € F there are two vertices in B. They are denoted by B..
There are two different edge types in F’:

e All vertices in A, are connected to both vertices in B, if v € e.

o All vertices of A, are connected with all vertices in B,.

Now define G” to be G’ after inserting all edges in A and B. Arnborg et al. showed
the following connection: GG has a minimum linear cut value k with respect to some

numbering f, if and only if the corresponding graph G" is a partial k'-tree for



E=(AG)+1)(|V]+1)+k—1. Since the construction of G" is polynomial, it
follows that PARTIAL-A'-TREE is N P-hard. m

As a corollary we get the following theorem.

Theorem 6

The bandwidth problem on everywhere dense graphs is N P-hard.

PrOOF: Observe that the instance for PARTIAL-k-TREE constructed in the
proof of Theorem 5 is cobipartite. Further it is at least 1/2-dense, since the sets A
and B build cliques and |A| = |B|:

Al = (AG)+ D[V
(n=V]) = AlG)n+n
= A(G)n+n- Y deg(v) + 2|
veV
= Y (A(G) — deg(v) + 1) + 2| B
veV
= |B|

Applying Corollary 4 it follows, since G' is cobipartite that the bandwidth on ev-
erywhere dense graphs is N P-hard. m

4 Open Problems

An important computational problem remains open about the approximation hard-

ness of the bandwidth on the dense instances.
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