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AbstractThe bandwidth problem is the problem of numbering the vertices of a given graphG such that the maximum di�erence between the numbers of adjacent vertices isminimal. The problem has a long and varied history and is known to be NP -hardPapadimitriou [Pa 76]. Recently for �-dense graphs a constant ratio approxima-tion algorithm for this problem has been constructed in Karpinski, Wirtgen andZelikovsky [KWZ 97]. In this paper we prove that the bandwidth problem on thedense instances remains NP -hard.
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1 IntroductionThe bandwidth problem on graphs has a very long and interesting history cf.[CCDG 82].Formally the bandwidth minimization problem is de�ned as follows. Let G =(V;E) be a simple graph on n vertices. A numbering ( or layout ) of G is a one-to-one mapping f : V ! f1; :::; ng. The bandwidth B(f;G) of this numbering isde�ned by B(f;G) = maxfjf(v)� f(w)j : fv; wg 2 Eg;the greatest distance between adjacent vertices in G corresponding to f . Thebandwidth B(G) is thenB(G) = minf is a numbering of GfB(f;G)gClearly the bandwidth of G is the greatest bandwidth of its components.The problem of �nding the bandwidth of a graph is NP-hard [Pa 76], even fortrees with maximum degree 3 [GGJK 78]. The general problem is not known tohave any sublinear n�-approximation algorithms. There are only few cases where wecan �nd the optimal layout in polynomial time. Saxe [Sa 80] designed an algorithmwhich decides whether a given graph has bandwidth at most k in time O(nk) bydynamic programming. Bandwidth two can be checked in linear time [GGJK 78].Kratsch [Kr 87] introduced an exact O(n2 logn) algorithm for the bandwidth prob-lem in interval graphs. Smithline [Sm 95] proved that the bandwidth of the com-plete k-ary tree Tk;d with d levels and kd leaves is exactly dk(kd � 1)=(k� 1)(2d)e.Her proof is constructive and contains a polynomial time algorithm, for this task.For caterpillars [HMM 91] found a polynomial time logn-approximation algorithm.A caterpillar is a special kind of a tree consisting of a simple chain, the body, withan arbitrary number of simple chains, the hairs, attached to the body by coalescingan endpoint of the added chain with a vertex of the body. Karpinski, Wirtgen andZelikovsky [KWZ 97] designed a 3-approximation algorithm for �-dense graphs.De�nition 1 ([AKK 95]) We call a graph dense, if the number of edges is in
(n2). A graph G is �-dense, if the minimum degree �(G) is at least �n. We callit everywhere dense, if it is �-dense for some � > 0 in O(1).In this paper we show that the bandwidth problem on dense graphs is NP -hard,answering the question raised in [KWZ 97].This paper is organized as follows. In Section 2 we introduce some notations ingraph theory related to the bandwidth and discuss some known results of [ACP 87][BGHK 95] [KKM 96]. In section 3 we relate the results of section 2 to the band-width problem in everywhere dense graphs and prove its NP -hardness.2



2 Related Notations and Known ResultsThe class of k-trees is de�ned recursively as follows:1. The complete graph on k vertices is a k-tree.2. Let G be a k-tree on n vertices, then the graph constructed as follows is alsoa k-tree: add a new vertex and connect it to all vertices of a k-clique of G,and only to these vertices.Any subgraph of a k-tree is called partial k-tree. Arnborg et al. showed in [ACP 87]that PARTIAL-k-TREE is NP -complete. PARTIAL-k-TREE is the problem givena graph G and an integer k, decide whether G is a partial k-tree or not.A tree decomposition of a graph G = (V;E) is a pair (fXiji 2 Ig; T = (I; F )),where T is a tree and fXig is a set of subsets of V , such that1. Si2I Xi = V2. For all fu; vg 2 E, there is an i 2 I with u; v 2 Xi3. For all i; j; k 2 I , if j is on the path from i to k in T , then Xi \Xk � Xj .The treewidth tw((fXig; T ); G) of a tree decomposition (fXig; T ) is de�ned bytw((fXig; T ); G) = maxi jXij � 1The treewidth tw(G) of a graph G is thentw(G) = min(fXig;T ) tw((fXig; T ); G)Between the treewidth of a graph and the smallest k such that G is a partialk-tree exists the following well known connection:Lemma 2 For k � 1 the treewidth of a graph G is at most k if and only if G is apartial k-tree. Thus tw(G) equals to the smallest k such that G is a partial k-tree.Proof: See, for example, [Le 90].There is also a connection between the bandwidth and the treewidth of cobi-partite graphs as showed in [KKM 96]. We call a graph cobipartite if it is thecomplement of a bipartite graph.Lemma 3 ([KKM 96]) Let G be a cobipartite graph. ThenB(G) = tw(G)Using Lemma 2 we get 3



Corollary 4 Let G be a cobipartite graph. Then B(G) equals to the smallest ksuch that G is a partial k-tree.In section 3 we will have a closer look to the proof of NP -hardness ofPARTIAL-k-TREE and prove that the instance for PARTIAL-k-TREE constructedthere, is everywhere dense and cobipartite. Thus it is easy to show that the band-width problem on everywhere dense graphs is NP-hard.3 NP-Hardness for Everywhere DenseGraphsFirst of all we sketch the proof of NP -hardness of PARTIAL-k-TREE proposedin [ACP 87] to show that the constructed instance is a everywhere dense cobipar-tite graph. By the results stated in section 2 the NP -hardness of bandwidth ineverywhere dense graphs follows.Theorem 5 ([ACP 87]) PARTIAL-k-TREE is NP -hard.Proof: (Sketch) Let G = (V;E) be a input graph of the NP -complete MINI-MUM CUT LINEAR ARRANGEMENT (MCLA) problem (for the proof of NP -completeness see [GJ 79] [GT44]): given G and a positive integer k, does there exista numbering f of V , such thatc(f;G) = max1�j<n jffu; vg 2 Ejf(u) � j < f(v)gj � kWe will construct a bipartite graph G0 = (A [ B;E 0). The vertices are de�ned asfollows:� Each v 2 V is represented by �(G)+1 vertices in A, building the set Av (Wedenote by �(G) the maximum vertex degree in G) and �(G) � deg(v) + 1vertices in B, building the set Bv .� For each edge e 2 E there are two vertices in B. They are denoted by Be.There are two di�erent edge types in E 0:� All vertices in Av are connected to both vertices in Be, if v 2 e.� All vertices of Av are connected with all vertices in Bv .Now de�ne G00 to be G0 after inserting all edges in A and B. Arnborg et al. showedthe following connection: G has a minimum linear cut value k with respect to somenumbering f , if and only if the corresponding graph G00 is a partial k0-tree for4



k0 = (�(G) + 1)(jV j + 1) + k � 1 . Since the construction of G00 is polynomial, itfollows that PARTIAL-k0-TREE is NP -hard.As a corollary we get the following theorem.Theorem 6The bandwidth problem on everywhere dense graphs is NP -hard.Proof: Observe that the instance for PARTIAL-k-TREE constructed in theproof of Theorem 5 is cobipartite. Further it is at least 1=2-dense, since the sets Aand B build cliques and jAj = jBj:jAj = (�(G) + 1)jV j(n = jV j) = �(G)n+ n= �(G)n+ n�Xv2V deg(v) + 2jEj= Xv2V (�(G)� deg(v) + 1) + 2jEj= jBjApplying Corollary 4 it follows, since G is cobipartite that the bandwidth on ev-erywhere dense graphs is NP -hard.4 Open ProblemsAn important computational problem remains open about the approximation hard-ness of the bandwidth on the dense instances.References[ACP 87] Arnborg, S., Corneil, D., Proskurowski, A., Complexity of FindingEmbeddings in a k-Tree, SIAM Journal on Algebraic Discrete Methods8 (1987), pp. 277{284.[AKK 95] Arora, S., Karger, D., Karpinski, M., Polynomial Time ApproximationSchemes for Dense Instances of NP-Hard Problems, Proc. 27th ACMSTOC (1995), pp. 284{293.[BGHK 95] Bodlaender, H., Gilbert, J., Hafsteinsson, H., Kloks, T., Approximat-ing Treewidth, Pathwidth, Frontsize and Shortest Elimination Tree,Journal of Algorithms 18 (1995), pp. 238{255.5
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